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Abstract 
The known theory for a discrete oid 𝑇 shows that how to find a subset 

𝑇∞  of 𝛽𝑇 which is a compact right topological semigroup (see section 

2 for details).In this paper we try to find an analogue of almost periodic 

functions for oids. We discover, new compact semigroups by  using a 

certain subspace of functions 𝒰∞(𝑇) of 𝐶(𝑇) for an oid 𝑇 for which 𝑓𝛽  

is continuous on 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞),where(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) is a 

suitable subspace of 𝛽𝑇 for a wide range. 

Mathematical Society  Classification:2010, 54D35. 

Keywords: Oid, Jointly continuous function ,Compact topological 

semigroup. 

 

               1. Introduction 

Let 𝑆 be a semigroup and topological space.  𝑆 is called  a topological 

semigroup if the multiplication  𝑠, 𝑡 → 𝑠𝑡: 𝑆 × 𝑆 → 𝑆 is jointly 

continuous. Civin and Yood [4] shows that 𝛽𝑆 the Stone-Čech 

compactification of a discrete semigroup 𝑆 could be given a semigroup 

structure, which need not be commutative on 𝑆 and  is continuous in the  

left-hand variable; (that is for fixed 𝜈 ∈ 𝛽𝑆, the map 𝜇 → 𝜇𝜈: 𝛽𝑆 → 𝛽𝑆 is 

continuous).Indeed the operation on 𝑆 extends uniquely to 𝛽𝑆, so that 𝑆 

contained in it’s topological center [5]. Pym [7] introduced the concept of 

an oid (see Section 2 for precise definition).  Oids are important because 

nearly all semigroups contain them and all oids are oid-isomorphic [6].We 

shall present our theory in a fairly concrete setting, so that our methods 

and results will be more readily accessible. Through out this paper we will 

let 𝑇 be a commutative standard oid with a discrete topology. Then the 

compact space 𝛽𝑇 produces a compact right topological semigroup, “at 

mailto:Seilanimaths11@yahoo.com
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infinity”𝑇∞ ,so that its topological center is empty and it is not 

commutative(we refer the reader to [2],for these facts).  Our  aim of the 

present paper is to introduce a new compact topological semigroup for an 

oid 𝑇,using a certain space of functions on 𝑇 which have jointly continuous 

extensions on subspace 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) of 𝑇∞ × 𝛽𝑇 where 

(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) is a suitable subspace of 𝛽𝑇 which is as large as possible. 

𝐶(𝑇) is the 𝐶∗-algebra of all bounded continuous complex valued functions 

defined on the discrete space 𝑇 and 𝐶(𝑇)∗ is the dual space of 𝐶(𝑇); we 

indicate the supremum norm on 𝐶(𝑇) by .  .We define a subset 𝒰∞(𝑇) 

containing all 𝑓 ∈ 𝐶(𝑇) such that 𝑓𝛽  is jointly continuous on 𝑇∞ × (𝑇 ∪

𝑇∞ ∪ 𝑇𝑇∞) where 𝑓𝛽  is a unique continuous extension  𝑓 to 𝛽𝑇. Then 

𝒰∞(𝑇) is a 𝐶∗-subalgebra of 𝐶(𝑇)(Lemma 3.3), so that 𝒰∞(𝑇) ⊆

𝑊𝐴𝑃∞(𝑇)(see[1],for definition).  Indeed, 𝑊𝐴𝑃∞(𝑇)need not be a 

subset of 𝒰∞(𝑇)(Example4.27). From the functions space 𝒰∞(𝑇) we shall 

able to define an equivalence relation ℛ𝒰∞ (𝑇) on 𝑇∞ by  𝜇
  ℛ𝒰∞ (𝑇)  𝜈 if 

and only if 𝑓𝛽 𝜇 = 𝑓𝛽(𝜈) for all 𝑓 ∈ 𝒰∞(𝑇). This  does determine a 

closed congruence relation on 𝑇∞

Which  makes the quotient 𝑇∞/ℛ𝒰∞ (𝑇)
a compact Hausdorff commutative 

topological semigroup which is a new semigroup to consider. Also, we 

conclude by establishing some properties of 𝑇∞/ℛ𝒰∞ (𝑇)
, for example 

(𝑇∞/ℛ𝒰∞ (𝑇))2 is not dense in 𝑇∞/ℛ𝒰∞ (𝑇)(Proposition 4.14), it contains 2𝑐  

idempotents (Theorem 5.4) and 𝐾(𝑇∞/ℛ𝒰∞ (𝑇)), the minimal ideal of 

𝑇∞/ℛ𝒰∞ (𝑇) contains a free abelian group on 2𝑐  generators (Theorem6.2). 

 

 

2. Definitions and preliminaries 
 

                 Let 𝑥 = (𝑥 𝑛 )𝑛∈ℕbe any sequence consisting of1′𝑠and ∞′𝑠.Write 

1.1 = 1,1.∞ = ∞. 1 = 1.We define 

𝑠𝑢𝑝𝑝(𝑥 𝑛 )𝑛∈ℕ = {𝑛 ∈ ℕ: 𝑥 𝑛 = ∞}, 
 

and write 

𝑇 = { 𝑥 𝑛  
𝑛∈ℕ

:  𝑠𝑢𝑝𝑝 𝑥 𝑛  
𝑛∈ℕ

 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑛𝑑 𝑛𝑜𝑛− 𝑒𝑚𝑝𝑡𝑦}. 

A commutative standard oid is the set 𝑇 together with the product 𝑥𝑦 

defined in 𝑇 if and only if(𝑠𝑢𝑝𝑝 𝑥) ∩ (𝑠𝑢𝑝𝑝 𝑦) = ∅ to  be (𝑥 𝑛 𝑦 𝑛 ). Thus 

the product 𝑥 𝑛 𝑦 𝑛  is required to be defined if and only if either 𝑥 𝑛 or𝑦 𝑛  

is 1. Obviously, the product in 𝑇 is associative where defined and 𝑠𝑢𝑝𝑝 𝑥𝑦 =

(𝑠𝑢𝑝𝑝 𝑥) ∪ (𝑠𝑢𝑝𝑝 𝑦) whenever 𝑥𝑦 is defined in 𝑇 (oids are discussed in [7]).  

Any commutative standard oid 𝑇 can be considered as⊕𝑛=1
∞ {1,∞}\

{(1,1,… ,1)}. We use epithet “standard”to indicate that the index set is ℕ(in 

[7],oids could have any index set).   For 𝑥, 𝑦 ∈ 𝑇,𝑠𝑢𝑝𝑝 𝑥 < 𝑠𝑢𝑝𝑝 𝑦 means that 

𝑛 < 𝑚 if 𝑛 ∈ 𝑠𝑢𝑝𝑝 𝑥 and 𝑚 ∈ 𝑠𝑢𝑝𝑝 𝑦, and 𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞ for some net (𝑥𝛼) in 

𝑇 will mean that for arbitrary  𝑘 ∈ ℕ eventually min 𝑠𝑢𝑝𝑝 𝑥𝛼 > 𝑘. Then for 



   A.M. Aminpour, M. Seilani / J. Math. Computer Sci.    12 (2014), 219-234 
 

 

221 
 

a fixed 𝑡 ∈ 𝑇, eventually 𝑠𝑢𝑝𝑝 𝑡 < 𝑠𝑢𝑝𝑝 𝑥𝛼  and so eventually 𝑡𝑥𝛼  is defined in 

𝑇.Write 𝑢𝑛 = (1,1,… ,∞, 1,1, … ) (with ∞ in the nth place). Put = {𝑢𝑛 : 𝑛 ∈ ℕ} . 

Then 𝑈 is countable subset of 𝑇.  Moreover, any 𝑥 ∈ 𝑇 can be written uniquely 

as a finite product  𝑥 = 𝑢𝑖1𝑢𝑖2 …𝑢𝑖𝑘  with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ,𝑠𝑢𝑝𝑝 𝑥 =

{𝑖1 , … , 𝑖𝑘}.The compact space 𝛽𝑇 is the Stone-Čech compactification of the 

discrete space 𝑇 and if 𝑓 maps 𝑇 to some compact space,𝑓𝛽  is the unique 

continuous  extension of 𝑓 to 𝛽𝑇.We define 

𝑇∞ = {𝜇 ∈ 𝛽𝑇:  𝜇 = 𝑙𝑖𝑚𝛼𝑥𝛼  𝑤𝑖𝑡𝑕 𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞}. 
 

