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Abstract 

In this paper, we apply the new implementation of reproducing kernel Hilbert space method to give the 

approximate solution to some third-order boundaryvalue problems with variable coefficients. In this 

method, the analytical solution is expressed in the form of a series. At the end, two examples are given to 

illustrate implementation, accuracy and effectiveness of the method. 

Keywords: Reproducing kernel Hilbert space method; Boundary value problems; Third-order differential 

equations; Approximatesolution. 

1. Introduction 

Reproducing kernel Hilbert space method is a promising method which has beenapplied more 

and more for solving various problems such asordinary differential equations, partial differential 

equations,differential-difference equations, integral equations, and etc. inthe previous decades 

[1]-[22]. Approximate solutionof the Fredholm integral equation of the first kind in the 
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reproducing kernel Hilbert space was presented by Du and Cui [3,4], solution of a system of 

linear Volterraintegral equations was discussed by Yang et al. [5],solvability of a class of 

Volterra integral equations with weaklysingular kernel using reproducing kernel Hilbert 

space method were investigated in [6,7,8],Geng[9] explained how to solve the Fredholm 

integralequation of the third kind in the reproducing kernel Hilbertspace method. These are a 

bunch of extensive works related to reproducing kernel Hilbertspace method for solving integral 

equations. 

 

In 1986, Cui Minggen[10] gave the reproducing kernel space 𝑊2
1[𝑎, 𝑏] and its reproducing 

kernel. This technique has successfully been treated singular linear two-point boundary value 

problems [11,12],singular nonlinear second-order boundary value problems [13,14,15,16], 

nonlinear system of boundary value problems [17],third-order boundary value problems [18,19], 

fifth-order boundary value problems [20], and nonlinear partialdifferential equations [21] in 

recent years. 

This paper investigates the approximate solution of the following third-order boundary 

value problem using new implementation of reproducing kernel Hilbertspace method 

 

 
𝑦′′′  𝑥 + 𝑝 𝑥 𝑦 𝑥 =  𝑓 𝑥 ,     0 ≤  𝑥 ≤ 1,

𝑦 0 = 𝐴,   𝑦′ 0 = 𝐵,   𝑦′(1) = 𝐶,
                                                                        (1) 

where𝑝 𝑥 , 𝑓(𝑥) are analytical known functions defined on theinterval [0,1], unknown function 

𝑦(𝑥) is continuouson the interval [0,1] and  𝐴, 𝐵, 𝐶 are finite real constants. 

Several numerical techniques have been proposed to solve high-order differential equations 

[23,24,25]. 

As we known, Gram-Schmidt orthogonalization process isnumerically unstable and in addition it 

may take a lot oftime to produce numerical approximation. Here, instead ofusing orthogonal 

process, we successfully make use of thebasic functions which are obtained  by reproducing 

kernel Hilbertspace method. 

This paper is organized as follows. In thefollowing section, we introduce some useful definitions 

and theorems. Section 3 is devoted to solve Eq. (1) by new implementation of reproducing kernel 

Hilbert space method. Two numerical examples are presented in Section 4. We end the paper 

with a few conclusions. 

 

2. Reproducing Kernel Spaces 

In this section, we follow the recent work of [1]-[22] and represent some useful materials. 

 

Definition 1. 

Let  ℋ , < . , . >ℋ be a Hilbert space of real-valued functions on some nonempty set 𝒳. A 

function𝑘: 𝒳 × 𝒳 → ℝ is said to be the reproducing kernel of ℋ if and only if 

1. 𝑘 𝑥, .  ∈ ℋ,         ∀𝑥 ∈ 𝒳, 

2. <  𝜑 .  ,𝑘 𝑥, .  >ℋ= 𝜑 𝑥 ,    ∀𝜑 ∈ ℋ,    ∀𝑥 ∈ 𝒳,          𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 . 
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It is known that the reproducing kernel of a reproducing kernel Hilbertspace is unique and the 

existence of a reproducing kernel is according to the Riesz Representation Theorem. The 

reproducing kernel 𝑘 of a Hilbert space ℋ quite determines the spaceℋ. Each set of functions 

 𝜑𝑖 𝑖=1
∞   which converges strongly to a function 𝜑in ℋ, converges also in the pointwise sense. In 

addition, this convergence is uniform on every subset of 𝒳 on which 𝑥 ↦  𝑘(𝑥, 𝑥) is bounded. 

