

Fixed Point Theorems for Multi-valued Weakly C -contractive Mappings in Quasi-ordered Metric Spaces

E. Nazari

Department of Mathematics, Tafresh University, Tehran Ave. Tafresh, Iran. nazari.esmaeil@gmail.com

Article history: Received November 2014 Accepted December 2014 Available online January 2015

Abstract

The goal of this paper is to present some common fixed point theorems for multivalued weakly C-contractive mappings in quasi-ordered complete metric space. These results generalizes the existing fixed point results in the literature.

Keywords: Multivalued mapping, Hausdorff distance, Weakly C-contractive mapping, Common fixed point.

1. Introduction

Fixed point theory for contractive mapping first studied by Banach [1]. He proved that every contraction defined on a complete metric space has a unique fixed point. Since then the fixed point theory for single valued and multivalued mappings in metric space has been rapidly developed. In 1972, Chatterjea [2] introduce the concept of C -contraction as follows.

Definition1.1. A mapping $T: X \to X$ where (X, d) is a metric space is said to be a *C*-contraction if there exists $k \in (0, 0.5)$ such that for all $x, y \in X$ the following inequality holds:

 $d(Tx,Ty) \le k((d(x,Ty) + d(y,Tx))).$

Chatterjea [2] proved the following theorem:

Theorem1.1. Every C-contraction in a complete metric space has a unique fixed point.

Choudhury [3] introduce the concept of weakly C -contractive mapping as a generalization of C -contractive mapping and prove that every weakly C -contractive mapping in a complete metric space has a unique fixed point.

Definition1.2. Let (X, d) be a metric space. A mapping $T: X \to X$, is said to be weakly C-contractive if for all $x, y \in X$,

$$d(Tx,Ty) \le \frac{1}{2}(d(x,Ty) + d(y,Tx)) - \varphi(d(x,Ty),d(y,Tx)),$$

Where $\varphi:[0,\infty)^2 \to [0,\infty)$ is a continuous function such that $\varphi(x, y) = 0$ if and only x = y = 0.

Harjani et al. [5] announced some fixed point results for weakly C-contractive mappings in a complete metric space endowed with a partial order. Meanwhile, Shatanawi [9] proved some fixed point theorems for a nonlinear weakly C-contraction type mapping in metric and ordered metric spaces. In this paper, we introduce the concept of multivalued weakly C-contractive mappings in quasi-ordered partial metric spaces and we prove some existence theorems of common fixed point for such mappings in the context of complete quasi-partial metric spaces under certain conditions.

2. Preliminaries

Let (X, d, \leq) be a quasi-ordered metric space, with an order \leq as a quasi-order (that is, a reflexive and transitive relation) and a metric d. Assume that X having the following properties which appears in [8]:

(H1): if $\{x_n\}$ is a non-decreasing (resp. non-increasing) sequence in X such that $x_n \to x$, then $x_n \le x$ (resp. $x_n \ge x$) for all $n \in N$.

Let 2^x denote the family consisting of all nonempty subsets of X we define the Hausdorff-Pseude metric in $H_d: 2^x \times 2^x \to \Re_+ \cup \{\infty\}$ given by

 $H_{d}(C,D) = \max\{\sup_{a \in C} d(a,D), \sup_{b \in D} d(C,b)\},\$ where $d(a,D) = \inf_{b \in D} d(a,b)$, $d(C,b) = \inf_{a \in C} d(a,b)$.

Definition2.1. Let (X, d, \leq) be a quasi-ordered metric space. We say that X is sequentially complete if every Cauchy sequence whose consecutive terms are comparable in X converges.

Definition2.2. [6,7] Let X be a quasi-ordered metric space. A subset $D \subseteq X$ is said to be approximative if the multivalued mapping

$$P_D(x) = \{ y \in D : d(x, y) = d(D, x) \}, \quad \forall x \in X$$

has nonempty values.

The multivalued mapping $T: X \to 2^X$ is said to have approximative values, AV for short, if Tx is approximative for each $x \in X$.

