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Abstract

The known theory for a discrete oid T shows that how to find a subset
T of BT which is a compact right topological semigroup (see section
2 for details).In this paper we try to find an analogue of almost periodic
functions for oids. We discover, new compact semigroups by using a
certain subspace of functions U* (T) of C(T) for an oid T for which £#
is continuous on T® x (T UT® UTT*®),where(TuT® uTT*®) is a
suitable subspace of ST for a wide range.
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1. Introduction

Let S be a semigroup and topological space. S is called a topological
semigroup if the multiplication (s,t) > st:SXS—>S is jointly
continuous. Civin and Yood [4] shows that (S the Stone-Cech
compactification of a discrete semigroup S could be given a semigroup
structure, which need not be commutative on S and is continuous in the
left-hand variable; (that is for fixed v € 8S, the map u - pv: S = BS is
continuous).Indeed the operation on S extends uniquely to £S5, so that S
contained in it’s topological center [5]. Pym [7] introduced the concept of
an oid (see Section 2 for precise definition). Oids are important because
nearly all semigroups contain them and all oids are oid-isomorphic [6].We
shall present our theory in a fairly concrete setting, so that our methods
and results will be more readily accessible. Through out this paper we will
let T be a commutative standard oid with a discrete topology. Then the
compact space ST produces a compact right topological semigroup, “at
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infinity”T®,so that its topological center is empty and it is not
commutative(we refer the reader to [2],for these facts). Our aim of the
present paper is to introduce a new compact topological semigroup for an
oid T,using a certain space of functions on T Which have jointly continuous
extensions on subspace T y (TyT® yTT®) Of T % pT Where
(TUT® UTT®) is a suitable subspace of BT which is 55 |arge as possible.
C(T) is the C*-algebra of all bounded continuous complex valued functions
defined on the discrete space T and C(T)" is the dual space of C(T); we
indicate the supremum norm on C(T) by||.|.We define a subset U* (T)
containing all f € C(T) such that f# is jointly continuous on T x (Tu
T® UTT®) where f# is a unique continuous extension f to BT. Then
U®(T) is a C*-subalgebra of C(T)(Lemma 3.3), so that U*(T) <
WAP® (T)(see[1],for definition). Indeed, WAP® (T)need not be a
subset of U (T)(Example4.27). From the functions space U* (T") we shall
able to define an equivalence relation Ry« 7y on T by K Ry (ry V if

and only if ff(u) = fB (v) for all £ € y(T). This does determine a
closed congruence relation on T

Which makes the quotient T°°/_‘R,uoo a compact Hausdorff commutative

)
topological semigroup which is a new semigroup to consider. Also, we

conclude by establishing some properties of TOO/R‘U‘*’(T)' for example
(T°°/ Ry (7y)? is not dense in 7%/ Ry (ry(Proposition 4.14), it contains 2¢
idempotents (Theorem 5.4) and K(T°°/ Ry (ry), the minimal ideal of

7%/ Ry (ry contains a free abelian group on 2¢ generators (Theoremé.2).

2. Definitions and preliminaries

Let x = (x(n))nENbe any sequence consisting ofl’sand ©'s.Write

1.1 =1,1.00 = 00,1 = 1.We define
supp(x(M))pen = {n € N: x(n) = o0},

and write
T = {(x(n))neN: supp(x(n))nEN is finite and non — empty}.

A commutative standard oid is the set T together with the product xy
defined in T if and only if(supp x) N (suppy) =@ to be (x(n)y(n)). Thus
the product x(n)y(n) is required to be defined if and only if either x(n)ory(n)
is 1. Obviously, the product in T is associative where defined and supp(xy) =
(supp x) U (supp y) whenever xy is defined in T (oids are discussed in [7]).
Any commutative standard oid T can be considered as@®;_; {1,0}\
{(1,1,...,1)}. We use epithet “standard”to indicate that the index set is N(in

[7],0ids could have any index set). For x,y € T,supp x < supp y means that

n<m if n € supp x and m € supp y, and Supp x, — 0 for some net (xa) in
T will mean that for arbitrary f e N eventually min(supp x,) > k- Then for
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a fixed ¢ e T, eventually suppt < supp ¥a and so eventually ¢y, is defined in
T-Write ¢, = (1,1, ...,00,1,1, ...) (With oo in the nth place). Put = {3 :n € N} -
Then U is countable subset of T. Moreover, any x € T can be written uniquely
as a finite product 4y = Up Uy, oo Uy, with ) < i, < - < ip.supp x =
{iy, ..., i, }-The compact space BT is the Stone-Cech compactification of the
discrete space T and if f maps T to some compact space,fﬁ is the unique
continuous extension of f to ST.We define

T ={u € pT: u=lim,x, with supp x, — oo}.

