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Abstract 
 

In this paper we examine -method for solving fractional Possion differential equations for(0 ≤ θ ≤ 1). 

Consistency, stability and convergence analysis of the method is discussed. At the end, numerical 

examples have been presented. The obtained results reveal that the proposed technique is very effective, 

convenient and quite accurate to such considered problems.  
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1. Introduction 

In the recent years, the theory of fractional calculus has obtained considerable popularity and 
importance as generalizations of integer-order partial differential evolution equations. Many natural 
phenomena can be present by fractional differential equations. Many authors in different fields such as 
chemical physics, fluid flows, electrical networks, viscoelasticity, try to modeling of these phenomena by 
fractional differential equations.  
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Fractional calculus applied to model many meaningful things, such as fractional differential equation can 

model price volatility in finance ([4],[13]), model fast spreading of pollutants in hydrology ([15]), model 

the particle motions in a heterogeneous environment and long particle jumps of the anomalous 

diffusion in physics ([1],[5],[9]). The most common hydrologic and physics application of fractional 

calculus is the generation of fractional Brownian motion as a representation of aquifer material with 

long-range correlation structure ([2],[11]). Other exact description of the applications of engineering, 

mechanics and mathematics et al., the literature is made to ([6],[12],[16],[19]). Many cases of the real 

physical processes could be modeled in a reliable manner using fractional-order differential equations 

([18]). 

Most fractional differential equations do not have exact analytic solutions, so approximation and 

numerical techniques must be used. 

Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle 
plume spreads at a rate inconsistent with the classical Brownian motion model. When a fractional 
derivative replaces the second derivative in a diffusion or dispersion model, it leads to enhanced 
diffusion.  The fractional Poisson equation is often encountered in heat and mass transfer theory, fluid 
mechanics, elasticity, electrostatics and other areas of mechanics and physics. 
In this paper, we develop the basic theory of numerical solution for the  fractional poission differential 

equation  

∇αu x, y =
∂αu x, y 

∂xα
+
∂αu(x, y)

∂yα
= f x, y ,                                                           (1.1) 

on a finite domain  0,1 ×  0,1 . Here, we assume that 1 ≤ α ≤ 2  as the fractional order of the 

derivatives. The function f(x,y) is a known function.  

Initial conditions are u(x; 0) = 0 , u(0; y) = 0  and Dirichlet boundary conditions are as follows:  

                     u(1, y) = g(y)       and       u(x, 1) = h(x). 

Published papers on the numerical solution of fractional partial differential equations are scarce. The 

theta-method is generalization of implicit , explicit and Crank-Nicholson methods. 

2. Preliminaries 

For implementation of this method we need to the following definitions.(see [12],[16]) 

Definition 2.1. (Riemann-Liouville Fractional derivative) If  f  be a real function and has continues 

derivatives of integer order n, then 

Dx
α f x =

dn f x 

dxn
=

1

Γ n − α 
.

dn

dxn
 

f t 

 x − t α+1−n
dt,

∞

0

                                             (2.1) 

is Riemann-Liouville fractional derivative of order  that n − 1 < α ≤ n. 
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Definition 2.2. (Shifted Grunwald formula) For 1 < α ≤ 2 shifted Grunwald formula defines: 

dn f

dxn
= lim

M→∞

1

hα
 gα,k . f x −  k − 1 h ,

M

k=0

                                                                          (2.2) 

such that shifted Grunwald estimates for fractional derivative defines : 

dn f

dxn
=

1

hα
 gα,k . f x −  k − 1 h + O hα ,

M

k=0

                                                                 (2.3) 

And M is a positive integers and h =
xR−xL

M
,  

 Moreover, normalized Grunwald Weights are defined by: 

gα,k = (−1)k .
Γ(α + 1)

Γ k + 1 Γ(α − k + 1)
    , k = 0,1,2,…                                                    (2.4) 

Definition 2.3. (Taylor expansion of fractional order) If f be a continuous function that for any positive 

integer k and any 1 < α ≤ 2  has fractional derivative of order kα then fractional Taylor expansion is as 

follows: 

f x + h =  
hkα

Γ 1 + kα 
. f  kα  x ,

∞

k=0

                                                                                    (2.5) 

such that      f x + h = Eα h
αDx

α f x ,    that     Eα(x) =  
xk

Γ 1+kα 
,∞

k=0     is Mittag-Leffler function. 