The multivalued mapping $T: X \to 2^X$ is said to have comparable approximative values, CAV for short, if T has approximative values and, for each $z \in X$, there exists $y \in P_{Tz}(x)$ such that y is comparable to z.

The multivalued mapping $T: X \to 2^X$ is said to have pper comparable approximative values, UCAV, for short (resp: lower comparable approximative values, LCAV for short) if *T* has approximative values and, for each $z \in X$, there exists $y \in P_{T_z}(x)$ such that $y \ge z$ (resp: $y \le z$). It is clear that *T* has approximative values if it has compact values. In addition, if *T* is single-valued, Then UCAV (LCAV) means that $Tx \ge x$ ($Tx \le x$) for $x \in X$.

Definition2.3. The multivalued mappings T, S are said to have a common fixed point if there is $x \in X$ such that $x \in Tx$ and $x \in Sx$.

In what follows, we give an analogy of the contraction which called multivalued C-weakly contraction mapping will play an important role in this sequel. To this end, we first introduce the following function.

Let $a \in (0,\infty]$, $R_a^+ = [0,a)$. let $f: \mathfrak{R}_a^+ \to \mathfrak{R}$ satisfy,

(i) f(0) = 0 and f(t) > 0 for each $t \in (0, a)$

(ii) f is non-decreasing on \Re_a^+

(iii) f is continuous

(iv) $f(t+s) \leq f(t) + f(s)$ for $s, t \in \mathfrak{R}_a^+$.

For examples of such function f we refer to (6).

Define

 $\mathfrak{F}[0,a) = \{f \mid f \text{ satisfies (i)-(iv) above}\}.$

Let $a \in (0,\infty]$, $\varphi: R_a^+ \times R_a^+ \to R^+$ satisfy

(i) $\varphi(t,s) = 0$ if and only if s = t = 0.

(ii) φ is continuous.

(iii) For any sequence $\{r_n\}$ with $\lim_{n \to \infty} r_n = 0$, there exist $a \in (0, \frac{1}{2})$ and $n_0 \in N$ such that $\varphi(r_n, 0) \ge (1-a)r_n$ (or $\varphi(0, r_n) \ge (1-a)r_n^{\infty}$) for each $n \ge n_0$. Define $\varphi([0,a) \times [0,a)) = \{\varphi : \varphi \text{ satisfies}(i) - (iii) \text{ above}\}.$

Definition2.3. Let *X* be a metric space and $d = \sup\{d(x, y) : x, y \in X\}$. Set a = d if $d = \infty$ and a > d if $d < \infty$. Suppose the multivalued mappings $T, S : X \to 2^X$, $f \in \mathfrak{F}[0, a)$ and $\varphi \in \Phi([0, f(a-0)) \times [0, f(a-0)))$ satisfy

$$f(H_{d}(Tx, Sy)) \le f(\frac{1}{2}(d(x, Sy) + d(y, Tx))) - \varphi(f(d(x, Sy)), f(d(y, Tx)))$$

For all $x, y \in X$ with x and y comparable. Then we say T and S satisfy weakly C - contraction with respect to f and φ .

Definition 2.4. For two subsets *A*, *B* of *X*, we say that $A \leq_r B$ if, for each $a \in A$, there exists $b \in B$ such that $a \leq b$, and $A \leq B$ if each $a \in A$ and each $b \in B$ imply that $a \leq b$. A multi-valued mapping $T: X \to 2^X$ is said to be *r*-non-decreasing (*r*-non-increasing) if $x \leq y$ implies that $Tx \leq_r Ty$ ($Ty \leq_r Tx$) for all $x, y \in X$. *T* is said to be *r*-monotone if *T* is *r*-non-decreasing or *r*-non-increasing. The notion of non-decreasing (non-increasing) is similarly defined by writing \leq instead of the notation \leq_r

3. Main Result

In this section we established common fixed point theorems for multivalued mappings on quasi-ordered complete metric spaces. The idea of the present theorem3.1 originate from the study of ananalogous problem for single-valued mappings in [4] and [9], and multivalued mappings in [6], [7] and [10].