Obviously, TNT* = @. For u € BT,y € T® the product uv € C(T)* is defined
by uv = poL,,, where L, f(t) = limg f(tyg), if t € T.f € C(T) and y3 — v with
supp yg — . Then L, f € C(T),L, f(t) = (L:f)? (v). Further,L, is a bounded
linear operator on C(T). Of course u € ST is a bounded linear functional on
C(T),with|lull < Lifu(f) = fF(u). In fact, the product (u,v) - pv: BT x
T* — T* is defined and is right continuous,ang left continuity holds when
u =t € T[1).Also uv = lim,limgx,yp where (x,) isanetinT with x, — p. If
u € T®, then Ly, =LyoL, , SO that (y,v) » pv:T® x T® — T* is a binary
operation on T relative to which that 7% is a compact right topological
semigroup. If ¢ T, then 1, denotes the indicator function of 4,that is,the
function whose value is 1 on 4 and 0 on T\ 4.

Remark2.1.For v € T®and u € BT, vu can not always be defined in a standard
oid T, if we require that multiplication is right continuous. This is true even if
peT. If z, =uuy ..u,, n€N, u, €U and z,, > 1 € BT for some subnet
(zn,)of(2y,), then for any t € T , lim; tz,, is not defined .But we can define vu
for standard oids only on a subset of T™ X BT. This subset includes T* X (T U
T®). Now let x, = u in BT with supp x, - o and let A = tA’ where t € T
,A" € T®such that yg — A’ with supp yp — oo Then eventually supp t <

supp x, and for such o,eventually supp x, < supp Yg , So that eventually
tx,ys Is defined in T and hence lim,limg (txayﬁ) = tud (= ut/f)
(see[1], Definition 3.5). Therefore ,we can defined HA on T X (TUT®UTT™)
, whenever (TUT® UTT®) is a suitable subspace of BT for a wide range.

Definition2.2.(/) The cardinal function is the map c:T = N given by
c(x) = card(supp x) (that is, the number of elements of the support of
x).Then ¢ extends to a unique continuous extension c# from BT into the
one-point compactification N U {oo}. If (supp x) N (supp y) = @ so that xy
is defined in ,(xy) = c(x) + c(y), and so fory € BT,v € T then cf(uv) =
c? (1) + cP (v). Thus cf is a homomorphism on T®. We denote 1/c(x) by
h(x)for x € T.
(i) The length function is the map [: T — N by letting [(x) (The length
Of support of x) be the integer i, —ip +1 where supp x = {ig, .., ix }-
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Then [ extends to a unique continuous extension I¥ from BT into the one-
point compactification N U {co}. We denote 1/I(x) by r(x) forx € T.

(i) The z-function is the map z:T — Z' by letting z(x) be the largest
number of consecutive 1's between mini{supp x) and maxi{supp x). Then z
extends to a unique continuous extension z? from BT into the one-point
compactification Z* U {w}. We denote 1/z(x)+1 by k(x) for €T .

We next have some useful results which we will need later.

Proposition2.3.For u € T®,v € (TUT® UTT®) then I (uv) = oo.

Proof. Letv =t €T ,and let x, — u for some net (x,) in T with supp x, — co-
Then eventually suppt < supp x,, so that eventually [(tx,) = co. Since
tx, - tu in BT and B is continuous onpT,from which it follows that
1B (ut) = 1 (tp) = 0. Ify € T, and Vg >V for some net (yﬁ)in T with
supp yg = © then [P (uv) = lim,limgl(x,y5) =, by a similar reason.
Suppose that v = tA,4 € T*. Then yld € T®,sinceT* is a semigroup,

Hence 1 (uv) = 1B (utd) = 1P (tuld) = oo and the result follows. O

The next result is an immediate consequence of Definition2.2(ii), Propo-
sition2.3.

Corollary2.4. forp € T®,v € (TUT® UTT®). Then 1 (uv) = 0.

Proposition2.5.Let y € T®,v € (T UT® U TT®). Then zF (uv) = o.

Proof. This uses Definition 2.2(iii),the proof is parallel to that of Proposition
2.3. O

Corollary2.6. let u € T®,v € (TUT® UTT®). Then kP (uv) = 0.
Proof is straightforward. O

3. Space of jointly continuous functions

Our aim of the present section is to introduce a new kind of C*-subalgebra

of the C*-algebra C(T). In this section we try to find an analogue of almost
periodic functions for oids.
Definition3.1. Let T be a commutative standard oid. We use U (T) to
denote the set of all bounded complex valued functions on T for which
(wv) = fFEuv):T® x (TUT® UTT*®) - C is jointly continuous. Clearly
U™ (T) is conjugate closed and contains all constant functions.