3. Formulation of problem by  -method 

Here, we assume h = ∆x  for x-axis and k = ∆y  for y-axis as grid size therefore we have: 

 
xi = ih
yj = jk

 , i = 1,2,… , M
, j = 1,2,… , K

 

Now, if  Ui,j = U(xi , tj) represent the numerical approximation solution with - method, we have: 

θδα,xUi,j+1 +  1 − θ δα,xUi,j + θ′δα,yUi+1,j + (1 − θ′)δα,yUi,j = fi,j    ,                     (3.1) 

such that we define 

δα,xUi,j =
1

 ∆x α
 gα,s . Ui−s+1,j

i+1

s=0

   and δα,y Ui,j =
1

 ∆y α
 gα,t . Ui,j−t+1

i+1

t=0

  , 

In other words, we can rewrite equation (3.1) as follows: 
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1

hα
 θ gα,p . Ui−p+1,j+1

i+1

p=0

+  1 − θ  gα,q . Ui−q+1,j

i+1

q=0

 

+
1

kα
 θ′ gα,s . Ui+1,j−s+1

i+1

s=0

+  1 − θ′  gα,z . Ui,j−z+1

i+1

z=0

 = fi,j , (3.2) 

In general case for (0 < 𝜃, 𝜃′ ≤ 1) from (3.2) by rearraging and simplifying we have: 

Ui+1,j+1 =
1

E
 fi,j − A− B − C − D ,                                                         (4.2)      

where: 

A =
θ

hα
 gα,p . Ui−p+1,j+1

i+1

p=1

 ,          B =  
 1 − θ 

hα
 gα,q . Ui−q+1,j

i+1

q=0

 , 

 

C =
θ′

kα
 gα,s . Ui+1,j−s+1

i+1

s=1

,            D =
 1 − θ′ 

kα
 gα,z . Ui,j−z+1

i+1

z=0

, 

 

and                     E =
θ

hα
+
θ′

kα
, 

In special case, for    θ = θ′ = 0  , h=k and M=N we have: 

1

hα
  gα,q . Ui−q+1,j

i+1

q=0

+ gα,z . Ui,j−z+1

i+1

z=0

 = fi,j ,                            (3.3) 

4. Analysis of Stability, Consistency and Convergence 

If U be an approximated solution and u be exact solution and Fi,j U = 0  represent approximated 

difference equation of  FPDE at mesh point (xi , yj). By substitution U with u value Ti,j = Fi,j u  

represented local truncation error (LTE) at mesh point (xi , yj). 

Theorem 4.1. LTE for finite differences method (3.3) is: 

Ti,j = hα   gα,s .
(1 − s)2α

 2α !

∞

s=0

  
∂2αu

∂x2α
+
∂2αu

∂y2α
 

i,j

+ O(h2α) ,           (4.1) 
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Proof. If U be an approximated solution and u be exact solution and Fi,j U = 0  represent 

approximated difference equation of  FPDE at mesh point (xi , yj). By substitution U with u value 

Ti,j = Fi,j u  represented local truncation error (LTE) at mesh point (xi , yj). 

From (3.3) we have: 

 

Ti,j =
1

hα
  gα,q . Ui−q+1,j

i+1

q=0

+ gα,z . Ui,j−z+1

i+1

z=0

 − fi,j  ,                            (4.2)                          

 

and by the fractional Taylor’s expansion: 

 

Ti,j =
1

hα
  gα,q .  Ui,j +

  1 − q h α

α!
 
∂αU

∂xα
 

i,j
+
  1 − q h 2α

 2α !
 
