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Abstract 
Error Correction Code is very important in modern communication systems. BCH (Bose, Chaudhuri, 

and Hocqunghem) codes are being widely used in variety communication and storage systems. In this 

paper the construction and decoding BCH codes which are based on finite field arithmetic is introduced 

and also an improved algorithm for finding roots of polynomials over finite fields is proposed. This 

makes possible significant speed up of the decoding process of BCH codes. 
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1. Introduction 

The theory of error detecting and correcting codes is that branch of engineering and mathematics 

which deals with the reliable transmission and storage of data. In 1948 Claude Shannon’s article “A 

Mathematical Theory of Communication” gave birth to the two twin disciplines: information theory 

and coding theory. The article specifies the meaning of efficient and reliable information and, there, 

the very well known term “bit” has been used for the first time. Anyway, it was only with Richard 

Hamming in 1950 that a constructive generating method and basic parameters of Error Correction 

Codes (ECC) were defined [1]. 

The success of the coding theory is based precisely on the motivation arisen from the manifold 

practical applications. Space communication would not have been possible without the use of error-

correcting codes and the digital revolution has made a great use of them. Modems, CDs, DVDs, MP3 

players and USB keys need an ECC which enables the reading of information in a reliable way. 
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Information media are not 100% reliable in practice, in the sense that noise (any form of interference) 

frequently causes data to be distorted. To deal with this undesirable but inevitable situation, some form 

of redundancy is incorporated in the original data. With this redundancy, even if errors are introduced 

(up to some tolerance level), the original information can be recovered, or at least the presence of 

errors can be detected. 

Error correction plays a major role in communication and storage systems to increase the transmission 

reliability and achieve a better error correction performance with less signal power. Several error 

correction codes have been proposed in the literature, including Hamming based block codes, Reed-

Solomon codes, Bose-Chaudhuri-Hocqunghem (BCH) codes, Goppa codes, Golay codes, etc. BCH 

codes have recently received a lot of attention because of their superiror error correction performance. 

BCH codes form a large of powerful random error correcting cyclic codes. This class of codes is a 

remarkable generalization of the Hamming codes for multiple error correction. Binary BCH codes 

were discovered by Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960. The 

cyclic structure of these codes was proved by Peterson in 1960 [1]. BCH codes operate over finite 

fields or Galois fields. The biggest advantage of BCH codes is the existence of efficient decoding 

methods due to the special algebraic structure introduced in the codes. The conventional BCH decoder 

contains three major blocks, i.e., syndrome calculator, error locator calculator, and Chien search. It is well known 

that one of most time-consuming stages of decoding BCH codes is finding roots of the error-locator polynomial 

using Chien search method. In this paper the construction and decoding BCH codes is introduced and 

also an improved algorithm for finding roots of polynomials over finite fields is proposed. This makes 

possible fast decoding process of BCH codes. 

 

The rest of this paper is organized as follows. Section II and III introduces the details of the Finite 

Fields and the t-error-correction BCH coding scheme. Section IV and V describes BCH encoding and 

decoding procedure. The root finding technique based on the BRS algorithm and Chien search method 

is introduced in Section VI. Finally, the concluding remarks are given in Section VII. 

 

2. Finite Fields 

BCH codes are based on finite field arithmetic which involves defining closed binary operations over 

finite sets of elements. Finite field arithmetic is enormously used in several area of digital signal 

processing. It is, in fact, a special case of abstract algebra [1]. As a brief overview, we will start with 

the simplest example of finite field which is the binary field consisting of the elements {0,1}. 

Traditionally referred to as GF(2), the operations in this field are defined as integer addition and 

multiplication reduced modulo 2. We can create larger fields by extending GF(2) into vector space 

leading to finite fields of size 2
m
. These are simple extensions of the base field GF(2) over m 

dimensions. The field GF(2
m
) is thus defined as a field with 2

m
 elements each of which is a binary m-

tuple. Using this definition, we can group m bits of binary data and refer to it as an element of GF(2
m
). 