Example3.2.(/) Let h=1/c be as in Definition 2.2(i). Then by a routine
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argument we see that for u € T®,v € (TUT® UTT®), cf(w) = cf () +
cfw), and so (uv)—->hf):T® X (TUT®UTT®) > C is jointly
continuous. Therefore h € U™ (T).

(ilLet r = 1/1 be as in Definition 2.2(ii). Then by Corollary 2.4,r% (uv) = 0 for
p€T%andv € (TUT®UTT®), and so (u,v) = rfuv):T* x (TUT® U
TT*) — Cis jointly continuous . Thusr € U™ (T).

(iii) Let k = 1/z + 1 be as in Definition 2.2(iii). Then by Corollary 2.6, k¥ (uv) = 0
for pu€T®, vE(TUT®UTT®), and so(u,v) = kB (uv):T* x (TUT® U
TT*) — Cis jointly continuous ,hence k € U” (T).

Lemma3.3.Yy*(T) is a C*-subalgebra of the C*-algebra C(T)-

Proof. It is easily seen that U®(T) is a subalgebra of the algebra C(T). To
prove that U (T) is a C*-subalgebra it is enough to prove that U (T) is a
closed subalgebra of C(T) because the other conditions are satisfied easily.
For this purpose, let (f,)nen be any sequence in U (T), f € C(T) with
I, = fIl = 0, as n = oo.Suppose that u, » u inT*, v, > vin (TUT® U
TT*).Then given € > 0, choose k € N such that ||f,, — fll < &/3 for all
n > k. Fixny > k. Then choose ¢ such that a > «,

£L (ave) = ££ )| < &/3. For such a, then

IF (ave) = FP ()] < |£P (av) = £ (ave)

_|_

£L (ave) = £ )|

_|_

18 () = £5 (uv))|

< |77 = 2| + 7 Graved = £ G| +
<&gf3+e/3+¢/3=c¢.

_|_

fnli)_fﬁ”

Hence lim, f% (u,vy) = fFA(uv) and so (u,v) = fB(uv):T® x (TUT® U
TT®) is jointly continuous, as desired. O

Our next result will be useful in later.
Theorem3.4.Letf € U (T),n € T®. Then L, f € U™ (T).

Proof. It is easy to check that v € (TUT® UTT*) wheneverv € (TUT* U
TT®). From this and that the product (u,v) —» uv: BT X T — BT is right
continuous, it follows that the map v — vn is continuous of(TUT>* UTT®)

into itself. Therefore the composite map (u,v) = (u,vn) = fF(uvn) is
continuous fromT® X (TUT® UTT®) to Cforeach f € U”(T).Thus

£ () = pon(f) = wvoLy (f) = (Lo f) = (Lyf)’ (uv).

It follows that,(u,v) - (Lnf)ﬁ (uw): T X (TUT* UTT*) - C is continuous,
and therefore by Definition 3.1,L,7f € U™ (T),as desired. O
Definition3.5.For f € U*(T) and veE(TUT*UTT®), we define
L, ff () = f# (uv), wherey e
Remarks3.6./t is easy to check that LVfB is continuous on compact space
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T , since (u,v) - uv: BT x T® — BT Is right continuous and left continuity

holds when |, = ¢ € T-Moreover, |, is a bounded linear operator with || || < 1.

Theorem3.7.let f € C(T). Then (u,v) = fB(uv):T® X (TUT® UTT®) - C
is jointly continuous if and only if v — L, ff:(TUT® UTT®) — C(T*) is norm
continuous.

Proof. Define ¥:T® X (TUT® UTT*®) - Cby (i, v) = fF (uv). Then ¢

Is a bounded function, sincefﬂ is continuous on ST.It follows readily that

U =Y v):T*” = C is a continuous function for each ve (TUT® UTT®).
Let C(T*) have the uniform norm. Since T®is a compact space and

(TUT® UTT®™) is a subspace of BT,y is jointly continuous if and only if the
mapping v - Y(0,v):(TUT® UTT®) - C(T*) is continuous (see[10] ,
Chapter 1, Lemma 1.8(a)). O
Lemma3.8.Ifv > L, ff:T® — C(T*) is norm-continuous, then {vaﬁ: VE T°°} is
relatively norm compact inC (T*)

Proof is straightforward. O
The next result is an immediate consequence of Definition 3.1,Theorem
3.7 and Lemma3.8.