Obviously, 𝑇 ∩ 𝑇∞ = ∅. For 𝜇 ∈ 𝛽𝑇,𝜈 ∈ 𝑇∞  the  product 𝜇𝜈 ∈ 𝐶(𝑇)∗ is defined 

by 𝜇𝜈 = 𝜇  ⃘𝐿𝜈 , where 𝐿𝜈𝑓 𝑡 = lim𝛽 𝑓(𝑡𝑦𝛽 ), if 𝑡 ∈ 𝑇,𝑓 ∈ 𝐶(𝑇) and 𝑦𝛽 → 𝜈 with 

𝑠𝑢𝑝𝑝 𝑦𝛽 → ∞. Then 𝐿𝜈𝑓 ∈ 𝐶(𝑇),𝐿𝜈𝑓 𝑡 = (𝐿𝑡𝑓)𝛽(𝜈). Further,𝐿𝜈  is a bounded 

linear operator on 𝐶(𝑇). Of course 𝜇 ∈ 𝛽𝑇 is a bounded linear functional on 

𝐶(𝑇),with 𝜇 ≤ 1,if𝜇 𝑓 = 𝑓𝛽(𝜇). In fact, the product  𝜇, 𝜈 → 𝜇𝜈: 𝛽𝑇 ×

𝑇∞ → 𝑇∞  is defined and is right continuous,and left continuity holds when 

𝜇 = 𝑡 ∈ 𝑇[1].Also 𝜇𝜈 = 𝑙𝑖𝑚𝛼 𝑙𝑖𝑚𝛽𝑥𝛼𝑦𝛽  where (𝑥𝛼) is a net in 𝑇 with 𝑥𝛼 → 𝜇. If 

𝜇 ∈ 𝑇∞ , then 𝐿𝜇𝜈 = 𝐿𝜇   ⃘𝐿𝜈  , so that  𝜇, 𝜈 → 𝜇𝜈: 𝑇∞ × 𝑇∞ → 𝑇∞  is a binary 

operation on 𝑇∞  relative to which that 𝑇∞  is a compact right topological 

semigroup.  If ⊆ 𝑇 , then 1𝐴  denotes the indicator function of 𝐴,that is,the 

function whose  value is 1 on 𝐴 and 0 on 𝑇\𝐴. 

Remark2.1.For 𝜈 ∈ 𝑇∞and 𝜇 ∈ 𝛽𝑇, 𝜈𝜇 can not always be defined in a standard 

oid 𝑇, if we require that multiplication is right continuous. This is true even if 

𝜇 ∈ 𝑇.  If 𝑧𝑛 = 𝑢1𝑢2 …𝑢𝑛 , 𝑛 ∈ ℕ, 𝑢𝑛 ∈ 𝑈 and 𝑧𝑛 𝑖 → 𝜆 ∈ 𝛽𝑇 for some subnet 

(𝑧𝑛 𝑖)of 𝑧𝑛 , then for any 𝑡 ∈ 𝑇 , lim𝑖 𝑡𝑧𝑛 𝑖  is not  defined .But we can define 𝜈𝜇 

for standard oids only on a subset of  𝑇∞ × 𝛽𝑇. This subset includes 𝑇∞ × (𝑇 ∪

𝑇∞).  Now let 𝑥𝛼 → 𝜇 in 𝛽𝑇 with 𝑠𝑢𝑝𝑝  𝑥𝛼 → ∞ and let 𝜆 = 𝑡𝜆′ where t ∈ 𝑇 

,𝜆′ ∈ 𝑇∞such that 𝑦𝛽 → 𝜆′ with 𝑠𝑢𝑝𝑝 𝑦𝛽 → ∞.  Then eventually 𝑠𝑢𝑝𝑝 𝑡 <

𝑠𝑢𝑝𝑝 𝑥𝛼  and for such 𝛼,eventually 𝑠𝑢𝑝𝑝 𝑥𝛼 < 𝑠𝑢𝑝𝑝 𝑦𝛽  , so that eventually 

𝑡𝑥𝛼𝑦𝛽  is defined in 𝑇 and hence 𝑙𝑖𝑚𝛼 𝑙𝑖𝑚𝛽 𝑡𝑥𝛼𝑦𝛽 = 𝑡𝜇𝜆′  (= 𝜇𝑡𝜆′) 

(see[1],Definition 3.5). Therefore ,we can defined  𝜇𝜆 on 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) 

, whenever (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) is a suitable subspace of 𝛽𝑇 for a wide range. 

 

Definition2.2.(i) The cardinal function is the map 𝑐: 𝑇 → ℕ given by 

𝑐 𝑥 = 𝑐𝑎𝑟𝑑(𝑠𝑢𝑝𝑝 𝑥) (that is, the number of elements of the support of 

𝑥).Then 𝑐 extends to a unique continuous extension  𝑐𝛽  from 𝛽𝑇 into the    

one-point compactification ℕ ∪ {∞}. If  𝑠𝑢𝑝𝑝 𝑥 ∩  𝑠𝑢𝑝𝑝 𝑦 = ∅ so that 𝑥𝑦 

is defined in  , 𝑥𝑦 = 𝑐 𝑥 + 𝑐(𝑦), and so for𝜇 ∈ 𝛽𝑇,𝜈 ∈ 𝑇∞  then 𝑐𝛽 𝜇𝜈 =

𝑐𝛽 𝜇 + 𝑐𝛽(𝜈). Thus 𝑐𝛽  is a homomorphism on 𝑇∞ . We denote 1/𝑐(𝑥) by 

𝑕(𝑥) for  𝑥 ∈ 𝑇. 

(ii) The length function is the map 𝑙: 𝑇 → ℕ by letting  𝑙 𝑥  (The length 

Of support of 𝑥) be the integer 𝑖𝑘 − 𝑖1 + 1 where 𝑠𝑢𝑝𝑝 𝑥 = {𝑖1, … , 𝑖𝑘}. 
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Then  𝑙  extends to a unique continuous extension 𝑙𝛽  from 𝛽𝑇 into the one-

point compactification  ℕ ∪ {∞}. We denote  1/𝑙(𝑥) by 𝑟 𝑥   for 𝑥 ∈ 𝑇. 

(iii) The 𝒛-function is the  map 𝑧: 𝑇 → ℤ+ by letting 𝑧(𝑥) be the largest 

number of consecutive 1′𝑠 between min⁡(𝑠𝑢𝑝𝑝 𝑥) and max⁡(𝑠𝑢𝑝𝑝 𝑥). Then 𝑧 

extends to a unique continuous extension 𝑧𝛽  from  𝛽𝑇 into the one-point 

compactification ℤ+ ∪ {∞}. We denote 1/𝑧(𝑥) + 1 by  𝑘(𝑥) for ∈ 𝑇 .
 
 

We next have some useful results which we will need later.  

 

Proposition2.3.For 𝜇 ∈ 𝑇∞ ,𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) then 𝑙𝛽 𝜇𝜈 = ∞. 

Proof. Let 𝜈 = 𝑡 ∈ 𝑇 ,and let 𝑥𝛼 → 𝜇 for some net (𝑥𝛼) in 𝑇 with 𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞.  

Then eventually 𝑠𝑢𝑝𝑝 𝑡 < 𝑠𝑢𝑝𝑝 𝑥𝛼 , so that eventually 𝑙 𝑡𝑥𝛼 = ∞. Since 

𝑡𝑥𝛼 → 𝑡𝜇 in 𝛽𝑇 and  𝑙𝛽  is continuous on𝛽𝑇,from which it follows that 

𝑙𝛽 𝜇𝑡 = 𝑙𝛽 𝑡𝜇 = ∞.  If𝜈 ∈ 𝑇∞ , and 𝑦𝛽 → 𝜈 for some  net (𝑦𝛽 )in 𝑇 with 

𝑠𝑢𝑝𝑝 𝑦𝛽 → ∞ ,then 𝑙
𝛽 𝜇𝜈 = 𝑙𝑖𝑚𝛼 𝑙𝑖𝑚𝛽 𝑙 𝑥𝛼𝑦𝛽 = ∞, by a similar reason. 

Suppose  that 𝜈 = 𝑡𝜆,𝜆 ∈ 𝑇∞ . Then 𝜇𝜆 ∈ 𝑇∞ ,since𝑇∞  is a semigroup, 

Hence 𝑙𝛽 𝜇𝜈 = 𝑙𝛽 𝜇𝑡𝜆 = 𝑙𝛽 𝑡𝜇𝜆 = ∞ and the result follows.                  □ 

 

The next result is an immediate consequence of Definition2.2(ii), Propo- 

sition2.3. 

 

Corollary2.4. For 𝜇 ∈ 𝑇∞ ,𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). Then 𝑟𝛽 𝜇𝜈 = 0. 

 

Proposition2.5.Let 𝜇 ∈ 𝑇∞ ,𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). Then 𝑧𝛽 𝜇𝜈 = ∞. 

Proof. This uses Definition 2.2(iii),the proof is parallel to that of Proposition 

2.3.                                                                                                                                     □

  

Corollary2.6. Let 𝜇 ∈ 𝑇∞ ,𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). Then 𝑘𝛽 𝜇𝜈 = 0. 

Proof is straightforward.                                                                                □ 

 

 

3. Space of jointly continuous functions 

Our aim of the present section is to introduce a new kind of 𝐶∗-subalgebra 

of the 𝐶∗-algebra 𝐶(𝑇). In this section we try to find an analogue of almost 

periodic functions for oids. 

