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Abstract
The goal of this paper is to present some common fixed point theorems for multivalued

weakly C-contractive mappings in quasi-ordered complete metric space. These results
generalizes the existing fixed point results in the literature.
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1. Introduction

Fixed point theory for contractive mapping first studied by Banach [1]. He proved that
every contraction defined on a complete metric space has a unique fixed point. Since then
the fixed point theory for single valued and multivalued mappings in metric space has
been rapidly developed. In 1972, Chatterjea [2] introduce the concept of C -contraction
as follows.

Definition1.1. A mapping T : X — X where (X, d) is a metric space is said to be a C -
contraction if there exists k €(0,0.5) such that for all x,y e X the following inequality
holds:

d(Tx, Ty) <k((d(x,Ty)+d(y,Tx)).
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Chatterjea [2] proved the following theorem:
Theorem1.1. Every C-contraction in a complete metric space has a unique fixed point.

Choudhury [3] introduce the concept of weakly C -contractive mapping as a
generalization of C -contractive mapping and prove that every weakly C -contractive
mapping in a complete metric space has a unique fixed point.

Definition1.2. Let (X, d) be a metric space. A mapping T: X — X, is said to be weakly
C-contractive if for all x,y e X,

d(Tx,Ty) < % (d(x,Ty) +d(y, Tx)) —(d(x, Ty), d(y, TX)),

Where ¢:[0,0)*> —[0,0) is a continuous function such that ¢(x,y) =0 if and only
x=y=0.

Harjani et al. [5] announced some fixed point results for weakly C -contractive mappings
in a complete metric space endowed with a partial order. Meanwhile, Shatanawi [9]
proved some fixed point theorems for a nonlinear weakly C -contraction type mapping in
metric and ordered metric spaces. In this paper, we introduce the concept of multivalued
weakly C -contractive mappings in quasi-ordered partial metric spaces and we prove
some existence theorems of common fixed point for such mappings in the context of
complete quasi-partial metric spaces under certain conditions.

2. Preliminaries

Let (X,d,<) be a quasi-ordered metric space, with an order < as a quasi-order (that is, a
reflexive and transitive relation) and a metric d. Assume that X having the following
properties which appears in [8]:

(H1):if {x,} is a non-decreasing (resp. non-increasing) sequence in X such thatx, —x ,
then x <x (resp.x, >x ) forall neN.

Let 2* denote the family consisting of all nonempty subsets of X we define the
Hausdorff-Pseude metric in H, : 2 x2* —R_w{x} given by

H, (C, D) =max{supd(a, D),supd(C,b)},

aeC beD

where d(a, D) =inf d(a,b) , d(C,b)=infd(a,b).

Definition2.1. Let (X,d,<) be a quasi-ordered metric space. We say that X is
sequentially complete if every Cauchy sequence whose consecutive terms are comparable
in X converges.

Definition2.2. [6,7] Let X be a quasi-ordered metric space. A subset D < X is said to
be approximative if the multivalued mapping
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P,(x)={yeD:d(x,y)=d(D,x)}, VxeX
has nonempty values.

The multivalued mapping T : X —2* is said to have approximative values, AV for short,
if Tx is approximative for each x e X.

The multivalued mapping T : X — 2% is said to have comparable approximative values,
CAV for short, if T has approximative values and, for eachz € X, there exists y e P (x)
such that y is comparabletoz.

The multivalued mapping T : X — 2% is said to haveu pper comparable approximative
values, UCAYV, for short (resp: lower comparable approximative values, LCAV for short)
iIf T has approximative values and, for eachz e X , there exists y € P,(x) such that y >z
(resp:y<z ). Itis clear that T has approximative values if it has compact values. In
addition, if T is single-valued, Then UCAV (LCAV) means that Tx>x (Tx<x) for

xe X.

Definition2.3. The multivalued mappings T,S are said to have a common fixed point if
there is xe X such that xeTx and x € Sx.

In what follows, we give an analogy of the contraction which called multivalued C -
weakly contraction mapping will play an important role in this sequel. To this end, we
first introduce the following function.