Corollary3.9. let f € U (T).Then {L,fP: vE€T™} is a norm relatively
compact in C(T*)-

4. Compact topological semigroups

In this section by starting with U* (T)we will produce a new compact
Commutative topological semigroup,and make an investigation of it’s properties.
Assume that T is the topology induced on a compact right topological
Semigroup T*by BT and Ty (ry is the weak topology induced on T*°by the
family{f?: f € U®(T)}.Then the identity map from (T*,7)onto (T, 1¢ )

is continuous, thus (T®, Ty (1)is compact [9].

Definition4.1.Foru,v € T* define u Ry 1)V if and only ifff(w) = FA(v)
Forall f € U (T).Clearly Ry« 1)is a closed relation on (T, Ty ().

Remarka4.2./t should be noted from Definition 3.1,It follows that if
feU™(T), (u,v) = fB(uv):T® x (T UT*®) - Cis separately continuous,
so that P (uv) = B (vp) for all u,v € T®. Therefore f € Wy° (T)(see [1],
for details).
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Proposition4.3. R .. ..\Is a congruence relation on .

(T)
Proof. To prove that Ry (1)

Let # R,uoo (T)'u’and v R:uoo (T)V,Where 'Ll, v, 'Ll’,V’ € Too
Pick f € 4> (T).Then

is congruence, we use Remark 4.2 and Theorem 3.4.

) = WP Q) = Wy P W) = FA V) = FEom) = (L f) )
= (Lo f) ) = FEH) = FR )

Thus uv Ry (ryu'v', 38 claimed. o

Prop osition4.4.(T°° ) Is a compact topological semigroup.

»Tue (1)
Proof. We know that (T, 1y« (r)) is a compact space. Now let (u,)be a
net in T*® converging to , in(T”, ty= (1)). Then Hay = Hoin (T, 1) for
some subnet (,uaﬁ) of (u,). Since identity map from (T*,7) onto
(T*,ty>(ry) is continuous, it follows that Hay = Mo in
(T, 7y (ry)-Hence for each f € U (T), B (uy) = limg fﬁ(,uaﬁ) = P (w.
So uy Ry= - Similarly if v, — v and Vag = Vo in (T*,ty>()) then
Vo Ry=)Vv. Hence, as Ry=(r)is a congruence relation on T% by
Proposition 4.3, then uyvy Ry« (ryuv, so that B (uove) = P (uv) for all
f €UP(T). Now let uy = u, ve = vin (T%, 74> (1)), let (,uaﬁvaﬁ) be a
subnet of (u,v.). Using compactness of (T*,7) we find
subnets(,uaﬁy), (vaﬁy) with Hag, = Hor Vag, = voin(T”, 7). Then for
each f € U”(T), we have lim, f# (Hap, Vay ) = B (uovo) = fP (uv), since

(w,v) = fEuv):T® X (TUT® UTT®) -» C is jointly continuous, hence
Ug Ve — UV, as required. O

Corollary4.5. et the quotient semigroup T°°/7€uoo (ryhave the quotient
topology. Then 7%/ Ry (1yis compact Hausdorff topological semigroup.

Proof. Use Definition 4.1 and Proposition 4.3. O

Corollaryd.6. T®/R e -y IS @ commutative semigroup.

)
Proof. Take 1,y € T*and f € U®(T).Then fﬁ () = fﬁ (vu)(Remark
4.2),and thus puv Rye (ryvp, which implies the assertion. O

We conclude this section with some results (both algebraic, topological)
on Too/Ruoo (T

Theorem 4'7'K(T°°/Ru°° (T))the minimal ideal of T°°/Ruoo Is compact

)
topological group.
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Proof. This follows from Corollaries 4.5,4.6 and Corollary 1.5.3[3]. O

Remarka4.8.For each n € N,write H, = {u € T*: ¢#(u) =n}and H,, = {u €
T*: ¢#(u) = ©}.Then T = H; UH, U ..UH, U ..U H,,.
Hence H, isclopen andeachp € Hy is a limitof a net (x,)in T

withc(x,) = nforeach a. Further, H,H,, € H,, . ,,forallm,n € N,

soHy UH, U ...UH, U ..is a sub semigroup of T®. Recall that by Definition
2.2(ii),l is the length function and r(x) = 1/l(x), x € T.

Lemmad.9.let & € H,for some n € Nwith I (§) < oo, let

T - T°°/fRuoo (rybe the quotient map. Then 1(&) is not a product.

Proof. Let g =1F- Then g1 is a continuous functions on TOO/:RU“’ (1) Since
r=1/land r € U”(T) (Example 3.2 (ii)) and that T°°/Ruoo (r) have the
quotient topology (see [9], Chapter 3, Theorem 9). If m(¢) = (&) (&;) for
some &,& € T®, then 18 (&) = 18 (& &,) = oo(Proposition2.3), which

contradicts I# (§) < oo. O

Theorem4.10. 7%/ R - has no identity.