Definition3.1. Let 𝑇 be a commutative standard oid.  We use 𝒰∞(𝑇) to 

denote the set of all bounded complex valued functions on 𝑇 for which 

 𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ is jointly continuous. Clearly 

𝒰∞(𝑇) is conjugate closed and contains  all constant functions. 

 

Example3.2.(i) Let 𝑕 = 1/𝑐 be as in Definition 2.2(i). Then by a routine 
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argument we see that for 𝜇 ∈ 𝑇∞ ,𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞), 𝑐𝛽 𝜇𝜈 = 𝑐𝛽(𝜇) +

𝑐𝛽(𝜈), and so  𝜇, 𝜈 → 𝑕𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ is jointly 

continuous. Therefore  𝑕 ∈ 𝒰∞(𝑇). 

(ii)Let 𝑟 = 1/𝑙 be as in Definition 2.2(ii). Then by Corollary 2.4,𝑟𝛽 𝜇𝜈 = 0 for 

𝜇 ∈ 𝑇∞and 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞),   and so  𝜇, 𝜈 → 𝑟𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞) → ℂ is jointly continuous . Thus 𝑟 ∈ 𝒰∞(𝑇). 

(iii) Let 𝑘 = 1/𝑧 + 1 be as in Definition 2.2(iii).Then by Corollary 2.6, 𝑘𝛽 𝜇𝜈 = 0 

for 𝜇 ∈ 𝑇∞ , 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞), and so 𝜇, 𝜈 → 𝑘𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞) → ℂ is jointly continuous ,hence  𝑘 ∈ 𝒰∞(𝑇). 

Lemma3.3.𝒰∞(𝑇) is a 𝐶∗-sub algebra of the 𝐶∗-algebra 𝐶(𝑇). 

Proof. It is easily seen that 𝒰∞(𝑇) is a subalgebra of the algebra 𝐶(𝑇). To 

prove that 𝒰∞(𝑇) is a 𝐶∗-subalgebra it is enough to prove that 𝒰∞(𝑇) is a 

closed subalgebra of 𝐶(𝑇) because the other conditions are satisfied easily.   

For this purpose,  let (𝑓𝑛)𝑛∈ℕ be any sequence in 𝒰∞(𝑇), 𝑓 ∈ 𝐶(𝑇) with 

 𝑓𝑛 − 𝑓 → 0, as 𝑛 → ∞.Suppose that 𝜇𝛼 → 𝜇 in 𝑇∞ , 𝜈𝛼 → 𝜈 in (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞).Then given 𝜀 > 0, choose 𝑘 ∈ ℕ such that  𝑓𝑛 − 𝑓 < 𝜀/3  for  all 

𝑛 ≥ 𝑘. Fix 𝑛0 > 𝑘. Then choose 𝛼0 such that 𝛼 > 𝛼0, 

 𝑓𝑛0

𝛽  𝜇𝛼𝜈𝛼 − 𝑓𝑛0

𝛽
(𝜇𝜈) < 𝜀/3. For such 𝛼, then 

 𝑓𝛽 𝜇𝛼𝜈𝛼 − 𝑓𝛽(𝜇𝜈) ≤  𝑓𝛽 𝜇𝛼𝜈𝛼 − 𝑓𝑛0

𝛽  𝜇𝛼𝜈𝛼  +  𝑓𝑛0

𝛽  𝜇𝛼𝜈𝛼 − 𝑓𝑛0

𝛽  𝜇𝜈   

+  𝑓𝑛0

𝛽  𝜇𝜈 − 𝑓𝛽 𝜇𝜈   

≤  𝑓𝛽 − 𝑓𝑛0

𝛽
 +  𝑓𝑛0

𝛽  𝜇𝛼𝜈𝛼 − 𝑓𝑛0

𝛽  𝜇𝜈  +  𝑓𝑛0

𝛽
− 𝑓𝛽  

                                                   < 𝜀/3 + 𝜀/3 + 𝜀/3 = 𝜀.

Hence lim𝛼 𝑓
𝛽 𝜇𝛼𝜈𝛼 = 𝑓𝛽(𝜇𝜈) and so  𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞) is jointly continuous, as desired.                                                                       □                                                                    
 

Our next result will be useful in later. 

Theorem3.4.Let𝑓 ∈ 𝒰∞(𝑇),𝜂 ∈ 𝑇∞ . Then 𝐿𝜂𝑓 ∈ 𝒰
∞(𝑇). 

Proof. It is easy to check that 𝜈𝜂 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) whenever 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞). From this and that the product  𝜇, 𝜈 → 𝜇𝜈: 𝛽𝑇 × 𝑇∞ → 𝛽𝑇 is right 

continuous, it follows that the map 𝜈 → 𝜈𝜂 is continuous of(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) 

into itself.  Therefore the composite map  𝜇, 𝜈 → (𝜇, 𝜈𝜂) → 𝑓𝛽(𝜇𝜈𝜂) is 

continuous from𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) to ℂ for each 𝑓 ∈ 𝒰∞(𝑇).Thus 

𝑓𝛽 𝜇𝜈𝜂 = 𝜇𝜈𝜂 𝑓 = 𝜇𝜈  ⃘𝐿𝜂 𝑓 = 𝜇𝜈 𝐿𝜂𝑓 =  𝐿𝜂𝑓 
𝛽

(𝜇𝜈). 

It follows that, 𝜇, 𝜈 →  𝐿𝜂𝑓 
𝛽

(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ is continuous, 

and therefore  by Definition  3.1,𝐿𝜂𝑓 ∈ 𝒰
∞(𝑇),as desired.                                 □  

Definition3.5.For 𝑓 ∈ 𝒰∞(𝑇) and  𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞), we define  

𝐿𝜈𝑓
𝛽 𝜇 = 𝑓𝛽 (𝜇𝜈),   where 𝜇 ∈ 𝑇∞ . 

Remark3.6.It is easy to check that 𝐿𝜈𝑓
𝛽  is continuous on compact space 
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𝑇∞  , since  𝜇, 𝜈 → 𝜇𝜈: 𝛽𝑇 × 𝑇∞ → 𝛽𝑇 is right continuous and left continuity 

holds when 𝜇 = 𝑡 ∈ 𝑇.Moreover, 𝐿𝜈  is a bounded linear operator with  𝐿𝜈 ≤ 1. 

Theorem3.7.Let 𝑓 ∈ 𝐶(𝑇). Then  𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ 

is jointly continuous  if and only if 𝜈 → 𝐿𝜈𝑓
𝛽 : (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → 𝐶(𝑇∞) is norm 

continuous. 

Proof. Define  𝜓:𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ by 𝜓 𝜇, 𝜈 = 𝑓𝛽(𝜇𝜈). Then 𝜓 

Is a bounded function, since𝑓𝛽   is continuous on 𝛽𝑇.It follows readily  that 

𝜇 → 𝜓 𝜇, 𝜈 : 𝑇∞ → ℂ is a continuous function for each 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). 

Let  𝐶(𝑇∞) have the uniform norm.   Since 𝑇∞ is a compact space and 

(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) is a subspace of 𝛽𝑇,𝜓 is jointly continuous if and only if the 

mapping  𝜈 → 𝜓 0, 𝜈 : (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → 𝐶(𝑇∞) is  continuous (see[10] , 

Chapter 1, Lemma 1.8(a)).                                                                                             □                                                                  

Lemma3.8.If 𝜈 → 𝐿𝜈𝑓
𝛽 : 𝑇∞ → 𝐶(𝑇∞) is norm-continuous, then  𝐿𝜈𝑓

𝛽 :  𝜈 ∈ 𝑇∞  is 

relatively norm compact in𝐶(𝑇∞) 

Proof is  straightforward.                                                                                  □                                                                 

The next result is an immediate consequence of Definition 3.1,Theorem 

3.7 and Lemma3.8. 
 

Corollary3.9. Let 𝑓 ∈ 𝒰∞(𝑇).Then {𝐿𝜈𝑓
𝛽 :  𝜈 ∈ 𝑇∞} is a norm relatively 

compact  in 𝐶(𝑇∞). 

 

4. Compact topological semigroups 

                In this section by starting with 𝒰∞(𝑇)we will produce  a new compact    

            Commutative topological semigroup,and make an investigation of  it’s properties.                                   

Assume that 𝜏 is the topology induced on a compact right topological 

           Semigroup 𝑇∞by 𝛽𝑇 and 𝜏𝒰∞ (𝑇)  is  the weak  topology induced on 𝑇∞by the  

          family{𝑓𝛽 :  𝑓 ∈ 𝒰∞(𝑇)}.Then the identity map from (𝑇∞ , 𝜏)onto (𝑇∞ , 𝜏𝒰∞  𝑇 ) 

         is continuous, thus (𝑇∞ , 𝜏𝒰∞  𝑇 )is compact [9].

 

Definition4.1.For𝜇, 𝜈 ∈ 𝑇∞ ,define 𝜇  ℛ𝒰∞  𝑇 𝜈 if and only if𝑓𝛽 𝜇 = 𝑓𝛽(𝜈) 

For all 𝑓 ∈ 𝒰∞(𝑇). Clearly  ℛ𝒰∞  𝑇 is a closed relation on (𝑇∞ , 𝜏𝒰∞  𝑇 ). 
 