Letae(0,],R =[0,a) . let f: M >N satisfy,
(i) f(0)=0 and f(t) >0 foreach te(0,a)
(it) f is non-decreasing on R;
(iti) f is continuous
(iv) f(t+s)<f(t)+f(s) for siteR: .
For examples of such function f we refer to (6).
Define
§[0,a)={f | f satisfies (i)-(iv) above}.
Letae(0,] , ¢:R: xR —R" satisfy
(i) o(t,s)=0 ifand only ifs=t=0 .
(i) ¢ is continuous.

(iii) For any sequence {r.} with limr, =0 , there exist ae (O,E) and n, e N such that
o(r.,0)>(1=a)r, (org(0,r)>(1—&)F ) for each n>n,. Define
®([0,a)x[0,a)) ={p: ¢ satisfies(i)-(iii)above}.
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Definition2.3. Let X be a metric space andd =sup{d(x,y):x,ye X} .Set a=d if d=o0
and a>d if d <. Suppose the multivalued mappings T,S: X —2*, f eg[0,a) and
@ e ([0, f (a—0))x[0, f (a—0))) satisfy

F(H(Tx,Sy)) < f (% (d(x,Sy) +d(y, Tx))) —(f (d(x,Sy)), f (d(y,Tx)))

For all x,ye X with x and y comparable. Thenwe say T and S satisfy weakly C -
contraction with respectto f and ¢.

Definition2.4. For two subsets A , B of X, we say that A<, B if, for eachae A, there
exists be B such that a<b, and A<B ifeach ac A and each be B imply thata<b . A
multi-valued mapping T : X — 2% is said to be r-non-decreasing (r -non-increasing) if

x <yimplies that Tx< Ty (Ty<, Tx) forallx,ye X . Tis said to be r -monotone if T is
r -non-decreasing or r-non-increasing. The notion of non-decreasing (non-increasing) is
similarly defined by writing < instead of the notation <,

3. Main Result

In this section we established common fixed point theorems for multivalued mappings on
quasi-ordered complete metric spaces. The idea of the present theorem3.1 originate from
the study of ananalogous problem for single-valued mappings in [4] and [9], and
multivalued mappings in [6], [7] and [10].

Theorem3.1. Let X be a quasi-ordered sequentially complete metric space and satisfy
(H1). Suppose that the multivalued mappings T and S have UCAV and satisfy the
weakly C -contraction with respectto f and ¢, then T and S have a common fixed
point. Further, for each x, € X , the iterated sequence{x.} with x,, , €Tx,, and

Xonso € SXon,, CONVErges to the common fixed pointof Tand S .

Proof: First we show that, if T or S has a fixed point it is a common fixed point of T
and S. Indeed, let x be a fixed point of T then we have,

£ (d(x,SX)) < f (H, (Tx, SX))
< £(0.5(d (%, SX) +d (%, TX))) = f (d(x, X)), T (d(x,TX)))
= £(0.5d(x, SX)) — @( f (d(x, SX),0)
< £ (d(x, X)) = @( f (d(x, SX),0)

This implies that, ¢(f(d(x,Sx)),0)=0 and hence f (d(x,Sx)) =0 therefored(x,Sx) =0 .
Since x is AV, therefore there exist y e P, (x) such that d(y,x)=0 i.e, y=x. Thus
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X e SX. Let x, € X, if x, €Tx, the proof is finished. Otherwise, from the fact that Tx, has
UCAV it follows there exists x, e Tx, with x, #x, and x, > x, such that

d(%,%) = Inf d(x,%) =d(TX;,X,).
Again since Sx, has UCAYV it follows there exist x, e Sx, with x, = x, and x, > x, such
that

d(x,%,) = Inf d(x,%) =d(Sx, x,).
By induction and using UCAV, we can find in this way a sequence {x.,} in X with

X, =X suchthat x, ,eTx, and

n+1 2N+

d (X2n+1’ in) =d (TXZn ' in)

and Xx,,,, € Sx,,,, With

d (X2n+27 X2n+1) = d (SX2n+l’ X2n+1)'

On the other hand

d(TX,,, X,,) < sup d(Tx,,, X)
XeSXon 1
< Hd (TXZn ! SXZn—l)'
Therefore
d (X2n+l' X2n) < Hd (TXZn ' SXZn—l)' (1)
Similarly we can show that
d (X2n+2’ X2n+l) < Hd (SX2n+l’TX2n)' (2)