This in turn allows us to apply the associated mathematical operations of the field to encode and 

decode data. There are two elements (but equivalent) representations for the field elements. First, all 

nonzero elements in GF(2
m
) may be represented as powers of a primitive field element α (i.e. each 

nonzero element is of the form α
n 

for n = 0, 1, …, 2
m
 – 1). Second, each element has an equivalent 

representation as a binary m-tuple. While the α
n
 representation has great mathematical convenience, 

digital hardware prefers the binary m-tuple representation. These representations for GF(2
3
) are 

illustrated in Table 1. 
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Table 1. Canonical Representation of Finite Field GF(2
3
) 

Power 

Representation 
0 α

0 
α

1
 α

2
 α

3 
α

4
 α

5
 α

6
 

Vector 

Representation 
000 100 010 001 110 011 111 101 

Polynomial 

Representation 
0 1 α α

2
 1+ α α + α

2
 

1 + α + 

α
2
 

1 +α
2
 

 

 

3. Basics of BCH Codes 

Bose-Chaudhuri-Hocqunghem (BCH) codes are cyclic codes for which a large number of block sizes 

and error correction capabilities are available. While operating under GF(2
m
), it has error correcting 

capability of t. The main parameters of BCH codes are summarized as following parameters: 

Block length: 12  mn  

Number of information bits: tmnk   

Minimum distance: 12min  td  

The generator polynomial of the code is specified in terms of its roots over the Galois field GF(2
m
) 

which is explained in [1]. Let  be a primitive element in GF(2
m
). The generator polynomial g(x) of 

the code is lowest degree polynomial over GF(2), which has t232 ,...,,,   as its roots. 

]21,0)([ tig i  . Let )(xi be the minimal polynomials of i then generator polynomial of BCH 

code is the least common multiple (LCM) of the minimal polynomials of i : 

 

 )}(),......,(),({)( 221 xxxLCMxg t   (2) 
 

Assume a k-bit message is encoded to form an n-bit codeword. The k-bit message is the input of 

encoder and the BCH encoder generates (n-k)-bit parity. After encoding, the (n-k)-bit parity together 

with k-bit message form a codeword which is stored into the memory. In decoding process, the n-bit 

data is retrieved from the memory and is put into the syndrome calculator block. If there is no error in 

the retrieved data, the syndrome should be all zero and the decoding procedure is finished. Otherwise 

the syndrome should be sent to error-location block in order to generate the error-locating polynomial. 

Then the Chien search block is used to find out which bits are erroneous. Finally, the corrected 

message extracted. 

 

4. Description of BCH Encoding 

Since BCH codes are cyclic codes, encoding in systematic form is similar to the binary encoding 

procedure. The generating polynomial for BCH code is: 

 
tt

t XXgXgXggXg 212
12

2
210 ....)(  

                                        (3)
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The degree of generator polynomial is equal to the number of parity bit. Since the generator 

polynomial is equal to degree 2t, there must be precisely 2t successive powers of   that are roots of 

the polynomial. Message polynomial m(X) can be shifted into the leftmost n-k stages of a codeword 

register and then appending a parity polynomial p(X). Therefore following steps are followed for 

encoding: 

Step1: Multiply m(X) by knX  thereby manipulating the message polynomial algebraically so that it is 

left-shifted n-k positions. 

Step2: Divide )(XmX kn by generator polynomial )(Xg , which is written in following form: 

                                                                                                   

                                                            (4) 

 

Where )(Xq and )(Xp are quotient and remainder polynomials, respectively. The remainder polynomial 

represents the parity bits. Equation (2) can also be expressed as: 

 )(mod)()( XgXmXXp kn                                                    (5)
 

Step3: The resulting codeword polynomial, )(XC can be written as: 

  
)()()( XmXXpXC kn
                                                              (6)                                                                        

 

 

5. Description of BCH Decoding 

The decoding of BCH code has three main steps that are expressed as follows: 
I. Computing the syndromes from the received codeword. 