Remark4.2.It should be noted from Definition 3.1,It follows that if 

𝑓 ∈ 𝒰∞(𝑇),  𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞) → ℂ is separately continuous, 

so  that 𝑓𝛽 𝜇𝜈 = 𝑓𝛽(𝜈𝜇) for all 𝜇, 𝜈 ∈ 𝑇∞ . Therefore 𝑓 ∈ 𝑊1
∞(𝑇)(see [1],  

for details). 
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Proposition4.3.  ℛ𝒰∞  𝑇 

Is a congruence relation on 𝑇∞. 

Proof. To prove that  ℛ𝒰∞  𝑇 
is congruence, we use Remark 4.2 and Theorem 3.4. 

Let 𝜇  ℛ𝒰∞  𝑇 𝜇′
and 𝜈  ℛ𝒰∞  𝑇 𝜈′where  𝜇, 𝜈, 𝜇′ , 𝜈′ ∈ 𝑇∞ .  

Pick 𝑓 ∈ 𝒰∞(𝑇). Then 

 

𝑓𝛽 𝜇𝜈 =  𝐿𝜈𝑓 
𝛽 𝜇 =  𝐿𝜈𝑓 

𝛽 𝜇′ = 𝑓𝛽  𝜇′𝜈 = 𝑓𝛽 𝜈𝜇′ =  𝐿𝜇 ′ 𝑓 
𝛽
 𝜈  

=  𝐿𝜇′𝑓 
𝛽
 𝜈′ = 𝑓𝛽 𝜈′𝜇′ = 𝑓𝛽 𝜇′𝜈′  

Thus 𝜇𝜈  ℛ𝒰∞  𝑇 𝜇′𝜈′, as claimed.                                                        □

 
             Proposition4.4.(𝑇∞ , 𝜏𝒰∞  𝑇 ) Is a compact  topological  semigroup.

 
Proof. We know that (𝑇∞ , 𝜏𝒰∞  𝑇 ) is a compact space. Now let (𝜇𝛼)be a 

net in 𝑇∞  converging to 𝜇 in(𝑇∞ , 𝜏𝒰∞  𝑇 ). Then 𝜇𝛼𝛽 → 𝜇0in (𝑇∞ , 𝜏) for 

some subnet  (𝜇𝛼𝛽 ) of  (𝜇𝛼).   Since identity   map  from (𝑇∞ , 𝜏) onto 

(𝑇∞ , 𝜏𝒰∞  𝑇 )  is continuous,  it  follows  that  𝜇𝛼𝛽 → 𝜇0 in  

(𝑇∞ , 𝜏𝒰∞  𝑇 ).Hence for each 𝑓 ∈ 𝒰∞(𝑇), 𝑓𝛽 𝜇0 = lim𝛽 𝑓
𝛽(𝜇𝛼𝛽 ) = 𝑓𝛽(𝜇). 

So 𝜇0  ℛ𝒰∞  𝑇 𝜇.  Similarly  if  𝜈𝛼 → 𝜈 and 𝜈𝛼𝛽 → 𝜈0 in  (𝑇∞ , 𝜏𝒰∞  𝑇 )  then 

𝜈0  ℛ𝒰∞  𝑇 𝜈. Hence, as   ℛ𝒰∞  𝑇 is a congruence relation on 𝑇∞  by 

Proposition 4.3, then 𝜇0𝜈0  ℛ𝒰∞  𝑇 𝜇𝜈, so that 𝑓𝛽 𝜇0𝜈0 = 𝑓𝛽(𝜇𝜈)  for  all  

𝑓 ∈ 𝒰∞(𝑇).  Now  let 𝜇𝛼 → 𝜇, 𝜈𝛼 → 𝜈in   (𝑇∞ , 𝜏𝒰∞  𝑇 ),  let (𝜇𝛼𝛽 𝜈𝛼𝛽 )  be  a 

subnet of (𝜇𝛼𝜈𝛼).  Using compactness of  (𝑇∞ , 𝜏) we find 
subnets(𝜇𝛼𝛽𝛾 ), (𝜈𝛼𝛽𝛾 ) with 𝜇𝛼𝛽𝛾 → 𝜇0, 𝜈𝛼𝛽𝛾 → 𝜈0in(𝑇∞ , 𝜏). Then for 

each 𝑓 ∈ 𝒰∞(𝑇), we have lim𝛾 𝑓
𝛽(𝜇𝛼𝛽𝛾 𝜈𝛼𝛽𝛾 ) = 𝑓𝛽 𝜇0𝜈0 = 𝑓𝛽 (𝜇𝜈), since 

 𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈): 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ is jointly continuous, hence 
𝜇𝛼𝜈𝛼 → 𝜇 𝜈, as required.                                                                                          □                                                                               

 

 
Corollary4.5.Let the quotient  semigroup 𝑇∞/ℛ𝒰∞ (𝑇)have the quotient 

topology.  Then 𝑇∞/ℛ𝒰∞ (𝑇)is compact  Hausdorff  topological  semigroup. 
 T 

 

                   Proof. Use Definition  4.1 and Proposition 4.3.                                                   □                                                  

 

Corollary4.6.  𝑇∞/ℛ𝒰∞ (𝑇)  is a commutative semigroup. 

 

Proof. Take 𝜇, 𝜈 ∈ 𝑇∞and 𝑓 ∈ 𝒰∞(𝑇). Then 𝑓𝛽 𝜇𝜈 = 𝑓𝛽(𝜈𝜇)(Remark 

4.2),and thus  𝜇𝜈  ℛ𝒰∞  𝑇 𝜈𝜇, which implies the  assertion.                                □                     
 

                           We conclude this section with some results (both algebraic, topological)                                              
on 𝑇∞/ℛ𝒰∞ (𝑇).

            Theorem 4.7.𝐾(𝑇∞/ℛ𝒰∞  𝑇 )the minimal ideal of 𝑇∞/ℛ𝒰∞ (𝑇) Is compact                    

                topological group. 
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Proof. This follows from Corollaries 4.5,4.6 and Corollary 1.5.3[3].                 □    
 

Remark4.8.For each  𝑛 ∈ ℕ,write 𝐻𝑛 = {𝜇 ∈ 𝑇∞ :  𝑐𝛽 𝜇 = 𝑛} and 𝐻∞ = {𝜇 ∈

𝑇∞ :  𝑐𝛽 𝜇 = ∞}.Then 𝑇∞ = 𝐻1 ∪ 𝐻2 ∪ …∪ 𝐻𝑛 ∪ …∪ 𝐻∞ .

                Hence  𝐻𝑛    is clopen and each 𝜇 ∈ 𝐻𝑛  is  a limit of a net (𝑥𝛼)in 𝑇

               with𝑐(𝑥𝛼)  = 𝑛for each 𝛼. Further, 𝐻𝑛𝐻𝑚 ⊆ 𝐻𝑛+𝑚 for all 𝑚, 𝑛 ∈ ℕ,  

so 𝐻1 ∪ 𝐻2 ∪ …∪ 𝐻𝑛 ∪…is a sub semigroup of 𝑇∞ . Recall that by Definition 

2.2(ii),𝑙  is the length function and 𝑟 𝑥 = 1/𝑙(𝑥), 𝑥 ∈ 𝑇. 
 

Lemma4.9.Let   𝜉 ∈ 𝐻𝑛 for  some  𝑛 ∈ ℕwith 𝑙𝛽 𝜉 < ∞, let   
𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇)be the quotient map. Then 𝜋(𝜉) is not a product.

Proof.  Let 𝑔𝑙𝜋 = 𝑙𝛽 . Then 𝑔𝑙  is a continuous  functions  on 𝑇
∞/ℛ𝒰∞ (𝑇), since  

𝑟 = 1/𝑙 and  𝑟 ∈ 𝒰∞(𝑇) (Example 3.2 (ii))  and  that 𝑇∞/ℛ𝒰∞ (𝑇) have  the 

quotient topology (see [9], Chapter 3, Theorem 9).  If 𝜋 𝜉 = 𝜋(𝜉1)𝜋(𝜉2) for 

some 𝜉1 , 𝜉2 ∈ 𝑇
∞ ,   then 𝑙𝛽 𝜉 = 𝑙𝛽 𝜉1𝜉2 = ∞(Proposition2.3), which 

contradicts 𝑙𝛽  𝜉 < ∞.                                                                                       □                                                                                      

 
Theorem4.10.  𝑇∞/ℛ𝒰∞ (𝑇)

 has  no identity. 

                  Proof.   If  𝜋 𝑒  is  an  identity  element  for 𝑇
∞/ℛ𝒰∞ (𝑇),    where  𝑒 ∈ 𝑇∞ ,  then       

             𝜋 𝜉 = 𝜋 𝑒 𝜋 𝜉 = 𝜋 𝜉 𝜋 𝑒   for all 𝜉 ∈ 𝑇∞ ,  which  is  impossible by Lemma 4.9.                       