(T
Proof. If m(e) is an identity element for TDO/RU‘” r), Where e € T®, then
m(§) = n(e)n(§) = n(é)m(e) forall & € T®, which is impossible by Lemma 4.9.

Remark 4.11. It is easy to verify that, I¥ (e) = oo, whenever 1(e) is
an idempotent inT*/ Ry~ (). We denote the set of all idempotents in T/ Ry (T
by E(Tm/geuw (r))- Thus we obtain that E(Too/fRuw 1) S{m(E):EeT, 1P (§) =

oo}

Proposition4.12. let § € H,, for some n € N withlf (§) < 0. Then m(§)
Is not a left zero.

Proof. Left zeros are idempotents and we saw above that I# (§) = oo if &is an
idempotent. O

We next have the following theorem.

Theorem4.13. 7=/ Ry () 1S N0t A left zero semigroup.

(T

Proposition4.14. (T°°/jR,uoo )2 is not dense in T°°/jzuoo

(T Ty
Proof. Let g m = -6, where T: T - TOO/Ruw (r) is the quotient map. Then g
is continuous on T°°/.‘Ruoo (), sincer € U (T)(Example 3.2 (ii)), and that
T°°/Ruoo (ry have the quotient topology. By Corollary 2.4,
T/ Ry ry)? 0 g7 1 (0,1) = @

Butg; 1(0,1)is a non-empty open set in T°°/3€uoo (ry, as claimed. O
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Remark4.15. ¢t 11y € T® e the cluster point of the sequence(UnUn+3)me1 in BT,
where U, € Uforalln € N,jet g, = rP(Proposition 4.14). Then P (uy) = 1/4and
since by Corollary 2.4, rf((T*)%) = 0 which implies that (1o )is not the limit of a

net of elements (T°/ Ry )?. Thus we obtain an alternative proof of the
Proposition 4.14 which will be required in the next result.

Theorem4.16. T/ Ry oy IS NOt @ left (resp, right) simple semigroup.

)

Proof. Indeed,T°°/5’3"uoo aT((o) € T/ Ry @)% and T/ Ryeo T ((o)is

closed in T%°/Ry= (). Thus T/ Ry (ko) # T/ Ry (ryby Proposition 4.14,
o) T°°/1Ruoo (r) is not a left simple semigroup. Thus T°°/3€uoo (ry is not  a
group (see [3], for more details). O

From Theorem 4.16 and Definition 1.5.6[3],we get the following result.

Corollary4.17. T/ Ry (o 15 NOL topologically left (resp, right) simple.

()

Corollary4.18. 7=/ Ru= (1 is not cancellative (and hence is not group).

Proof. Use Theorem 4.16 and Corollaries 3.13,3.14(3]. O

Remark4.19.If for each k € N, let x,(,{() = UpUpniq - Unsk—1,M € Nand

Yn = UpUpyq - Up2, N EN, whereu, €U for all n, then supp x,(,f) - 00,

supp y, = . Let u®,v € T® pe the cluster points of (xg());?:l; P )n=1
In BT respectively. Then F(u) =k, 1P (v) = o Now, suppose that
g, = 18 (Lemma 4.9). Thengit(n®) = 1P (u®) =k, o 7(v) = 1 (V) = oo,
which implies that g1 and 1F map T/ Ryer ryand T% onto the one-point
compactificationN U {Oo}respective/y.
Next we shall prove the following result.

Proposition 4.20.(9; ' (©))%is not dense in 9 ' (%) (and hence isnot

dense in T/ Ru= (1)

Proof. Let | be as in Definition 2.2 (iii). Define grT = kP, where mT® -
TOO/RuW (T) is the quotient map. Then gkis @ continuous function on T°°/Ruoo T
since k € U™ (T)(Example 3.2 (iii)). Suppose now that,(y,)n=1,V € T*be as in

Remark 4.19. Then t(v) € gj (), sincel? (v) = © and g;m = [¥. On the other

N

hand, kf(v) =1, since z(y,) = O(see Definition 2.2 (iii)). But (g;'(o0))?

(Tm/Rum(T))z, an application of Corollary 2.6 then shows that g, (g; !())?
227
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0.Hence, m(v) & cl(g; ! ())?, which implies the desired conclusion.