 

Definition 2. 

𝑊2
4 0,1 =  𝑦 𝑥  𝑦′′′  𝑥  𝑖𝑠 𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑦 4  𝑥 

∈  𝐿2 0,1 , 𝑦(0) = 𝑦′(0) = 𝑦′(1) = 0}. 

The inner product and the norm in the function space 𝑊2
4 0,1  are defined as follows. 

 
 
 

 
 < 𝑢, 𝑣 >𝑊2

4 = 𝑢′′(0)𝑣′′(0) +  𝑢 4  𝑥 𝑣 4 (𝑥)𝑑𝑥
1

0

,

  u  
𝑊2

4 =  < 𝑢, 𝑢 >𝑊2
4 .                                             

  

 

 

Let's assume that function 𝑅 𝑥, 𝑡 ∈  𝑊2
4[0,1]satisfies the following generalized differential 

equations 

 
 
 
 

 
 
 

𝜕8𝑅(𝑥, 𝑡)

𝜕𝑡8
= 𝛿(𝑡 − 𝑥),

R x, 1 −
𝜕7𝑅 𝑥 ,1 

𝜕𝑡7 = 0,        

𝜕4𝑅(𝑥 ,1)

𝜕𝑡4 = 0,      
𝜕4𝑅(𝑥 ,0)

𝜕𝑡4 ,

𝜕5𝑅(𝑥, 1)

𝜕𝑡5
= 0,      

𝜕5𝑅(𝑥, 0)

𝜕𝑡5
.

                                                                                            (2) 

where𝛿 is the Dirac delta function. Therefore, the following theorem holds. 

 

Theorem 1.Under the assumptions of Eq. (2), Hilbert space 𝑊2
4[0,1]isa reproducing kernel 

Hilbertspace with the reproducing kernel function 𝑅(𝑥, 𝑡), namely for any 𝑦 𝑡 ∈ 𝑊2
4[0,1]and 

each fixed 𝑥 ∈  [0,1], there exists 𝑅 𝑥, 𝑡 ∈ 𝑊2
4[0,1], 𝑡 ∈  [0,1], such that 

< 𝑦 .  ,𝑅 𝑥, .  >𝑊2
4 =  𝑦(𝑥). 

 

While𝑥 ≠ 𝑡, function 𝑅(𝑥, 𝑡) is the solution of the followingconstant linear homogeneous 

differential equation with 8 orders, 

𝜕8𝑅(𝑥, 𝑡)

𝜕𝑡8
= 0,                                                                                                                          (3) 

with the boundary conditions: 
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R x, 1 −
𝜕7𝑅 𝑥 ,1 

𝜕𝑡7 = 0,        

𝜕4𝑅(𝑥 ,1)

𝜕𝑡4 = 0,      
𝜕4𝑅(𝑥 ,0)

𝜕𝑡4 ,

𝜕5𝑅(𝑥, 1)

𝜕𝑡5
= 0,      

𝜕5𝑅(𝑥, 0)

𝜕𝑡5
.

                                                                                            (4) 

 

We know that Eq. (3) has characteristic equation 𝜆8 = 0, and theeigenvalue 𝜆 = 0 is a root 

whose multiplicity is 8. Hence, the general solution of Eq. (2) is 

 

𝑅 𝑥, 𝑡 =

 
 
 

 
  𝑐𝑖 𝑥 

8

𝑖=1

𝑡𝑖−1,              𝑡 ≤ 𝑥,

 𝑑𝑖 𝑥 

8

𝑖=1

𝑡𝑖−1,              𝑡 > 𝑥.

                                                                              (5) 

 

Now, we are ready to calculate the coefficients 𝑐𝑖 𝑥 and 𝑑𝑖 𝑥 , 𝑖 =  1, … ,8. Since 

𝜕8𝑅(𝑥, 𝑡)

𝜕𝑡8
= 𝛿(𝑡 − 𝑥), 

we have 

 
 

 
∂kR x, x+ 

∂tk
=

∂kR x, x− 

∂tk
,                 k = 0, … ,6,

∂7R x, x+ 

∂tk
−

∂7R x, x− 

∂tk
= 1.                                 

                                                                 (6) 

Then, using Eqs. (4) and (6), the unknown coefficients of Eq. (5) are uniquely obtained (in 

Apendix A). 