II. Key equation solver, which determines the error locator polynomial )(X through the BM 

(Berlekamp-Massey) algorithm. 

III. Determining the error locating numbers by finding the roots of error locating polynomial 

(identifying the position of erroneous bit). 

 

5.1. Syndrome Calculation 

In the BCH decoding process, the received n-bit codeword ),...,,( 110 nrrr is interpreted as a 

polynomial, 1

1

2

2

1

10 ...)( 

 n

n xrxrxrrxR . By computing 2t syndromes in (7) the existence of 

any error in the received codeword can be checked: 

 

 

                                         (7) 

If the received codeword contains errors, the syndromes are not all zero. The syndromes are a set of 

the field elements in GF(2
m
). Therefore, each syndrome component is calculated by dividing r(x) by 

the minimal polynomial )(xi of i : 

)()()()( XpXgXqXmX kn 

ti

rrrrRS ni
n

ij
n

j

j
i

i

21

....)( )1(
1

1
10

1

0
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                                                           (8) 

)(xi is the minimal polynomial and )(Xbi  
is reminder, So by evaluating )(Xbi with iX  , the 

syndrome components can be found. Since, 

0)( i
i 

 

We have the following equation, 

)()( i
i

i
i brS    

 

It can be seen that the 2t syndrome components tSSS 22,1 ,...,  can be calculated by substituting the field 

element t22,...,,  into the received polynomial r(x) in decoding a t-error-correcting BCH code. 

 

5.2. Error Locator Polynomial Calculation 

Suppose there are v errors in the codeword at location jvjj XXX ,...,, 21 locations. Then, the error 

polynomial e(X) can be written as jv
jv

j
j

j
j XeXeXeXe  ...)( 2

2
1

1 . The indices 1, 2, …, v refer to 

first, second and vth errors, whereas the index j refers to error location. To correct the corrupted 

codeword, each error value jle  and its location jlX , where vl ,...,2,1 must be determined. Based on 

2t syndromes, we calculate the error locator polynomial as 
t

t XXXx   ...1)( 2
21 using the 

Berlekamp-Massey (BM) algorithm [6]. Conventionally, the iterative BM algorithm is employed to 

obtain the coefficients of )(X in the key equation solver. The procedure of BM algorithm is illustrated 

in Table 2. The basic principle of this algorithm is that it compares the polynomial computed in the 

current cycle with that from the previous cycle and determines the polynomial in the next cycle [7]. It 

contains of two major tasks including: discrepancy calculation, , and error location polynomial 

update. We assume that the numbers of errors tv   have occurred and the error locator polynomial 

)(X  is: 

   

                                                   
                                              (9)  

 

The coefficient of error locator polynomial and the error location numbers are related by the following 

set of equations: 

vv

vv

v



















...

...

...

1

21

132212

211

0



 

 
Where the coefficient of error locator polynomial 

vii 1,
  are related to the syndrome components 

.11,  viSi The BMA procedure begins with the 2t syndrome. With help of syndrome components 

),...,,( 221 tSSS  it is possible to determine the coefficients t ,...,, 21 of the error location polynomial. 

 

 

)()()()( XbXXqXr iii  

)1)....(1)(1()(

...)(

21

2
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Table 2. The Berlekamp-Massey Algorithm           
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)(
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)120(

)()()(
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)0(
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x
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Landif

xxxx

S
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xxSxL

j

L
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5.3. Chien Search 

Once error location polynomial )(X  was obtained in the decoding process, a Chien search method 

can be used to exhaustively examine whether 0)( i for 10  ni or not, where 

 

)10(.1)(

10

)(

 


ij
t

j

j
i

t

j

j
i j

  

All 2
m
 possible elements of Galios field are substituted into the error polynomial, one after another, 

and the polynomial is evaluated. If the result is equal to then zero, there will be a root for the 

polynomial. Chien search circuit produces an error vector e in such a way that, if i is a root, then the

thin )(   component 1ine ; otherwise 0ine for all .10  ni  Finally, error will be corrected in 

the received codeword. 