 
Remark 4.11. It is easy to verify that, 𝑙𝛽  𝑒 = ∞, whenever  𝜋 𝑒  is 

an  idempotent  in𝑇
∞/ℛ𝒰∞ (𝑇). We denote the set of all idempotents in 𝑇

∞/ℛ𝒰∞ (𝑇) 

by 𝐸(𝑇∞/ℛ𝒰∞  𝑇 ). Thus we obtain that 𝐸(𝑇∞/ℛ𝒰∞  𝑇 ) ⊆ {𝜋 𝜉 : 𝜉 ∈ 𝑇∞ , 𝑙𝛽 𝜉 =

∞}. 
 

              Proposition4.12. Let 𝜉 ∈ 𝐻𝑛  for some 𝑛 ∈ ℕ with𝑙𝛽 𝜉 < ∞.  Then 𝜋 𝜉  
                Is not a left zero. 

 
Proof. Left zeros are idempotents and we saw above that 𝑙𝛽 𝜉 = ∞ if 𝜉is an 

idempotent.                                                                                                      □                                                                              

We next have the following theorem. 

 

Theorem4.13.  𝑇∞/ℛ𝒰∞ (𝑇)
 is not a left zero semigroup. 

 

              Proposition4.14.  (𝑇∞/ℛ𝒰∞ (𝑇))2   is not dense in 𝑇∞/ℛ𝒰∞ (𝑇)
. 

                Proof.  Let 𝑔𝑟𝜋 = 𝑟𝛽 , where 𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇) is the quotient map. Then 𝑔𝑟  

                  is continuous on 𝑇∞/ℛ𝒰∞ (𝑇),  since 𝑟 ∈ 𝒰∞(𝑇)(Example 3.2 (ii)),  and that 

                  𝑇∞/ℛ𝒰∞ (𝑇) have  the  quotient  topology.  By Corollary 2.4,  

(𝑇∞/ℛ𝒰∞ (𝑇))2 ∩ 𝑔𝑟
−1 0,1 = ∅ 

                    But𝑔𝑟
−1 0,1 is   a   non-empty   open  set  in 𝑇∞/ℛ𝒰∞ (𝑇), as claimed. □ 
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Remark4.15.Let 𝜇0 ∈ 𝑇
∞

 be the cluster point of the  sequence(𝑢𝑛𝑢𝑛+3)𝑛=1
∞   in 𝛽𝑇, 

where 𝑢𝑛 ∈ 𝑈for all 𝑛 ∈ ℕ,let 𝑔𝑟𝜋 = 𝑟𝛽 (Proposition 4.14). Then 𝑟
𝛽 𝜇0 = 1/4and 

since by Corollary 2.4, 𝑟
𝛽 (𝑇∞)2 = 0 which implies that 𝜋 𝜇0 is not the limit of a 

net of elements (𝑇
∞/ℛ𝒰∞ (𝑇))2

. Thus we obtain an alternative proof of the 

Proposition 4.14 which will be required in the next result. 

Theorem4.16.  𝑇∞/ℛ𝒰∞ (𝑇)
 is not a left (resp, right) simple  semigroup. 

 

Proof.  Indeed,𝑇
∞/ℛ𝒰∞ (𝑇)𝜋 𝜇0 ⊆ (𝑇∞/ℛ𝒰∞ (𝑇))2, and 𝑇

∞/ℛ𝒰∞ (𝑇)𝜋 𝜇0 is    

closed in  𝑇
∞/ℛ𝒰∞ (𝑇). Thus   𝑇

∞/ℛ𝒰∞ (𝑇)𝜋 𝜇0 ≠ 𝑇∞/ℛ𝒰∞ (𝑇)by  Proposition   4.14,  

so 𝑇∞/ℛ𝒰∞ (𝑇) is  not a left simple semigroup. Thus 𝑇∞/ℛ𝒰∞ (𝑇)  is  not      a  

group  (see [3], for more details).                                              □ 
 

From Theorem 4.16 and Definition  1.5.6[3],we get the following result. 
 

Corollary4.17.  𝑇∞/ℛ𝒰∞ (𝑇)
 is not topologically left (resp, right) simple. 

Corollary4.18.  𝑇∞/ℛ𝒰∞ (𝑇)
 is not cancellative (and hence is not group).

                  Proof. Use Theorem 4.16 and Corollaries 3.13,3.14[3].                               □                   
 

              Remark4.19.If for each  𝑘 ∈ ℕ,let 𝑥𝑚
(𝑘)

= 𝑢𝑚𝑢𝑚+1 …𝑢𝑚+𝑘−1,𝑚 ∈ ℕ and  

                 𝑦𝑛 = 𝑢𝑛𝑢𝑛+1 …𝑢𝑛2 . 𝑛 ∈ ℕ,  where 𝑢𝑛 ∈ 𝑈 for  all  𝑛,  then  𝑠𝑢𝑝𝑝 𝑥𝑚
(𝑘)

→ ∞,  

                  𝑠𝑢𝑝𝑝 𝑦𝑛 → ∞.  Let 𝜇(𝑘), 𝜈 ∈ 𝑇∞be the cluster points of (𝑥𝑚
(𝑘)

)𝑚=1
∞ ,(𝑦𝑛)𝑛=1

∞  

              In  𝛽𝑇  respectively.  Then  𝑙
𝛽 𝜇(𝑘) = 𝑘 , 𝑙𝛽 𝜈 = ∞. Now,  suppose   that  

                 𝑔𝑙𝜋 = 𝑙𝛽 (Lemma 4.9). Then𝑔𝑙𝜋 𝜇
(𝑘) = 𝑙𝛽 𝜇(𝑘) = 𝑘,𝑔𝑙𝜋 𝜈 = 𝑙𝛽 𝜈 = ∞, 

which implies that 𝑔𝑙   and 𝑙𝛽  map 𝑇∞/ℛ𝒰∞ (𝑇)and  𝑇
∞

onto  the  one-point 

compactificationℕ ∪ {∞}respectively. 

                       Next we shall prove the following result. 

                Proposition 4.20.(𝑔𝑙
−1(∞))2

is not  dense in 𝑔𝑙
−1(∞) (and hence isnot 

dense in 𝑇
∞/ℛ𝒰∞ (𝑇)). 

 

Proof.  Let 𝑘 be as in Definition 2.2 (iii). Define  𝑔𝑘𝜋 = 𝑘𝛽 ,  where  𝜋: 𝑇∞ →

𝑇∞/ℛ𝒰∞ (𝑇) is the quotient map. Then 𝑔𝑘 is a continuous function on 𝑇∞/ℛ𝒰∞ (𝑇),  

since 𝑘 ∈ 𝒰∞(𝑇)(Example 3.2 (iii)). Suppose now that,(𝑦𝑛)𝑛=1
∞ , 𝜈 ∈ 𝑇∞be as in 

Remark 4.19. Then 𝜋(𝜈) ∉ 𝑔𝑙
−1(∞), since𝑙𝛽 𝜈 = ∞ and  𝑔𝑙𝜋 = 𝑙𝛽 .  On the other 

hand, 𝑘𝛽 𝜈 = 1, since 𝑧 𝑦𝑛 = 0(see Definition 2.2 (iii)). But (𝑔𝑙
−1(∞))2 ⊆

(𝑇∞/ℛ𝒰∞ (𝑇))2, an application of Corollary 2.6 then shows that 𝑔𝑘(𝑔𝑙
−1(∞))2 =



   A.M. Aminpour, M. Seilani / J. Math. Computer Sci.    12 (2014), 219-234 
 

 

228 
 

0.Hence, 𝜋(𝜈) ∉ 𝑐𝑙(𝑔𝑙
−1(∞))2, which implies the desired conclusion.                   

   Recall that by Definition 2.2(i),𝑐𝛽 is a continuous homomorphism on 𝑇∞ , and 
𝑕 = 1/𝑐, 𝑕 ∈ 𝒰∞(𝑇)(Example 3.2 (i)). Let 𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇)be the quotient 

map, and let 𝑔𝑐𝜋 = 𝑐𝛽 . Then 𝑔𝑐 is a continuous homomorphism on 

𝑇∞/ℛ𝒰∞ (𝑇). Let 𝜇(𝑘), 𝜈be as in Remark 4.19. Then 𝑐𝛽 𝜇(𝑘) = 𝑘 , 𝑐𝛽 𝜈 = ∞, 

and so we obtain that 𝑔𝑐  maps 𝑇∞/ℛ𝒰∞ (𝑇) onto the one-point 

compactification ℕ ∪ {∞}.                                                                                     □ 
 

 

The proof of the following proposition is essentially the same as that of 
 

Proposition4.20. 
 

Proposition 4.21.(𝑔𝑐
−1(∞))2

is not dense in 𝑔𝑐
−1(∞) (and hence is not 

dense in 𝑇
∞/ℛ𝒰∞ (𝑇)). 