 

Definition 3. 

𝑊2
1 0,1 

=  𝑦 𝑥  𝑦 𝑥  𝑖𝑠 𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 on the interval  0,1  𝑎𝑛𝑑 𝑦′ 𝑥 

∈  𝐿2 0,1 }. 

The inner product and the norm in the function space 𝑊2
1[0,1] are defined as follows. 

 

 
 
 

 
 < 𝑢, 𝑣 >𝑊2

1 = 𝑢(0)𝑣(0) +  𝑢′ 𝑥 𝑣 ′(𝑥)𝑑𝑥
1

0

,

  u  
𝑊2

1 =  < 𝑢, 𝑢 >𝑊2
1 .                                             

  

 

Theorem 2.Hilbert space 𝑊2
1 0,1  is a reproducing kernel space with the reproducing kernel 

function 
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𝑄 𝑥, 𝑡 =  
1 + t,              𝑡 ≤ 𝑥,
1 + x,              𝑡 > 𝑥,

  

 

that is, for any 𝑦 𝑡 ∈ 𝑊2
1 0,1 and each fixed 𝑥 ∈ [0,1], it follows that 

< 𝑦 .  ,𝑄 𝑥, .  >𝑊2
1 = 𝑦 𝑥 . 

 

3. Reproducing Kernel Hilbert Space Method 

 

We suppose that Eq. (1) has a unique solution. To deal with the system, we consider Eq. (1) as 

𝕃𝑦 𝑥 = 𝑓 𝑥 ,               0 ≤  𝑥 ≤ 1,                                                                       (7) 

where 𝕃𝑦 𝑥 = 𝑦′′′(𝑥)  +   𝑝(𝑥) 𝑦(𝑥), it is clear that 𝕃 is the bounded linear operator of 

𝑊2
4 0,1 →  𝑊2

1 0,1 . We shall give the representation of analytical solution of Eq. (7) in the 

space𝑊2
4[0,1]. Set 𝜑𝑖(𝑥) =  𝑄(𝑥𝑖 , 𝑥) and 𝜓𝑖 𝑥 = 𝕃∗𝜑𝑖 𝑥 , 𝑖 = 1,2, …, where 𝑄(𝑥𝑖 , 𝑥) is the 

reproducing kernel of  𝑊2
1 0,1 and 𝕃∗ is the adjoint operator of  𝕃. 

 

Theorem 3.Let  𝑥𝑖 𝑖=1
∞  be a dense subset of interval $[0,1]$, then  𝜓𝑖 𝑥  𝑖=1

∞  is a complete 

system of 𝑊2
4[0,1] and 𝜓𝑖(𝑥) = 𝕃𝑡  𝑅 𝑥, 𝑡 |𝑡=𝑥𝑖

, where the subscript 𝑡 in the operator 𝕃 indicates 

that the operator 𝕃applies to the functionof 𝑡. 

 

Usually, a normalized orthogonal system is constructed from   𝜓𝑖 𝑥  𝑖=1
∞  by using the Gram-

Schmidt algorithm, and then the approximate solution be obtained by calculating a truncated 

series based on these functions. However, Gram-Schmidt algorithm has some drawbacks such as 

numerical instability and high volume of computations. Here, to fix these flaws, we state the 

following Theorem in which the following notation are used. 

 

𝒂 =  

𝑎 1
𝑎 2

⋮
𝑎 𝑁

 ,   𝒂 =  

𝑎 1
𝑎 2

⋮
𝑎 𝑁

 ,   𝑭 =  

𝑓 1
𝑓 2
⋮

𝑓 𝑁

 ,   𝐵 =  

𝛽11 0
𝛽21 𝛽22

⋯
0
0

⋮ ⋱ ⋮
𝛽𝑁1 𝛽𝑁2 ⋯ 𝛽𝑁𝑁

 , 

 

Ψ =  

𝜓11 𝜓12

𝜓21 𝜓22
⋯

𝜓1𝑁

𝜓2𝑁

⋮ ⋱ ⋮
𝜓𝑁1 𝜓𝑁2 ⋯ 𝜓𝑁𝑁

 ,     Ψ =

 
 
 
 
𝜓 11 𝜓 12

𝜓 21 𝜓 22

⋯
𝜓 1𝑁

𝜓 2𝑁

⋮ ⋱ ⋮
𝜓 𝑁1 𝜓 𝑁2 ⋯ 𝜓 𝑁𝑁 

 
 
 

,  

 

where 𝜓𝑖𝑗 =< 𝕃𝜓𝑗  , 𝜓𝑖 >, 𝜓 𝑖𝑗 =< 𝕃𝜓𝑗  , 𝜓 𝑖 >, 𝑓 𝑖 =< 𝑓, 𝜓𝑖 >, 𝛽𝑖𝑖 > 0,    𝑖, 𝑗 = 1, … , 𝑁. 