Theorem3.1. Let *X* be a quasi-ordered sequentially complete metric space and satisfy (H1). Suppose that the multivalued mappings *T* and *S* have UCAV and satisfy the weakly *C*-contraction with respect to *f* and φ , then *T* and *S* have a common fixed point. Further, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} \in Tx_{2n}$ and $x_{2n+2} \in Sx_{2n+1}$ converges to the common fixed point of *T* and *S*.

Proof: First we show that, if T or S has a fixed point it is a common fixed point of T and S. Indeed, let x be a fixed point of T then we have,

$$f(d(x, Sx)) \leq f(H_d(Tx, Sx))$$

$$\leq f(0.5(d(x, Sx) + d(x, Tx))) - \varphi(f(d(x, Sx)), f(d(x, Tx)))$$

$$= f(0.5d(x, Sx)) - \varphi(f(d(x, Sx), 0))$$

$$\leq f(d(x, Sx)) - \varphi(f(d(x, Sx), 0))$$

This implies that, $\varphi(f(d(x, Sx)), 0) = 0$ and hence f(d(x, Sx)) = 0 therefore d(x, Sx) = 0. Since x is AV, therefore there exist $y \in P_{Sx}(x)$ such that d(y, x) = 0 i.e, y = x. Thus $x \in Sx$. Let $x_0 \in X$, if $x_0 \in Tx_0$ the proof is finished. Otherwise, from the fact that Tx_0 has UCAV it follows there exists $x_1 \in Tx_0$ with $x_1 \neq x_0$ and $x_1 \ge x_0$ such that

$$d(x_0, x_1) = \inf_{x \in Tx_0} d(x, x_0) = d(Tx_0, x_0).$$

Again since Sx_1 has UCAV it follows there exist $x_2 \in Sx_1$ with $x_2 \neq x_1$ and $x_2 \ge x_1$ such that

$$d(x_1, x_2) = \inf_{x \in Sx_1} d(x, x_1) = d(Sx_1, x_1).$$

By induction and using UCAV, we can find in this way a sequence $\{x_n\}$ in X with $x_{n+1} \ge x_n$ such that $x_{2n+1} \in Tx_{2n}$ and

$$d(x_{2n+1}, x_{2n}) = d(Tx_{2n}, x_{2n})$$

and $x_{2n+2} \in Sx_{2n+1}$ with

$$d(x_{2n+2}, x_{2n+1}) = d(Sx_{2n+1}, x_{2n+1}).$$

On the other hand

$$d(Tx_{2n}, x_{2n}) \leq \sup_{x \in Sx_{2n-1}} d(Tx_{2n}, x)$$

$$\leq H_d(Tx_{2n}, Sx_{2n-1}).$$

Therefore

$$d(x_{2n+1}, x_{2n}) \le H_d(Tx_{2n}, Sx_{2n-1}).$$
(1)

Similarly we can show that

$$d(x_{2n+2}, x_{2n+1}) \le H_d(Sx_{2n+1}, Tx_{2n}).$$
(2)

Now we show that $\lim_{n\to\infty} d(x_{n+1}, x_n) = 0$. By using (2) and since f is non-decreasing, we have

$$f(d(x_{2n+1}, x_{2n+2})) \leq f(H_d(Tx_{2n}, Sx_{2n+1}))$$

$$\leq f(0.5(d(x_{2n}, Sx_{2n+1}) + d(x_{2n+1}, Tx_{2n}))) - \varphi(f(d(x_{2n}, Sx_{2n+1})), f(d(x_{2n+1}, Tx_{2n}))))$$

$$\leq f(0.5(d(x_{2n}, x_{2n+2})) - \varphi(f(d(x_{2n}, x_{2n+2})), 0)) \leq f(0.5d(x_{2n}, x_{2n+2})).$$
(3)

As f is a non-decreasing function, we get

$$d(x_{2n+1}, x_{2n+2}) \le 0.5d(x_{2n}, x_{2n+2}).$$
(3)

Since

$$d(x_{2n}, x_{2n+2}) \le d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2})$$

We have

$$d(x_{2n+1}, x_{2n+2}) \le d(x_{2n}, x_{2n+1}).$$
(4)