Now we show thatlimd(x_,,,x.)=0. By using (2) and since f is non-decreasing, we

have

( (d (X2n+1’ X2n+2)) < f (Hd (T lSXZ +1)
< £(0.5(d (X, SXa10) + 8 (X100 %)) =2 (A0 S50,0)), £ (000100 T,)))

< f (05(d (X2n’ X2n+2)) _¢(f (d (X2n’ X2n+2))' O) < f (05d (x2n' X2n+2))' (3)
As f isanon-decreasing function, we get

d (X2n+l’ X2n+2) < 05d (X2n ! X2n+2)' (3)
Since
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d (XZn ! X2n+2) < d (X2n’ X2n+l) + d (X2n+l’ X2n+2)'

We have

d (X2n+l' X2n+2) S d (X2n ' X2n+l)' (4)
Similarly, by using (1) one can show that

d (X2n 1 X2n+1) S 05d (X2n—l’ X2n+1)' (5)
Thus

d (X2n ' X2n+1) S d (X2n—l’ X2n)' (6)
From (4) and (6), we have

d(X,,X,,.) <d(X,;, %), ¥vneN. (7)

So, by (7) we get that {d(x,, x,,,) : n € N} is a non-increasing sequence. Hence there is
r>0 such that
rIwi_r)pod (X)) Xpuy) =T
By (3) and (5) we have
d(x,,X,,,) <0.5d(X, 1, X,.,)

<05(d (%, %) +d(%, %.).  (8)
Letting n — o and using (8), we get that

r<lim0.5d(x, ;,X,,,) <0.5(r +r).

nN—o0

Hence
limd(x,,,X,,,)=2r.
n—oo

Using the continuity f , ¢ and (3), we get that

f(r)< f(05(2r))-o(f(2r),0),
which implies that gp(f (2r),0) =0 and hence r=0.

Next we show that(x,) isa Cauchy sequence in X . Since lim f (d (X, 1 XM)) =0, from

assumption (iii) of ¢ there exists 0< a<% and n, e N such that

o(f([d(x,.x.)).0)=af (d(x_.x.,)) for all nxn,
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On the other hand, for any given ¢ >0, we choose § >0 to be small enough such that

a
1-2a

f(5) < f (¢) . Moreover, there exists n, such thatd(x,,,,x,) < , for each n>n,.

Now for any numbers m > n > max{n,,n}, from the inequality (1) and (2) we have

fd(x,.,,x)) < F(H,(Tx,S%) ( or f(H,(Tx,_,5x))
< £(0.5(d(x,,Sx,,)+d(x,,,Tx,)))
(£ (dx,,9,2), F(d0x,1,T))
< 1(05(d (x4 %)) — (0, T (d (%,.1,%,.)))
< f(d(x, %)) -A-a)f(d(x,. X))
<af (d(x,_,,x..,))
<a(f(d(x_.x))+ f(d(x,.x.)).

Therefore
fd(x,.x.)) <(a/a-a)f(dx,_.x)).

Set a= ﬁ <1. By repeating this procedure, for any k >n we obtain

fFd(x. %) <af(dx %)) <..<a"f(d(x,x_))-
Therefore, from the assumption of f we have,

fd(x,.%)) < F(d(x,,x, )+ F(d(x, %, )+t F(d(x,.0.x,))
<™ f(d(x,,x,,))+a™ " (d(x,, X))+
+af((d(x,x.,))
=(@—-a"" (1-a)) f(d(x,,x,))
<(a!l-a)f(d(x,,x,)) < (a/1-a))f(5)

=(al/(1—-2a))f (o) < f(e).
This shows that d(x,,X,) <e, so {x.} isa <-non-decreasing Cauchy sequence. Since X

is a sequentially complete, there exists x” e X such that limx_ = x". Finally, we prove that

nN—oo

X" is a common fixed point of Tand S. Foreveryne N, (H1) guarantees that x, is
comparable tox” , so for ne N we have,
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F(d (X2, SX)) < F(sUp d(x, X)) < f(Hy (TXyp.1, X))

x€Mhony

< £(0.5(d (X0, SX) + 0 (X, TX.0))) = @(f (d (X0, X)), F(A (X, TXp1,0)))

( ) S f (05(d (X2n+l’ SX*) + d (X*' X2n+2))) - (0( f (d (X2n+1' SX*))' f (d (X*’ X2n+2)))l
9

Since ¢ is l.s.c, letting n—oo in (9) we get

f(d(x", %) < F(0.5d(x", %)) —( f (d(X", 5X)),0).