 

Theorem 4.22.Let  𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇)  be the quotient map. Then the set 

{𝜋 𝜉 :  𝜉 ∈ 𝑇∞ , 𝑙𝛽 𝜉 < ∞} is not dense in 𝑇
∞/ℛ𝒰∞ (𝑇). 

 
Proof. Let (𝑦𝑛)𝑛=1

∞ , 𝜈 ∈ 𝑇∞  be as in Remark 4.19. Put  𝑌 = {𝑦𝑛 :  𝑛 ∈ ℕ}and let 1𝑌  

 

                 be the indicator function of 𝑌. Then 1𝑌
𝛽 𝜈 = 1.We complete the proof by showing 

             that 1𝑌 ∈ 𝒰
∞(𝑇).  To see this, suppose that 𝜇 ∈ 𝑇∞, 𝜂 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) 

              and let 𝑥𝛼 → 𝜇 for some net (𝑥𝛼) in 𝑇 with 𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞. If 𝜂 = 𝑡 ∈ 𝑇, then  

              eventually 𝑠𝑢𝑝𝑝 𝑡 < 𝑠𝑢𝑝𝑝 𝑥𝛼  and for such 𝛼,  eventually  𝑠𝑢𝑝𝑝 𝑥𝛼 < 𝑠𝑢𝑝𝑝 𝑦𝑛 ,so 

            that eventually  𝑡𝑥𝛼 ∉ 𝑌.Hence1𝑌
𝛽 𝑡𝜇 = 0.If 𝜂 ∈ 𝑇∞and 𝑦𝛽 → 𝜂 for some 

              net(𝑦𝛽)in𝑇with 𝑠𝑢𝑝𝑝𝑦𝛽 → ∞, then 1𝑌
𝛽 𝜇𝜈 = 𝑙𝑖𝑚𝛼 𝑙𝑖𝑚𝛽1𝑌 𝑥𝛼𝑦𝛽 = 0 by a   

               similar reason. Finally, if 𝜂 = 𝑡𝜆, 𝜆 ∈ 𝑇∞ . Then 𝜇𝜆 ∈ 𝑇∞ ,since𝑇∞  is a 

                 semigroup and hence 1𝑌
𝛽 𝜇𝜂 = 1𝑌

𝛽 𝑡𝜇𝜆 = 0.Consequently, 1𝑌 ∈ 𝒰
∞(𝑇).  

                Let𝑔1𝑌𝜋 = 1𝑌
𝛽 .Then𝑔1𝑌

is continuous on 𝑇∞/ℛ𝒰∞ (𝑇). Take 𝜉 ∈ 𝑇∞  

               with𝑙𝛽 𝜉 = 𝑘, 𝑘 ∈ ℕ. There exists a net(𝑧𝛾) in 𝑇 such that𝑧𝛾 → 𝜉 with 

               𝑠𝑢𝑝𝑝 𝑧𝛾 → ∞. It follows that,eventually 𝑙 𝑧𝛾 = 𝑘,hence eventually𝑧𝛾 ∉ 𝑌. 

                Therefore 1𝑌
𝛽 𝜉 = 0, so𝑔1𝑌𝜋 𝜉 = 0. On the other hand,𝑔1𝑌𝜋 𝜈 = 1𝑌

𝛽 𝜈 = 1 

              and hence 𝜋 𝜈 ∉ 𝑐𝑙{𝜋 𝜉 :  𝜉 ∈ 𝑇∞ , 𝑙𝛽 𝜉 < ∞}, which  implies the desired 

             conclusion.                                                                               □ 
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                                             For remainder   of this section we consider the more general results  

                           of deseribing about inclusion between 𝒰∞(𝑇)and𝑊𝐴𝑃∞(𝑇)(see[1],for 

                         more details). 

 

Theorem 4.23.For 𝑓 ∈ 𝐶(𝑇), if  𝜇, 𝜈 → 𝑓𝛽 𝜇𝜈 : 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → ℂ 

is separately continuous,then 𝜇, 𝜈, 𝜂 → 𝑓𝛽 𝜇𝜈𝜂 : 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) ×

𝑇∞ → ℂ is also separately continuous. 

 

Proof. Let(𝜇𝛼) is a net in𝑇∞converging to𝜇 ∈ 𝑇∞  and let 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞), 

𝜂 ∈ 𝑇∞ . 

(i) If 𝜈 ∈ 𝑇∞ ,then as is readily verified that𝑓𝛽(𝜇𝛼𝜈𝜂) → 𝑓𝛽(𝜇𝜈𝜂),since 

𝜈𝜂 ∈ 𝑇∞and 𝜇, 𝜈 → 𝜇𝜈: 𝛽𝑇 × 𝑇∞ → 𝛽𝑇 is right continuous. 

(ii) If𝜈 = 𝑡𝜆, 𝑡 ∈ 𝑇and𝜆 ∈ 𝑇∞ .Then𝜆𝜂 ∈ 𝑇∞since𝑇∞ is semigroup and 

𝑡𝜇𝛼 → 𝑡𝜇in𝑇.Using Definition 3.5[1] and that  𝜇, 𝜈 → 𝜇𝜈: 𝛽𝑇 × 𝑇∞ → 𝛽𝑇 is 

right continuous, it follows that 𝑓𝛽(𝜇𝛼𝜈𝜂) → 𝑓𝛽(𝜇𝜈𝜂). 

(iii) If 𝜈 = 𝑡 ∈ 𝑇,then by a similar argument,𝑓𝛽(𝜇𝛼𝜈𝜂) → 𝑓𝛽(𝜇𝜈𝜂). 

Let(𝜂𝛼)isanetin𝑇∞  converging to 𝜂 ∈ 𝑇∞ . Take 𝜇 ∈ 𝑇∞ , 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). 

(i) Let𝜈 ∈ 𝑇∞ . Then 𝜇𝜈 ∈ 𝑇∞ .In fact 𝜂𝛼 → 𝜂 in (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) and by 

hypothesis,  𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈) is separately continuous on 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞),from which it follows that 𝑓𝛽(𝜇𝜈𝜂𝛼) → 𝑓𝛽(𝜇𝜈𝜂). 

(ii) Let 𝜈 = 𝑡𝜆, 𝑡 ∈ 𝑇and𝜆 ∈ 𝑇∞ .Then 𝜇𝜆 ∈ 𝑇∞ . Indeed, 𝑡𝜂𝛼 → 𝑡𝜂 in (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞) ⊆ 𝛽𝑇 and  𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈) is separately continuous on 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞),  hence𝑓𝛽(𝜇𝜈𝜂𝛼) → 𝑓𝛽(𝜇𝜈𝜂). 

(iii) Let𝜈 = 𝑡 ∈ 𝑇.The proof is similar. 

Finally, suppose that (𝜈𝛼) is a net  in(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) converging  to 

𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞),and let 𝜇, 𝜂 ∈ 𝑇∞ . Then 𝜈𝛼𝜂 → 𝜈𝜂in(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞).But 

 𝜇, 𝜈 → 𝑓𝛽(𝜇𝜈) is separately continuous on 𝑇∞ × (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞),hence 

𝑓𝛽(𝜇𝜈𝛼𝜂) → 𝑓𝛽(𝜇𝜈𝜂). This proves our assertion.                                    □ 

Theorem4.24.For𝑓 ∈ 𝐶(𝑇), let both 𝜇, 𝜈 → 𝑓𝛽 𝜇𝜈 : 𝑇∞ × (𝑇 ∪ 𝑇∞) → ℂ 

and  𝜇, 𝜈, 𝜂 → 𝑓𝛽 𝜇𝜈𝜂 : 𝑇∞ × (𝑇 ∪ 𝑇∞) × 𝑇∞ → ℂ are separately continuous. 

Then 𝑓 ∈ 𝑊2
∞(𝑇). 

 
Proof. We use Theorem 3.11[1]. Suppose 𝜇, 𝜈, 𝜂 ∈ 𝑇∞ ,and (𝑥𝛼)isanet in𝑇converging 

to 𝜇 with 𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞. Then 𝑓𝛽 𝑥𝛼𝜂𝜈 → 𝑓𝛽(𝜇𝜂𝜈),since  𝜇, 𝜈 → 𝜇𝜈: 𝛽𝑇 × 𝑇∞ →

𝛽𝑇 is right continuous, and 𝜂𝜈 ∈ 𝑇∞ . By hypothesis,  𝜇, 𝜈 → 𝑓𝛽 𝜇𝜈  is separately 

continuous on𝑇∞ × (𝑇 ∪ 𝑇∞),hence from Remark 4.2,and that 𝑇∞  is a semigroup 

we see that 
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𝑓𝛽 𝜇𝜂𝜈 = 𝑓𝛽 𝜈𝜇𝜂 = 𝑓𝛽 𝜂𝜈𝜇     ,    𝑓𝛽 𝜂𝜇𝜈 = 𝑓𝛽 𝜈𝜂𝜇 = 𝑓𝛽 𝜇𝜈𝜂 . 