 

6. Polynomial Root Finding 

It is well known that one of the most time-consuming stages of decoding process BCH codes is 

finding roots of the error-locator polynomial. The most widely known root finding algorithm is Chien 

search method, which is a simple substitution of all elements of the field into the polynomial, so it has 

very high time complexity for the case of large fields and polynomials of high degree. In this section, 

the Berlekamp-Rumsey-Solomon (BRS) algorithm [2], [3], together with the Chien-search method, is 

developed in order to find the roots of error locator polynomial for BCH decoders. This fast algorithm 

makes the root-finding problem quite practical and efficient for BCH decoders. 
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6.1. BRS Algorithm with the Chien Search Method 

Berlekamp et al. [3], proposed a novel algorithm for finding the roots of a special class of polynomials, 

called the p-polynomial, [3], [4]. Before description of the algorithm, first consider some definitions 

and a theorem that are needed to develop this algorithm. 

Definition 1: The polynomial L(y) over GF(2
m
) is called a p-polynomial for p=2 if 

                  

  

where ic  are restricted to GF(2
m
) and exponents are restricted to be the powers of two. These 

polynomials are also called linearized polynomials. 

Definition 2: A polynomial A(y) over GF(2
m
) is called an affine polynomial if 

 )()( yLyA
                                                                        (12)

 

Where L(y) is a p-polynomial and )2( mGF . 

Theorem 1: Let )2( mGFy and let 1210 ,...,,, m  be a standard basis. If y is represented in the 

standard basis, i.e., if 








1

0

m

k

k
kyy   

Where )2(GFyk  , then 

 

 

Example1: Solve the quadratic p-polynomial over GF(2
3
), namely 

0)( 432   yyyA  

or  

(13) 

 

Where   is a root of the primitive irreducible polynomial 1)( 23  xxxp . The left-hand side of 

(13), yyyL 32)(  , is a p-polynomial over GF(2
3
) and (13) can be expressed as: 

(14) 

If )2( 3
01

2
2 GFyyyy   , then, in accordance with Theorem 1, (14) becomes: 

                                        (15) 

)11()( 2i

i

i ycyL 

)()(

1

0








m

k

k
k LyyL 

12432   yy

1)( 2  yL

1)()()( 20
01

2
2   LyLyLy



   S. Nabipour, J. Javidan, Gh. Zare Fatin / J. Math. Computer Sci.    12 (2014), 271-281 
 

278 
 

Where ).2(,, 210 GFyyy   

In (15), the values of field element )(),( 10  LL  and )( 2L can be calculated as: 

 

A substitution of (16) into (15) yields finally: 

)17(.1)( 2
01

2
02   yyyy  

In matrix form, (17) can be expressed as: 

  )18(111

101

010

001

][[ 012 

















yyy  

Observe that the roots of (13) can by found by solving the three simultaneous equations given in (18) 

with three unknowns 10 , yy  and 2y . Evidently solutions of (17) are 011y and 110y , which are 

two roots of (17). From this example, one observes that one needs only to compute the three values 

)(),( 10  LL , and )( 2L instead of all of the values )(),...,(),( 610  LLL needed in the Chien-search 

method. 

The authors in [3] suggested a fast algorithm to find the roots of a polynomial up to degree 11. In their 

algorithm, the Berlekamp-Rumsey-Solomon (BRS) algorithm together with the Chien-search method, 

is developed in order to find the roots of error locator polynomial up to degree n = 11. In their recent 

paper [3] Truong, Jeng and Reed proposed a transformation which allows grouping of some summands 

of the polynomial of degree not higher than 11 into multiples of affine polynomials. Since affine 

polynomials can be easily evaluated using very small pre-computed tables, it is possible to speed up 

computations. in the following, polynomial root finding of degree 6 and 7 is examined. 