Similarly, by using (1) one can show that

$$d(x_{2n}, x_{2n+1}) \le 0.5 d(x_{2n-1}, x_{2n+1}).$$
(5)

Thus

$$d(x_{2n}, x_{2n+1}) \le d(x_{2n-1}, x_{2n}).$$
(6)

From (4) and (6), we have

$$d(x_n, x_{n+1}) \le d(x_{n-1}, x_n), \quad \forall n \in \mathbb{N}.$$
 (7)

So, by (7) we get that $\{d(x_n, x_{n+1}) : n \in N\}$ is a non-increasing sequence. Hence there is $r \ge 0$ such that

$$\lim_{n\to\infty}d(x_n,x_{n+1})=r$$

By (3) and (5) we have

$$d(x_{n}, x_{n+1}) \leq 0.5 d(x_{n-1}, x_{n+1})$$
$$\leq 0.5 \Big(d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) \Big).$$
(8)

Letting $n \rightarrow \infty$ and using (8), we get that

$$r \le \lim_{n \to \infty} 0.5d(x_{n-1}, x_{n+1}) \le 0.5(r+r).$$

Hence

$$\lim_{n\to\infty}d(x_{n-1},x_{n+1})=2r.$$

Using the continuity f, φ and (3), we get that

$$f(r) \le f(0.5(2r)) - \varphi(f(2r),0)),$$

which implies that $\varphi(f(2r), 0) = 0$ and hence r = 0.

Next we show that (x_n) is a Cauchy sequence in X. Since $\lim_{n \to \infty} f(d(x_{n-1}, x_{n+1})) = 0$, from assumption (iii) of φ there exists $0 < a < \frac{1}{2}$ and $n_0 \in N$ such that

$$\varphi(f((d(x_{n-1}, x_{n+1})), 0)) \ge af(d(x_{n-1}, x_{n+1})) \text{ for all } n \ge n_0$$

On the other hand, for any given $\epsilon > 0$, we choose $\delta > 0$ to be small enough such that $f(\delta) < \frac{a}{1-2a} f(\epsilon)$. Moreover, there exists n_1 such that $d(x_{n+1}, x_n) \le \delta$, for each $n \ge n_1$.

Now for any numbers $m > n \ge \max\{n_0, n_1\}$, from the inequality (1) and (2) we have

$$f(d(x_{n+1}, x_n)) \leq f(H_d(Tx_n, Sx_{n-1})) \quad (\text{ or } f(H_d(Tx_{n-1}, Sx_n)))$$

$$\leq f(0.5(d(x_n, Sx_{n-1}) + d(x_{n-1}, Tx_n)))$$

$$-\varphi(f(d(x_n, Sx_{n-1})), f(d(x_{n-1}, Tx_n)))$$

$$\leq f(0.5(d(x_{n-1}, x_{n+1})) - \varphi(0, f(d(x_{n-1}, x_{n+1})))$$

$$\leq f(d(x_{n-1}, x_{n+1})) - (1-a)f(d(x_{n-1}, x_{n+1}))$$

$$\leq af(d(x_{n-1}, x_{n+1}))$$

$$\leq a(f(d(x_{n-1}, x_n)) + f(d(x_n, x_{n+1}))).$$

Therefore

$$f(d(x_n, x_{n+1})) \leq (a/(1-a))f(d(x_{n-1}, x_n))$$

Set $\alpha = \frac{a}{1-a} < 1$. By repeating this procedure, for any k > n we obtain

$$f(d(x_{k}, x_{k-1})) \leq \alpha f(d(x_{k-1}, x_{k-2})) \leq \dots \leq a^{k-n} f(d(x_{n}, x_{n-1})).$$