∂2αU

∂x2α 
i,j

+⋯ 

i+1

q=0

  

+
1

hα
  gα,z .  Ui,j +

  1 − z h α

α!
 
∂αU

∂yα
 

i,j

+
  1 − z h 2α

 2α !
 
∂2αU

∂y2α 
i,j

+⋯ 

i+1

z=0

 − fi,j 

(4.3) 

From (see [8]) :  

 gα,k = 0,

∞

k=0

                                                                                                                           (4.4) 

and also we can prove that: 

 gα,k(1 − k)α = α! ,

∞

k=0

                                                                                                     (4.5) 

 

By considering (4.3) , (4.4) and (4.5 we obtain: 

 

Ti,j = (∇αU − f)i,j + hα   gα,s .
(1 − s)2α

 2α !

∞

s=0

  
∂2αu

∂x2α
+
∂2αu

∂y2α
 

i,j

+ O(h2α) ,           (4.6) 
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We know : 

(∇αU − f)i,j = 0, 

 because u is exact solution of equation (1.1).  

Therefore, for LTE we conclude that 

Ti,j = hα   gα,s .
(1 − s)2α

 2α !

∞

s=0

  
∂2αu

∂x2α
+
∂2αu

∂y2α
 

i,j

+ O(h2α) ,                   ∎      

 

Theorem 4.2. The solution of equation (3.3) exists and is unique. 

Proof. (see [3])   ∎ 

 

Corollary 4.3. Theorem 4.1 shows that this method is consistent , because for h → 0  and  k → 0 , LTE 

tend to zero. 

 

Corollary 4.4. According to stability analysis and consistency analysis of this method, now from Lax-

Richtmyer’s equivalence theorem this method is convergence. 

 

 

5. Numercal Example 

Example 5.1. Consider equation (1.1) on S =  (x, t) 0 ≤ x ≤ 1,0 ≤ t ≤ 1   where: 

f x, y = Γ α + 1 (xα + yα) 

 with initial and boundary conditions: 

 
u x, 0 = 0 ,            u 0, y = 0,

u x, 1 = xα ,           u 1, y = yα    
  

We can show that exact solution is:    u x, y = (xy)α .   

The fractional Poisson absolute-error is identified by: 

Error =
1

(m − 1)2   (Ui,j − ui,j)
2

m−1

i,j=1
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The values of errors are shown in Table 1 for the above example problem for different values of  h,  

and θ.  Figures 1 – 4  having different values of h,  and θ verify the efficiency of the proposed scheme. 

 

Table 1: Error for different  values of  h,  and θ . 

 h=k =0.6 =0.7 =0.8 =0.9 

=1.25 
h=0.10 0.005734 0.006295 0.006818 0.007308 

h=0.05 0.001558 0.001737 0.001909 0.002074 

=1.50 
h=0.10 0.005094 0.005676 0.006193 0.006663 

h=0.05 0.001516 0.001589 0.001802 0.001984 

=1.75 
h=0.10 0.004715 0.005788 0.005298 0.006223 

h=0.05 0.001322 0.002498 0.002717 0.002414 

 

 

 

Figure 1: 3D meshed surface plot of numerical solutions for the Example 5.1 with =1.25, =0.6, h=0.025 
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Figure 2: 3D meshed surface plot of numerical solutions for the Example 5.1 with =1. 5, =0.9, h=0.025 

 

Figure 3: 3D meshed surface plot of numerical solutions for the Example 5.1 with =1.75, =0.7, 

h=0.0125 
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Figure 4: Comparison exact and approximated solution of Example 5.1 for =1.5, =0.7, h=0.025 at y=1. 

6. Conclusion 

In this paper we presented a numerical scheme for solving fractional Poisson equation. The method 

employed to find the numerical solutions of these equations is based on the Grunwald estimates for 

Rieman-Liouvile fractional derivative. The computational results are found to be in good agreement with 

the exact solutions. 
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