Recall that by Definition 2.2(i),cﬁis a continuous homomorphism on T*, and
h = 1/c, h € U™ (T)(Example 3.2 (i)). Let m: T® — T/ Ry 1y be the quotient
map, and let g.m =cf. Then g.is a continuous homomorphism on
T°°/S‘2ruoo () Let u% ), vbe as in Remark 4.19. Then cf (y(k)) =k,cPW) = oo,
and so we obtain that g. maps T°°/5R«uoo (ry onto the one-point
compactification N U {oo}. |

The proof of the following proposition is essentially the same as that of

Proposition4.20.

Proposition 4.21.(g: *(%))?js not dense in 9 - (%) (and hence is not

dense in T®/ Ry ™).

Theorem 4.22.let T:T* — Too/Ru‘*’ (T) be the quotient map. Then the set
(m(&): £ € T,18(§) < ®} s not dense in T/ Ry .

Proof. Let (Vn)n=1, v € T® be asin Remark 4.19. Put Y = {y,: n € N}and let 1y

be the indicator function of Y. Then 16 (v) = 1.We complete the proof by showing
that 1y, € U (T). To see this, supposethat u € T*, n € (TUT* UTT®)
and let x, —» yu for some net (x,) in T with supp x, - o.Ifn =t €T, then

eventually supp t < supp x, and for such a, eventually supp x, < supp y,,so

that eventually tx, & Y.Hence1® (tu) = 0.y € Tand yp — n for some
net(yg)inTwith suppy, — oo, then 15 (uv) = lim,limg 1y (x,yp) = O by a
similar reason. Finally, if n = tA, 1 € T®. Then y} € T« sinceT* is a
semigroup and hence 1{;’ (un) = 15 (tud) = 0.Consequently, 1, € U* (T).
letg, = 1€.Thenglyis continuous on T°°/geuoo (- Take & € T
with]B8 (&) =k keN. There exists a net(zy) in T such thatzy - ¢& with
supp z, - . It follows that,eventually l(zy) = k,hence eventuallyzy ¢yY.
Therefore 15 (&) = 0,s0g,,m(¢§) = 0. On the other hand, g, m(v) = 15 =1

and hence 1(v) & cl{m(&): &€ € T*®, 1P (&) < oo}, which implies the desired

conclusion. O
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For remainder of this section we consider the more general results
of deseribing about inclusion between U* (T)andWAP* (T)(see[1],for
more details).

Theorem 4.23.for f € C(T), if (u,v) = fA():T* x (TUT® UTT®) - C
is separately continuous,then(u,v,n) = f&(uvn):T® x (TUT® UTT®) x

T* — Cis also separately continuous.

Proof. Let(u,) is @ net inT®converging toy € T* and lety € (TUT® UTT®),
ner™.

() If v € T™,then as is readily verified thatf? (u,vn) — f# (uvn),since

vn € T®and(u,v) - uv: BT X T® — BT is right continuous.

(ii) Ify = tA, t € TandA € T®.ThenAn € T*sinceT*is semigroup and

ty, — tuinT.Using Definition 3.5[1] and that (u,v) - uv: BT X T*® — BT is
right continuous, it follows that f# (u,vn) - fF (uvn).

(iii) If v = t € T,then by a similar argument, f# (u,vn) = & (uvn).

Let(n, )isanetinT® convergington € T®.Takey e T*®, v € (TUT® UTT®).
(i) Letv €T™. Then uv € T®.In fact n, »n in (TUT®UTT®) and by
hypothesis, (u,v) = f#(uv) is separately continuous on T% X (TUT® U
TT*),from which it follows that f# (uvn,) — £ (uvn).

(i) Let v = tA, t € TandA € T*.Then yd € T*. Indeed, tn, = tn in (TUT® U
TT®) € BT and (u,v) = fP (uv) is separately continuous on T® X (TUT® U
TT*), hencef? (uvng) = fF (uvn).

(iif) Letv = t € T.The proof is similar.

Finally, suppose that (v,) is a net In(TUT® UTT®) converging to
vE(TUT®UTT®),and let y,n € T®. Then v,n - vyin(T U T U TT*).But
(u,v) = fP(uv) is separately continuous on T® x (T UT*® UTT*),hence
B (uv,m) = fP (uvn). This proves our assertion. ]
Theorema.24.fForf € C(T), let both(u,v) = fB(uv):T® x (TUT®) - C
and (u,v,n) = fE(uvn): T® X (TUT®) x T® - C are separately continuous.
Then f € W,°(T).

Proof. We use Theorem 3.11[1]. Suppose u,v,n € T®,and (x,)isanet inTconverging
to u with supp x, — . Then ff (x,nv) = fF (unv),since (u,v) - uv: BT X T® -
BT is right continuous, and nv € T*®. By hypothesis, (u,v) = f# (uv) is separately
continuous onT® X (T U T*),hence from Remark 4.2,and that T® is a semigroup
we see that
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FEQuv) = fFEuum) = FEv) P (uv) = 17 (vpp) = £7 (um).