Therefore, from the assumption of f we have,

$$f(d(x_{m}, x_{n})) \leq f(d(x_{m}, x_{m-1})) + f(d(x_{m-1}, x_{m-2})) + \dots + f(d(x_{n+1}, x_{n}))$$

$$\leq \alpha^{m-n} f(d(x_{n}, x_{n-1})) + \alpha^{m-n-1} f(d(x_{n}, x_{n-1})) + \dots + \alpha f((d(x_{n}, x_{n-1})))$$

$$= (\alpha - \alpha^{m-n+1} / (1-\alpha)) f(d(x_{n}, x_{n-1}))$$

$$< (\alpha / (1-\alpha)) f(d(x_{n}, x_{n-1})) < (\alpha / (1-\alpha)) f(\delta)$$

$$= (a/(1-2a))f(\delta) < f(\epsilon).$$

This shows that $d(x_m, x_n) < \epsilon$, so $\{x_n\}$ is a $\leq -$ non-decreasing Cauchy sequence. Since *X* is a sequentially complete, there exists $x^* \in X$ such that $\lim_{n \to \infty} x_n = x^*$. Finally, we prove that x^* is a common fixed point of *T* and *S*. For every $n \in N$, (*H*1) guarantees that x_n is comparable to x^* , so for $n \in N$ we have,

(9)
$$f(d(x_{2n+2}, Sx^{*})) \leq f(\sup_{x \in Tx_{2n+1}} d(x, Sx^{*})) \leq f(H_{d}(Tx_{2n+1}, Sx^{*}))$$
$$\leq f(0.5(d(x_{2n+1}, Sx^{*}) + d(x^{*}, Tx_{2n+1}))) - \varphi(f(d(x_{2n+1}, Sx^{*})), f(d(x^{*}, Tx_{2n+1}))))$$
$$\leq f(0.5(d(x_{2n+1}, Sx^{*}) + d(x^{*}, x_{2n+2}))) - \varphi(f(d(x_{2n+1}, Sx^{*})), f(d(x^{*}, x_{2n+2}))), f(d(x^{*}, x_{2n+2}))), f(d(x^{*}, x_{2n+2}))),$$

Since φ is l.s.c, letting $n \to \infty$ in (9) we get

$$f(d(x^*, Sx^*)) \le f(0.5d(x^*, Sx^*)) - \varphi(f(d(x^*, Sx^*)), 0).$$

Which implies $\varphi(f(d(x^*, Sx^*)), 0) = 0$ and hence $d(x^*, Sx^*) = 0$. Since Sx^* is AV, there exist $y \in P_{Sx^*}$, such that $d(y, x^*) = 0$ i.e, $y = x^*$, therefore $x^* \in Sx^*$, i.e x^* is a fixed point of S, and so it is a common fixed point. This completes the proof.

Similar to the proof of Theorem 3.1 we have the following Theorem.

Theorem.3.2. Let *X* be a sequentially complete quasi-ordered metric space and satisfy (H1). Suppose that $T, S : X \to 2^X$ be two mappings that satisfy weakly *C* -contraction with respect to *f* and φ , and have LCAV. Then *T* and *S* have a common fixed point. Further, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} \in Tx_{2n}$ and $x_{2n+2} \in Sx_{2n+1}$ converges to the common fixed point of *T* and *S*.

Theorem3.3. Let *X* be an totally ordered sequentially complete metric space and satisfy (H1) and the following

(H2) $x \le y \le z$ implies that $d(z, x) \ge d(y, x)$ for all $x, y, z \in X$.

Suppose that *T* and *S* satisfy all conditions given in Theorem 3.1 (resp. in Theorem 3.2), then *T*, *S* have a unique common fixed point $x \in X$ and the iterated convergence of Theorem 3.1 holds.

Proof: Theorem 3.1 (resp. Theorem 3.2) ensures existence of common fixed points. To prove the uniqueness, let both x and y be common fixed point of T and S. Since (X, \leq) is a totally ordered space, we have either x > y or y > x. Without loss of generality, we assume that the former is true. If T has UCAV, we have $x^* \in Tx$, with $x \leq x^*$ and $d(x^*, y) = d(Tx, y)$. From our assumption it follows that $d(x^*, y) \ge d(x, y)$. On the other

hand, $x \in Tx$ implies that $d(x^*, y) \le d(x, y)$. Hence, $d(x^*, y) = d(x, y) = d(Tx, y)$. If $x \ne y$, then d(x, y) > 0. Thus

$$d(x, y) = d(Tx, y) \le H_d(Tx, Sy).$$
(10)