 

On the other hand,lim𝛼 𝑓
𝛽(𝑥𝛼𝜂𝜈) = lim𝛼 𝑓

𝛽(𝜂𝑥𝛼𝜈) = 𝑓𝛽(𝜂𝜇𝜈), since 𝜇, 𝜈, 𝜂 →

𝑓𝛽 𝜇𝜈𝜂  is separately continuous on𝑇∞ × (𝑇 ∪ 𝑇∞) × 𝑇∞and 𝑥𝛼 → 𝜇in 

(𝑇 ∪ 𝑇∞).  Thus 𝑓𝛽 𝜇𝜂𝜈 = 𝑓𝛽 𝜂𝜇𝜈 , and we have that𝑓 ∈ 𝑊2
∞(𝑇), as 

desired.                                                                                                           □                                                                                                    

 
Definition 3.1and the preceding theorems now imply that the following 

result. 

Corollary 4.25.Let 𝑇 be a commutative standard oid. Then 𝒰∞(𝑇) ⊆
𝑊2

∞(𝑇). 
 

Corollary 4.26.Let 𝑇be a commutative standard oid. Then 𝒰∞(𝑇) ⊆
𝑊𝐴𝑃∞(𝑇). 

 

 
The proof now follow by the preceding Corollary,Remark4.2 and Definition 

 

4.1[1].                                                                                                                         □                                                                                                              
 

Example 4.27.We have already seen that 𝒰∞(𝑇) ⊆ 𝑊𝐴𝑃∞(𝑇).  Now we 

show that the converse is not true.  For this  purpose, consider two sets 

𝐸 = { 𝑥 𝑛  
𝑛∈ℕ

∈ 𝑇:  𝑥 1 = 1}and𝐹 = { 𝑥 𝑛  
𝑛∈ℕ

∈ 𝑇:  𝑥 1 = ∞}. Then 

𝑇 = 𝐸 ∪ 𝐹. Now let  𝑢2𝑚  𝑚∈ℕ and  𝑢2𝑛+1 𝑛∈ℕ be two sequences in 𝑇 such that 

𝑢2𝑚 , 𝑢2𝑛+1 ∈ 𝑈 for all 𝑚, 𝑛. Take𝑢1 ∈ 𝑈.Put𝐷 = {𝑢1𝑢2𝑚𝑢2𝑛+1:𝑚 > 𝑛} ⊆ 𝐹. 

Define𝑓: 𝑇 → ℂby 

 

𝑓 𝑥 =  
1/𝑐(𝑥)                   ,          𝑥 ∈ 𝐸
1                            ,           𝑥 ∈ 𝐷

   0                            ,     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

        (𝑥 ∈ 𝑇)    

 

               Then 𝑓 ∈ 𝑊1
∞(𝑇) (Example 3.7[1]).We show that 𝑓 ∈ 𝑊2

∞(𝑇) (Definition 

3.9[1]). Assume that (𝑥𝛼), (𝑦𝛽 )and(𝑧𝛾) be nets in 𝑇 with𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞, 

𝑠𝑢𝑝𝑝 𝑦𝛽 → ∞and 𝑠𝑢𝑝𝑝 𝑧𝛾 → ∞.  Then (for all sufficiently large𝛼, 𝛽, 𝛾)𝑥𝛼 1 =

1,𝑦𝛽 (1)and𝑧𝛾 1 = 1 ,so that 𝑥𝛼 , 𝑦𝛽 , 𝑧𝛾 ∈ 𝐸. It is therefore easy

                    To verify that𝑓 ∈ 𝑊2
∞(𝑇), since 𝑕 = 1/𝑐 ∈ 𝑊2

∞(𝑇)(Example 3.10[1])hence 

𝑓 ∈ 𝑊𝐴𝑃∞(𝑇).To prove that 𝑓 ∉ 𝒰∞(𝑇) , we remind the reader that for 

any𝑓 ∈ 𝒰∞(𝑇),𝑓𝛽 𝑡𝜇𝜈 = 𝑓𝛽 𝑡𝜈𝜇 where𝑡 ∈ 𝑇and𝜇, 𝜈 ∈ 𝑇∞ . We assume 

that 𝜇, 𝜈 be the cluster points of the sequences 𝑢2𝑚  𝑚∈ℕ, 𝑢2𝑛+1 𝑛∈ℕin𝛽𝑇 
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respectively.  Then 𝜇, 𝜈 ∈ 𝑇∞ ,since 𝑠𝑢𝑝𝑝 𝑢2𝑚 → ∞and𝑠𝑢𝑝𝑝 𝑢2𝑛+1 → ∞. 

Hence, 𝑙𝑖𝑚𝑚 𝑙𝑖𝑚𝑛𝑓 𝑢1𝑢2𝑚𝑢2𝑛+1
 = 0,  𝑙𝑖𝑚𝑛 𝑙𝑖𝑚𝑚𝑓 𝑢1𝑢2𝑚𝑢2𝑛+1

 = 1, so  that 

Both iterated limits of𝑓 𝑢1𝑢2𝑚𝑢2𝑛+1
 exist.  But 𝑙𝑖𝑚𝑚 𝑙𝑖𝑚𝑛𝑓 𝑢1𝑢2𝑚𝑢2𝑛+1

 =

𝑓𝛽 𝑢1𝜇𝜈 ,and 𝑙𝑖𝑚𝑛 𝑙𝑖𝑚𝑚𝑓 𝑢1𝑢2𝑚𝑢2𝑛+1
 = 𝑓𝛽 𝑢1𝜈𝜇 , which is clearly  impossi- 

ble. Thus 𝑓 ∉ 𝒰∞(𝑇),asclaimed.                                                    □ 

 

5. Idempotents 

    Recall that 𝑇∞ is a compact right topological semigroup andℛ𝒰∞ (𝑇) is a 

 relation on 𝑇∞(Definition 4.1). Then ℛ𝒰∞ (𝑇)is congruence and under certain 

topology on 𝑇∞ , is also a closed relation, so that the quotient space 𝑇∞/ℛ𝒰∞ (𝑇) 

is a compact topological semigroup (Corollary 4.5), which is commutative 

(Corollary 4.6). In this section we are concerned with obtaining of idempotents 

𝑇∞/ℛ𝒰∞ (𝑇). In connection with the present section special suboids of an oid 

𝑇play an important role. Each special suboid corresponds to a strictly increasing  

sub sequence of ℕ.A more details  analysis of special suboids can be found in[1]. 

                       For an infinite subset𝐴 ⊆ ℕ,the special suboid of an oid 𝑇 corresponding to  

The strictly increasing sequence of 𝐴 is denoted by 𝑆(𝐴).Then 𝑆(𝐴) produces a 

compact right topological semigroup 𝑆∞(𝐴) which is a sub semigroup of 𝑇∞. 

Indeed, 𝜋(𝑆∞(𝐴)) is a compact commutative sub semigroup of 

𝑇∞/ℛ𝒰∞ (𝑇),  where 𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇) is the quotient map.  

 

U∞(

Proposition5.1. Let𝐴 ⊆ ℕ be an in finite set and let 1𝑆(𝐴) be the indicator 

function of 𝑆(𝐴). Then1𝑆(𝐴)
𝛽  𝜇𝜈 = 1𝑆(𝐴)

𝛽
(𝜇)1𝑆(𝐴)

𝛽
(𝜈)  for all  𝜇 ∈ 𝑇∞and 𝜈 ∈ (𝑇 ∪

𝑇∞ ∪ 𝑇𝑇∞). 
 
  Proof.      It is a straightforward argument that1𝑆(𝐴) 𝑥𝑦 = 1𝑆(𝐴)(𝑥)1𝑆(𝐴)(𝑦) 

For 𝑥, 𝑦 ∈ 𝑇such that  𝑠𝑢𝑝𝑝 𝑥 ∩  𝑠𝑢𝑝𝑝 𝑦 = ∅. Suppose that  𝑡 ∈ 𝑇,𝜇 ∈ 𝑇∞                

such that𝑥𝛼 → 𝜇for  some net (𝑥𝛼) in 𝑇 with 𝑠𝑢𝑝𝑝 𝑥𝛼 → ∞. Then even- 

Tually 𝑠𝑢𝑝𝑝 𝑡 < 𝑠𝑢𝑝𝑝 𝑥𝛼 ,so that eventually 1𝑆(𝐴) 𝑡𝑥𝛼 = 1𝑆(𝐴)(𝑡)1𝑆(𝐴)(𝑥𝛼). 

Since{0,1} is a compact commutative semigroup with the usual multipli- 

cation,  and 𝑡𝜇 = lim𝛼 𝑡𝑥𝛼 ,  it follows that 1𝑆(𝐴)
𝛽  𝑡𝜇 = 1𝑆(𝐴)(𝑡)1𝑆(𝐴)

𝛽
(𝜇). Now let  

𝜈 ∈ 𝑇∞  with 𝑦𝛽 → 𝜈 for some net (𝑦𝛽 )in𝑇such that 𝑠𝑢𝑝𝑝 𝑦𝛽 → ∞.  