On the other hand,lim, fﬁ (xgnv) = lim, fﬁ(nxaV) = fﬁ (muv), since(u, v,m) =
fﬁ (uvn) is separately continuous onT® x (TUT®) x T*and Xg > uin
(T UT®). Thus ff (unv) = P (nuv), and we have thatf € W;°(T), as

desired. O

Definition 3.1and the preceding theorems now imply that the following

result.

Corollary 4.25.let T be a commutative standard oid. Then U®(T) S
wW3° (T).

Corollary 4.26.let The a commutative standard oid. Then U (T) <
WAP™ (T).

The proof now follow by the preceding Corollary,Remark4.2 and Definition
4.1[1]. O
Example 4.27.We have already seen that U™ (T) € WAP®(T). Now we
show that the converse is not true. For this purpose, consider two sets
E = {(x(n))neN €T: x(1) = 1}andF = {(x(n))neN €T: x(1) = oo}. Then
T = E UF. Now let (Up,, ) men and (Uzp +1)nen be two sequences in T such that

Upm,Uzn+1 € U for all m,n. Takeu; € U.PutD = {ujuyuppe1:m >n} S F.

Definef: T — Cby

1/c(x) , x€E
fx)y=4 1 , xX€D x€eT)
0 , otherwise

Then few*(T) (Example 3.7[1]). We show thatf €Wz () (Definition
3.9[1]). Assume that (x4),(yg)and(z,) be nets in T withsupp x, — o,
supp yg — %and supp z, - . Then (for all sufficiently largea, 8,v)x, (1) =
Lyg(Dandz,(1) =1 ,so that x,y5,2, €E. It is therefore easy

To verify thatf €Wy (T), since h=1/ceWw;” (T)(Example 3.10[1])hence
f € WAP®(T).To prove that f ¢ U™ (T) , we remind the reader that for
anyf € U (T),f# (tuv) = fF (tvu)wheret € Tandy,v € T®. We assume

that u, v be the cluster points of the sequences(Uzm )men, Uan+1)neninBT
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respectively. Then y,v € T*,since supp uy,, — andsupp u,, 1 — oo-

Hence, limmlimnf(uluZmu2n+1) =0 limnlimmf(uluZmu2n+1) — 1, so that
Both iterated limits Off(u1uzm u2n+1)exist. But jim,, lim,,f (uluZmuZn +1) =

f# uypv),and lim, lim,, £P (uyvp), which is clearly impossi-

f(uluZmu2n+1) =
ble. Thus feu” (T),asclaimed. O

5. Idempotents

Recall that T™ is a compact right topological semigroup andR = (ryisa

relation on T (Definition 4.1). Then Ry (ryis congruence and under certain
topology on T®, is also a closed relation, so that the quotient space T o/ Ry 1y
is a compact topological semigroup (Corollary 4.5), which is commutative
(Corollary 4.6). In this section we are concerned with obtaining of idempotents
T/ Ry» (ry- In connection with the present section special suboids of an oid
Tplay an important role. Each special suboid corresponds to a strictly increasing
sub sequence of N.A more details analysis of special suboids can be found in[1].
For an infinite subsetq c N,the special suboid of an oid T corresponding to

The strictly increasing sequence of A is denoted by S(A).Then S(A) produces a
compact right topological semigroup S (A) which is a sub semigroup of T®.
Indeed, w(S*(A)) is a compact commutative sub semigroup of !

T°°/Ruoo (ry, wherem:T® — T°°/72uoo (r) Is the quotient map.

Proposition5.1. let4 c N be an in finite set and let 15(A) be the indicator
function of S(A). Thenlf(A)(yv) = 15(;1) (,u)lg(A)(v) forall u € T*andv € (TU
T UTT™).

Proof.  ltis a straightforward argument thatlg)(xy) = 15 () 1504y (¥)
For x,y € Tsuch that (suppx) N (suppy) = 0. Suppose that te€T,u€T®
such thaty, — yfor some net (x,) in T with SUpp x, — . Then even-
Tually SUPP t < SUPP X4,s0 that eventually 1g¢4y(txs) = 1g(a)(t) Lsca)(Xe)-
Since{0,1} is a compact commutative semigroup with the usual multipli-

cation, and tu = lim,, tx,, it follows that 1§(A)(tu) = 1S(A)(t)1§(A)(,u). Now let

v € T® with Vg >V for some net (yﬂ)inTsuch that Supp yg — oo.