Example 2: Solve the polynomial of degree 6, namely 

)19(00
1

1
2

2
3

3
4

4
5

5
6

6   xxxxxx  

or 

)20()()( 66 xBxA   

Where 1)( 1
2

2
4

46  xxxxA   and 3
3

5
5

6
66 )( xxxxB   . 

In (20) since )(6 xA is an affine polynomial over GF(2
m
), then the values of 

)(),...,(),( 12
6

2
66

m

AAA  can be obtained by the use of algorithm illustrated in Example 1. On the 

other hand, the values of ),(6 B )(),...,( 12
6

2
6

m

BB   can be obtained by the use of Chien-search 

method. If )()( ii BA    for 121  mi , then )2( mi GFx  is solution of (20). Therefore, by 

22342

32

23

.)(

)16(1.)(

1)1(













L

L

L
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exhaustively searching all nonzero field elements in GF(2
m
) for the roots of (20), there exists a set of 

field elements such that they satisfy (20). These solutions are the roots of (19). 

 

Example 3: Solve the polynomial of degree 7, namely 

)21(00
1

1
2

2
3

3
4

4
5

5
6

6
7

7   xxxxxxx  

A substitution of ayx   into (21) yields 

0)(

)22()()()(

)()()(

01
2

2
3

3
4

4
5

5
6

6
7

7

1
2

3
4

5
6

7
2

23
4

6
5

7
3

3
4

7

4
45

2
6

3
7

5
5

2
7

6
67

7
7













aaaaaaa

yaaayaaaya

yaaayayay

 

If one eliminates the sixth term of (22) by the choice 
7

6




a , then (22) becomes 

)23(001
2

2
3

3
4

4
5

5
7

7  cycycycycycyc  

where  123
4

6
5

723
4

7345
3

745
2

7577 ,,,,, caaaccaacacc   

1
2

3
4

5
6

7   aaa  and 0
1

1
2

2
3

3
4

4
5

5
6

6
7

70   xxxxaaac .Equation 

(23) can be rewritten in the form 

3
3

2
5

4
7

3
3

5
5

7
701

2
2

4
4

)( ycycyc

ycycyccycycyc




 

or 

)24().()( 3
77 yyByA   

Where 01
2

2
4

47 )( cycycycyA   and .)( 3
2

5
4

77 cycycyB   

In (24), one observes that both )(7 yA  and )(7 yB are two affine polynomials that can be computed by 

the BRS algorithm. In other words, the values )(7
iA   and )(7

iB   for 121 
m

i   can be obtained by 

a use of the BRS algorithm. If one exhaustively searches all nonzero field elements of GF(2
m
) for the 

roots of (23), there exists a set of field elements that satisfy (23). These elements are the solution of 

(23). Since the solutions of (23) are known, the roots of (21) are therefore found by the use of the 

transformation .ayx   Finding the roots of polynomial of degree n=8, 9, 10, 11 is described in [3]. 
 

To show the performance of the new algorithm it has been implemented in C++ programming 

language. Fig.1 indicates the result of simulation. It is shown that this method can be up to 1.5 times 

faster than Chien search method. 
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Figure 1. Execution time for polynomial root finding 

 

7. Conclusions 

Error correction plays a major role in communication and storage systems to increase the transmission  

reliability and achieve a better error correction performance with less signal power. One of the most 

common error correction codes in communication and storage systems is Bose-Chaudhuri-Hocqunghem 

(BCH) code. The conventional BCH decoder contains three major blocks, i.e., syndrome calculator, error locator 

calculator, and Chien search. It is well known that one of most time-consuming stages of decoding BCH codes is 

finding roots of the error-locator polynomial using Chien search method. In this paper the construction and 

decoding BCH codes is introduced and also an improved algorithm for finding roots of polynomials 

over finite fields is proposed with significantly better performance than well-known Chien search. 
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