 Then  by  a  similar  reason,   we   see   that    

1𝑆(𝐴)
𝛽  𝜇𝜈 = 𝑙𝑖𝑚𝛼 𝑙𝑖𝑚𝛽1𝑆(𝐴) 𝑥𝛼𝑦𝛽 = 𝑙𝑖𝑚𝛼1𝑆 𝐴  𝑥𝛼 1𝑆 𝐴 

𝛽  𝜈 = 1𝑆(𝐴)
𝛽

(𝜇)1𝑆(𝐴)
𝛽

(𝜈). 
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Finally if 𝜈 = 𝑡𝜆, 𝑡 ∈ 𝑇,𝜆 ∈ 𝑇∞ ,then𝜇𝜆 ∈ 𝑇∞ ,and𝜇𝜈 = 𝜇𝑡𝜆 = 𝑡𝜇𝜆. Thus, by above 

paragraph, we obtain that 1𝑆(𝐴)
𝛽  𝜇𝜈 = 1𝑆(𝐴)

𝛽
(𝜇)1𝑆(𝐴)

𝛽
(𝜈), as desired.                   □ 

 

              Corollary5.2. For an infinite set𝐴 ⊆ ℕ,the indicator function 1𝑆(𝐴)of 

𝑆 𝐴  is in 𝒰∞(𝑇). 

 
Proof. To show that 1𝑆(𝐴) ∈ 𝒰

∞(𝑇), it is adequate by Theorem 3.7, to show 

that 𝜈 → 𝐿𝜈𝑓
𝛽 : (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → 𝐶(𝑇∞) is norm-continuous. Assume 

that(𝜈𝛼)be  any net in (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) such that 𝜈𝛼 → 𝜈 in 

(𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). Then1𝑆 𝐴 
𝛽  𝜈𝛼 → 1𝑆 𝐴 

𝛽  𝜈 . Thus for  𝜀 > 0, there exists  𝛼0such 

that  for  𝛼 ≥ 𝛼0, 1𝑆 𝐴 
𝛽  𝜈𝛼 − 1𝑆 𝐴 

𝛽  𝜈  < 𝜀/2.   However, by  definition of 1𝑆(𝐴), 

we have 1𝑆 𝐴 
𝛽  𝜇 ∈ {0,1}for all 𝜇 ∈ 𝑇∞ , which is clearly that from Proposition 

5.1, and for 𝛼 ≥ 𝛼0, 

 1𝑆 𝐴 
𝛽  𝜇 1𝑆 𝐴 

𝛽  𝜈𝛼 − 1𝑆 𝐴 
𝛽  𝜇 1𝑆 𝐴 

𝛽  𝜈  =  1𝑆 𝐴 
𝛽  𝜇   1𝑆 𝐴 

𝛽  𝜈𝛼 − 1𝑆 𝐴 
𝛽  𝜈  <

𝜀/2 (𝜇 ∈ 𝑇∞).Hence, for 𝛼 ≥ 𝛼0, 𝐿𝜇𝛼1𝑆 𝐴 
𝛽

− 𝐿𝜇1𝑆 𝐴 
𝛽

 < 𝜀 and the proof of the 

corollary is complete.                                                                 □
 

 
Proposition5.3.If 𝐴, 𝐵 be two infinite subsets of ℕ with 𝐴 ∩ 𝐵 is finite. 

               Then  𝜋(𝑆∞(𝐴)) ∩ 𝜋(𝑆∞(𝐵)) = ∅,where  𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇)  is  quotient map. 
 

Proof. This uses Corollary 5.2,the proof is essentially the same as that of 
 

Proposition7.1[1].                                                                                             □                                                                                       
 

We finish the present section by giving the following main  result. Incon- 

nection with this result we will use non-principal ultrafilters onℕ. We remind the 

reader that, ifℱ is a non-principal ultrafilter on ℕ and𝐴 ∈ ℱ,Then 𝐴 is an infinite 

set. Moreover, the number of non-principal ultrafilters on ℕ is 2𝑐  [8]. 

Here is the main result of this section. 
 

            Theorem5.4.  𝑇∞/ℛ𝒰∞ (𝑇)
 contains at least 2𝑐  idempotents. 

Proof. This uses Proposition5.3,the proof is parallel to  that of Theorem 
 

7.2[1].                                                                                                                 □    
 
 

             6. Free abelian groups 

In connection  with Theorem  4.7, of the Section 4, it should be mentioned 

that, it is possible for a compact commutative topological semigroup 
         𝑇∞/ℛ𝒰∞ (𝑇) have a minimal idempotent with a unique minimal left ideal and 

                      a unique minimal right ideal,so that 𝐾(𝑇∞/ℛ𝒰∞ (𝑇)), the minimal ideal of 

               𝑇∞/ℛ𝒰∞ (𝑇) is a maximal group(see[3],for more details). The aim of this 

                         Section is the search for existence in  𝐾(𝑇∞/ℛ𝒰∞ (𝑇)) a free abelian group on 

                2𝑐generator. Let us first give the following result. 
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            Lemma6.1.Let 𝜓 is an arbitrary function from ℕ to ℝ, let𝑓: 𝑇 → ℂ be 

             defined by   𝑓 𝑡 = 𝑒𝑥𝑝𝑖∑{𝜓 𝑛 :  𝑛 ∈ 𝑠𝑢𝑝𝑝 𝑡}. Then 𝑓 ∈ 𝒰∞(𝑇). 

 

Proof. It is easily seen that 𝑓𝛽 𝑡𝜇 = 𝑓(𝑡)𝑓𝛽(𝜇) for 𝑡 ∈ 𝑇,𝜇 ∈ 𝑇∞ ,since 𝑓 is an 

oid-map (that is, 𝑓 𝑠𝑡 = 𝑓 𝑠 𝑓(𝑡)  whenever 𝑠, 𝑡 ∈ 𝑇 with  𝑠𝑢𝑝𝑝 𝑠 ∩

 𝑠𝑢𝑝𝑝 𝑡 = ∅).Moreover, 𝑓𝛽  is a homomorphism of 𝑇∞to the  circle group . 

Thus 𝑓𝛽 𝜇𝜈 = 𝑓𝛽(𝜇)𝑓𝛽(𝜈) for 𝜇 ∈ 𝑇∞ , 𝜈 ∈ (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞).To prove that 

𝑓 ∈ 𝒰∞(𝑇), we show that 𝜈 → 𝐿𝜈𝑓
𝛽 : (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞) → 𝐶(𝑇∞) is norm-

continuous(Theorem 3.7). Now suppose that(𝜈𝛼)be any net in(𝑇 ∪ 𝑇∞ ∪

𝑇𝑇∞) with 𝜈𝛼 → 𝜈 in (𝑇 ∪ 𝑇∞ ∪ 𝑇𝑇∞). 

           Then 𝑓𝛽(𝜈𝛼) → 𝑓𝛽(𝜈), hence for𝜀 > 0,there exists 𝛼0 such  that for 

𝛼 ≥ 𝛼0, 𝑓𝛽 𝜈𝛼 − 𝑓𝛽(𝜈) < 𝜀/2. But since, 𝑓𝛽 𝜇  = 1 for all 𝜇 ∈ 𝛽𝑇, 

it follows directly that for𝛼 ≥ 𝛼0 and for all 𝜇 ∈ 𝑇∞ , 

 𝑓𝛽 𝜇 𝑓𝛽 𝜈𝛼 − 𝑓𝛽 𝜇 𝑓𝛽(𝜈) =  𝑓𝛽 𝜇   𝑓𝛽 𝜈𝛼 − 𝑓𝛽(𝜈) < 𝜀/2. 

                  Thus, for 𝛼 ≥ 𝛼0, 𝐿𝜈𝛼𝑓
𝛽 − 𝐿𝜈𝑓

𝛽 < 𝜀, that is 𝑓 ∈ 𝒰∞(𝑇).               □ 

 

We remind the reader that, if 𝑀 = {𝜇 ∈ 𝑇∞ :  𝑐𝛽 𝜇 = 1} ,then it is easy 

  to verify that 𝑀 = {𝜇 ∈ 𝑇∞ :  𝜇 ∈ 𝑐𝑙 𝑢𝑚 :  𝑚 ∈ ℕ }, and 𝑐𝑎𝑟𝑑 𝑀 = 2𝑐(see [2],  

Remark5.8).  Recall that,  𝜋: 𝑇∞ → 𝑇∞/ℛ𝒰∞ (𝑇)is  the  quotient  map which  is  a   

Continuous  epimorphism.   We  now  give  the   following  result which  is the last 

                 major  result of this section. 

Theorem6.2.  𝐾(𝑇∞/ℛ𝒰∞ (𝑇)) contains a free abelian group on 2𝑐  generators. 

 Proof. This use Lemma6.1 and Corollary 4.26,the proof is similar to that    

of Theorem 8.1[1].                                                                                           □ 
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Soc.(2)36(1987), 421–428. 
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