Which implies ¢(f (d(x",Sx")),0)=0 and hence d(x",Sx") =0. Since Sx™ is AV, there
exist y e P_..such that d(y,x)=0 i.e, y=x", therefore x e Sx", i.e X is afixed point
of S, and so it is a common fixed point. This completes the proof.

Similar to the proof of Theorem 3.1 we have the following Theorem.

Theorem.3.2. Let X be a sequentially complete quasi-ordered metric space and satisfy
(H1). Suppose that T,S: X — 2" be two mappings that satisfy weakly C -contraction
with respect to f andg, and have LCAV. Then T and S have a common fixed point.
Further, for each x, € X, the iterated sequence {x,} with x,, ., €Tx,, and x,,., € SX,,,
converges to the common fixed pointof Tand S .

Theorem3.3. Let X be an totally ordered sequentially complete metric space and satisfy
(H1) and the following

(H2) x<y<z implies that d(z,x)>d(y,x) forall x,y,ze X.

Suppose that T and S satisfy all conditions given in Theorem 3.1 (resp. in Theorem
3.2), thenT, Shave a unique common fixed point x € X and the iterated convergence of
Theorem 3.1 holds.

Proof: Theorem 3.1 (resp. Theorem 3.2) ensures existence of common fixed points. To
prove the uniqueness, let both x and y be common fixed point of Tand S. Since (X,<)

is a totally ordered space, we have either x>y ory>x . Without loss of generality, we

assume that the former is true. If T has UCAV, we have X" e Tx, with x < x and
d(x",y)=d(Tx,y). From our assumption it follows that d(x",y) >d(x, y). On the other
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hand, x e Tx implies that d(x",y) <d(x,y). Hence, d(x,y)=d(x,y) =d(Tx,y). If x=vy,
thend(x,y)>0. Thus

d(x,y)=d(Tx,y) <H,(Tx,Sy).  (10)

If T has LCAV, so does S, we havey €Sy withy" <y andd(y",x) =d(Sy, x). From (H2)
it follows that d(y",x)>d(x,y) . On the other hand, y e Sy implies thatd(y",x) <d(x,y).
Hence, d(y",x)=d(x,y) =d(x,Sy) . At all events, (10) holds if x=vy .

Fd(xy) < F(H,(Tx,Sy)) <f (% (d(y, Tx)+d(x, Sy))) —(d(y,Tx),d(x, Sy))
= f(d(x y))—e(d(x,y),d(x,y)) < f(d(x,y))

This is a contradiction. Consequently, the inequality x <y is not true. By the same
methods we can verify that y < x is also not true. Thus x=y.

Theorem.3.3. Let X be a sequentially complete quasi-ordered metric space and satisfy
(H1). Suppose that T,S: X — 2" be two mappings have AV, are non-decreasing, and
weak C -contraction with respect to f and ¢. If there exists x, € X such that

{X,}<Sx, <Tx,. Then T and S have a common fixed point. Further, the iterated
convergence of Theorem 3.1 holds.

Proof: letx, € X, iIf x, € Sx, then is a common fixed point of T and S thus the proof is
complete. Otherwise, since Sx has AV, there exist x, e Sx, with x, > x, and

d(X,, %) =d(Sx,,%,). Since x>x, forall xeTx,. Ifx eTx, the proof is finished,
otherwise, by means of Tx is AV, there exist x, e Tx, with x, >x andd(x,,x,) =d(Tx,, x) .
Inductively, we can construct a sequence x, in X as x, =X, and x, >x,, such that

, € SX,,., @and (1), (2) hold. Now the rest of the proof is the same as theorem

Xoni1 € Top s X

2N+ 2n+

3.1.
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