 



E. Moradi, A. Yusefi, A. Abdollahzadeh, E. Tila/ J. Math. Computer Sci.    12 (2014), 253-262 
 

258 
 

Theorem 4.Suppose that  𝜓𝑖 𝑥  𝑖=1
∞  a linearly independent set in 𝑊2

4 0,1 and  𝜓 𝑖 𝑥  𝑖=1

∞
 be a 

normalized orthogonal system in 𝑊2
4 0,1 , such that 𝜓 𝑖 𝑥 =  𝛽𝑖𝑘𝜓𝑘(𝑥)𝑖

𝑘=1 . If 𝑦 𝑥 =

 𝑎 𝑖𝜓𝑖 𝑥 
∞
𝑖=1  ≃  𝑦𝑁(𝑥) =  𝑎 𝑖𝜓𝑖 𝑥 

𝑁
𝑖=1 =  𝑎 𝑖𝜓 𝑖(𝑥)𝑁

𝑖=1 then Ψ𝒂  =  𝑭 . 

 

Proof.Suppose that 𝑦 𝑥 ∈ 𝑊2
4 0,1 then 𝑦(𝑥) =  𝑎 𝑖𝜓𝑖 𝑥 

∞
𝑖=1 =  𝑎 𝑖𝜓 𝑖(𝑥)∞

𝑖=1 . Now, by 

truncating N-term of the two series, because of 𝑦𝑁(𝑥) =  𝑎 𝑖𝜓𝑖 𝑥 
𝑁
𝑖=1 =  𝑎 𝑖𝜓 𝑖(𝑥)𝑁

𝑖=1  and since 

𝜓 𝑖 𝑥 =  𝛽𝑖𝑘𝜓𝑘(𝑥)𝑖
𝑘=1  so 

 𝑎 𝑖𝜓𝑖 𝑥 

𝑁

𝑖=1

=  𝑎 𝑖𝜓 𝑖(𝑥)

𝑁

𝑖=1

=  𝑎 𝑖

𝑁

𝑖=1

  𝛽𝑖𝑘𝜓𝑘 𝑥 

𝑖

𝑘=1

 =   

𝑁

𝑘=1

  𝑎 𝑖𝛽𝑖𝑘

𝑁

𝑖=𝑘

 𝜓𝑘 𝑥 . 

Due to the linear independence of  𝜓𝑖 𝑥  𝑖=1
∞ ,𝑎 𝑘 =  𝑎 𝑖𝛽𝑖𝑘

𝑁
𝑖=𝑘 , 𝑘 = 1, … , 𝑁 therefore 

 

𝒂 = 𝐵𝑇𝒂 .                                                                                                                 (8) 

 

Eq. (7), imply 𝕃𝑦𝑁 𝑥 = 𝑓 𝑥 . For 𝑖 = 1, … , 𝑁 we have 

 

< 𝕃𝑦𝑁 ,𝜓 𝑖 > = < 𝑓 , 𝜓 𝑖 > ⇒    𝑎 𝑗 < 𝕃𝜓 𝑗  , 𝜓 𝑖 >

𝑁

𝑗=1

= < 𝑓 , 𝜓 𝑖 > 

                                  ⇒    𝑎 𝑗  𝛽𝑖𝑘  𝛽𝑗𝑙

𝑗

𝑙=1

𝑖

𝑘=1

< 𝕃𝜓𝑙  , 𝜓𝑘 >

𝑁

𝑗=1

=   𝛽𝑖𝑘

𝑖

𝑘=1

< 𝑓 , 𝜓𝑘 > 

⇒  𝑎 𝑗   𝛽𝑖𝑘

𝑗

𝑙=1

𝑖

𝑘=1

< 𝕃𝜓𝑙  , 𝜓𝑘 > 𝛽𝑙𝑗
𝑇

𝑁

𝑗=1

=   𝛽𝑖𝑘

𝑖

𝑘=1

< 𝑓 , 𝜓𝑘 > 

  ⇒  𝑎 𝑗

𝑁

𝑗=1

 𝐵 Ψ𝐵𝑇 𝑖𝑗 =   𝛽𝑖𝑘

𝑖

𝑘=1

< 𝑓 , 𝜓𝑘 > 

⇒    𝐵 Ψ𝐵𝑇 𝒂 = 𝐵𝑭 .                                      