If *T* has LCAV, so does *S*, we have $y^* \in Sy$ with $y^* \leq y$ and $d(y^*, x) = d(Sy, x)$. From (H2) it follows that $d(y^*, x) \geq d(x, y)$. On the other hand, $y \in Sy$ implies that $d(y^*, x) \leq d(x, y)$. Hence, $d(y^*, x) = d(x, y) = d(x, Sy)$. At all events, (10) holds if $x \neq y$.

$$f(d(x, y)) \le f(H_d(Tx, Sy)) \le f(\frac{1}{2}(d(y, Tx) + d(x, Sy))) - \varphi(d(y, Tx), d(x, Sy)) \\ = f(d(x, y)) - \varphi(d(x, y), d(x, y)) < f(d(x, y))$$

This is a contradiction. Consequently, the inequality x < y is not true. By the same methods we can verify that y < x is also not true. Thus x = y.

Theorem.3.3. Let *X* be a sequentially complete quasi-ordered metric space and satisfy (H1). Suppose that $T, S : X \to 2^{x}$ be two mappings have AV, are non-decreasing, and weak *C*-contraction with respect to *f* and φ . If there exists $x_0 \in X$ such that $\{x_0\} \le Sx_0 \le Tx_0$. Then *T* and *S* have a common fixed point. Further, the iterated convergence of Theorem 3.1 holds.

Proof: let $x_0 \in X$, if $x_0 \in Sx_0$ then is a common fixed point of *T* and *S* thus the proof is complete. Otherwise, since *Sx* has AV, there exist $x_1 \in Sx_0$ with $x_1 \ge x_0$ and $d(x_0, x_1) = d(Sx_0, x_0)$. Since $x \ge x_1$ for all $x \in Tx_1$. If $x_1 \in Tx_1$, the proof is finished, otherwise, by means of *Tx* is AV, there exist $x_2 \in Tx_1$ with $x_2 \ge x_1$ and $d(x_1, x_2) = d(Tx_1, x_1)$. Inductively, we can construct a sequence x_n in *X* as $x_n \ne x_{n-1}$ and $x_n \ge x_{n-1}$ such that $x_{2n+1} \in T_{2n}$, $x_{2n+2} \in Sx_{2n+1}$ and (1), (2) hold. Now the rest of the proof is the same as theorem 3.1.

References

- [1] S. Banach, "Surles op erations dans les ensembles abstraits et leurs application aux equationsint egrales", Fund.Math. 3(1922), 133-181 (French).
- [2] S. K. Chatterjea, "Fixed point theorems", C. R .Acad. Bulgare Sci. 25,727-730 (1972).

- [3] B. S. Choudhury, "Unique fixed point theorem for weakly C-contractive mappings", Kathmandu University Journal of Science, Engineering and Technology 5, 6-13 (2009).
- [4] A. Choudhury, T. Som, "Few common fixed point results for weakly commuting mappings", Journal of Mathematics and Computer Science. 6 (2013), 27-35.
- [5] J. Harjani, Lopez, B. Sadarangani, "Fixed point theorems for weakly C-contractive mappings in ordered metric spaces", Computers and Mathematics with Applications 61 (2011) 790-796.
- [6] S. H. Hong, "Fixed points of multivalued operators in ordered metric spaces with applications", Nonlinear Anal. 72 (2010) 3929-3942.
- [7] S. H. Hong, D. Guan, L. Wang, "Hybrid fixed points of multivalued operators in metric spaces with applications", Nonlinear Anal. 70 (2009) 4106-4117.
- [8] J. J. Nieto, R. Rodrguez-Lopez, "Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations", Order. 22 (2005), 223-239.
- [9] W. Shatanawi, "Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces", Mathematical and Computer Modelling. 54 (2011) 2816-2826.
- [10] Z. Qiu, "Existence and uniqueness of common fixed points for two multivalued operators in ordered metric spaces", Computers and Mathematics with Applications 63, (2012), 1279-1286.