Then by a similar reason, we see that

1§(A)(;w) = limg limp 154y (x4 ¥ ) = lim, 15(A)(xa)1§(A)(v) = 1§(A)(y)1§(A)(v).
231



A.M. Aminpour, M. Seilani / J. Math. Computer Sci. 12 (2014), 219-234

Finally ifv = tA, t € T,A € T®,thenyd € T®,anduy = utd = tui- Thus, by above
i B _ 1B B ;
paragraph, we obtain that 15(A)(P‘V) = 15(,4)(“)15(,4)(”)' as desired. O

Corollary5.2. For an infinite setA < N,the indicator function 15(A)of
S(A) isinU™ (T).

Proof. To show that 154y € U®(T), it is adequate by Theorem 3.7, to show

that v L,ff:(TUT® UTT®) - C(T®) is norm-continuous. Assume
that(v,)be anynetin (TUT* UTT*) such thatv, — vin

(TUT® UTT®). Thenlf(A)(va) - 1§(A)(v). Thus for € > 0, there exists agsuch
that for a > «ay, 1§(A)(va) — 1/53(A)(v)| < &/2. However, by definition of 15,),

we have 1§(A)(u) € {0,1}for all u € T™, which is clearly that from Proposition
5.1, and for a = «a,

B B B B — |18 B B
15(A)(H)15(A)(Va) - 15(A)(M)15(A)(V)| - |15(A)(.u')| |15(A)(v0() - 15(A)(V) <

g/2 (u € T*).Hence, fora > ao,”LHalg(A) - L, 1?(/1) ” < € and the proof of the

corollary is complete. O
Proposition5.3.If A, B be two infinite subsets of N with A N B is finite.
Then (S (A)) N m(S®(B)) = @, where m:T® — T®/Ryes py is quotient map.

Proof. This uses Corollary 5.2,the proof is essentially the same as that of

Proposition7.1[1]. O

We finish the present section by giving the following main result. Incon-
nection with this result we will use non-principal ultrafilters onN. We remind the
reader that, if Fis a non-principal ultrafilter on N andA € F,Then A is an infinite
set. Moreover, the number of non-principal ultrafilters on N is 2¢ [8].

Here is the main result of this section.

Theorem5.4. T%/ R - CONtains at least p¢ idempotents.

]
Proof. This uses Proposition5.3,the proof is parallel to that of Theorem

7.2[1]. O

6. Free abelian groups

In connection with Theorem 4.7, of the Section 4, it should be mentioned

that, it is possible for a compact commutative topological semigroup
T/ Ry (ry have a minimal idempotent with a unique minimal left ideal and

a unique minimal right ideal,so that K (T w/ Ru= (1)), the minimal ideal of

T°°/ Ry 1y is @ maximal group(see[3],for more details). The aim of this
Section is the search for existence in K (T°°/ Ry (1) a free abelian group on

2Cgenerator. Let us first give the following result.
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Lemmaé.1.Let Y is an arbitrary function from N to R, letf: T — C be

defined by f(t) = expiy.{yp(n): n € supp t}. Then f € U™ (T).

Proof. It is easily seen that ff (tu) = f(t)f# (u) fort € T,u € T* since f is an
oid-map (that is, f(st) = f(s)f(t) whenever s,t €T with (supps)n
(supp t) = @).Moreover, f? is a homomorphism of T®to the circle group T.
Thus & (uv) = fFEWfP(v) for u€T®, vE (TUT® UTT®).To prove that
f € U”(T), we show that v L,ff:(TUT® UTT®) > C(T®) is norm-
continuous(Theorem 3.7). Now suppose that(v,)be any net in(TUT* U
TT*)withv, > vin(TUT® UTT®).
Then 8 (v,) — f#(v), hence fore > 0,there exists a, such that for

a= a0,|fﬁ(va) — fﬁ(v)| < ¢&/2.But since,|f/3(y)| = 1forallu € BT,
it follows directly that fora > ay and forallu € T,
[P WfF o) = PP W) = [FF WI|fF ) — FF W] <e/2.

Thus, for a = ay, |Lvafﬁ - va5|| < g, thatis f € U™ (T). |

We remind the reader that, if M = {ueT™: ch (w) =1} ,then it is easy

to verify that M = {u € T®: p € cl{u,,: m € N}}, and card(M) = 2°(see [2],

Remarks.8). Recall that, :T® — T/ Ru= (yis the quotient map which is a
Continuous epimorphism. We now give the following result which is the last
major result of this section.

Theorem6.2. K(TOO/ Ry (1) contains a free abelian group on 2¢ generators.

Proof. This use Lemma6.1 and Corollary 4.26,the proof is similar to that

of Theorem 8.1[1]. O
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