 

  Eq. (8), imply 𝐵 Ψ𝒂 = 𝐵𝑭 , hence 

Ψ𝒂  =  𝑭 .                  ∎ 

 

It is necessary to mention that here we solve the system Ψ𝒂  =  𝑭  which obtained without using 

the Gram-Schmidt algorithm. 

 

4. Numerical examples 

To illustrate the effectiveness and the accuracy of the proposed method, two numerical examples 

are considered in this section. Figures 1,2,3 and 4 show that the approximate solution and its 
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derivatives up to third-order, converge to the exact solution and its derivatives. We solved these 

examplesby the reproducing kernel Hilbert space method with 𝑥𝑖 =
𝑖−1

𝑁−1
, 𝑖 = 1, … , 𝑁for 𝑁 = 5. 

 
Figure 1: Comparison between approximate solution and the exact  

solution for Example 1 for 𝑁 = 5. 

 

Example 1.We consider the following third-order BVP 

 
y′′′  x − xy x =  x3 − 2x2 − 5x − 3 ex ,                      0 ≤ x ≤ 1,

𝑦 0 = 0,                    𝑦′ 0 = 1,                  𝑦′ 1 = −𝑒.           
  

The exact solution of the above system is 𝑦(𝑥) = 𝑥 1 − 𝑥 𝑒𝑥 . 

 
Figure 2: The absolute error between approximate solution and the exact 

solutionand its derivatives for Example 1 for 𝑁 = 5. 

 

Example 2.Consider the following third-order BVP 

 
y′′′  x − xy x =  1 − x ex ,                  0 ≤ x ≤ 1,

𝑦 0 = 1,                   𝑦′ 0 = 1,                  𝑦′ 1 = 𝑒.  
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The exact solution of the above system is 𝑦(𝑥) = 𝑒𝑥 . 

 

 
Figure 3: Comparison between approximate solution and the exact  

solution for Example 2 for 𝑁 = 5. 

 

4. Conclusions 

In this paper, we introduced the new implementation of reproducing kernel Hilbert space method 

to obtain the approximate solution to some third-order boundary value problems with variable 

coefficients. The reliability of the method and reduction of the amount of computation gives this 

method a wider applicability.The obtained numerical results confirm that the method is rapidly 

convergentand show that the approximate solutionconverge to the exact solution. 

 

 
Figure 4: The absolute error between approximate solution and the exact 

solutionand its derivatives for Example 2 for 𝑁 = 5. 
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Apendix A. 

𝑐1 = 𝑐2 = 0,   𝑐3 =
𝑥2

7!
 −14𝑥4 + 3𝑥5 + 45372 − 30262𝑥 + 21𝑥3 ,   𝑐4

=  −
𝑥2

7!
 2𝑥5 + 30262 − 20212𝑥 − 7𝑥4 + 35𝑥2 ,

𝑐5 = 𝑐6 = 0,   𝑐7 =
𝑥 𝑥 − 1 2

6!
,   𝑐8 =  −

 2𝑥 + 1  𝑥 − 1 2

7!
,   𝑑1 =  −

𝑥7

7!
,   𝑑2 =

𝑥6

6!
,   𝑑3

=
𝑥2

7!
 −14𝑥4 + 3𝑥5 + 45372 − 30262𝑥 ,   𝑑4

=  −
𝑥2

7!
 2𝑥5 + 30262 − 20212𝑥 − 7𝑥4 ,   𝑑5 = −

𝑥3

3! 4!
,   𝑑6 =

𝑥2

2! 5!
,   𝑑7

=
𝑥2 𝑥 − 2 

6!
,   𝑑8 =

𝑥2 3 − 2𝑥 

7!
. 
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