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Abstract 
In this work, firstly we introduce the new information divergence measure, characterize it and get the 

mathematical relations with other divergences. Further, we introduce new information inequalities on the 

new generalized f- divergence measure in terms of the well-known one parametric generalized 

divergence. Further, we obtain bounds of the new divergence and the Relative J- divergence as an 

application of new information inequalities by using Logarithmic power mean and Identric mean, together 

with numerical verification by taking two discrete probability distributions: Binomial and Poisson. 

Approximate relations of the new divergence and Relative J- divergence with Chi- square divergence, 

have been obtained respectively. 

 

Index terms: New divergence; New information inequalities; Parametric generalized divergence; 

Bounds; Logarithmic power mean; Identric mean; Binomial and Poisson distributions; Asymptotic 

approximation. 

Mathematics Subject Classification: Primary 94A17, Secondary 26D15. 

 

1. Introduction 

Divergence measures are basically measures of distance between two probability distributions or compare 

two probability distributions, i.e., divergence measures are directly propositional to the distance between 

two probability distributions. It means that any divergence measure must take its minimum value zero 

when probability distributions are equal and maximum when probability distributions are perpendicular to 

each other. So, any divergence measure must increase as probability distributions move apart. Depending 

on the nature of the problem, different divergence measures are suitable. So it is always desirable to 

develop a new divergence measure. 
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Divergence measures have been demonstrated very useful in a variety of disciplines such as economics 

and political science [34, 35], biology [26], analysis of contingency tables [14], approximation of 

probability distributions [8, 23], signal processing [21, 22], pattern recognition [2, 7, 20], color image 

segmentation [24], 3D image segmentation and word alignment [33], cost- sensitive classification for 

medical diagnosis [28], magnetic resonance image analysis [36] etc.  

Also we can use divergences in fuzzy mathematics as fuzzy directed divergences and fuzzy entropies [1, 

15, 19], which are very useful to find the amount of average ambiguity or difficulty in making a decision 

whether an element belongs to a set or not. Fuzzy information measures have recently found applications 

to fuzzy aircraft control, fuzzy traffic control, engineering, medicines, computer science, management and 

decision making etc.  

Without essential loss of insight, we have restricted ourselves to discrete probability distributions, so let 

 1 2 3

1

, , ..., : 0, 1 , 2
n

n n i i

i

P p p p p p p n


 
      

 
  be the set of all complete finite discrete 

probability distributions. The restriction here to discrete distributions is only for convenience, similar 

results hold for continuous distributions. If we take 0ip   for some 1, 2, 3,...,i n , then we have to 

suppose that  
0

0 0 0 0
0

f f 
 
 
 

. 

Some generalized functional information divergence measures had been introduced, characterized and 

applied in variety of fields, such as: Csiszar’s f - divergence [9, 10], Bregman’s f - divergence [5], 

Burbea- Rao’s f - divergence [6], Renyi’s like f - divergence [27] etc. Similarly, Jain and Saraswat [18] 

defined new generalized f - divergence measure, which is given by 

 
1

,
2

n
i i

f i

i i

p q
S P Q q f

q

 
  

 
 ,                                                                                                             (1.1) 

where  : 0,f R  (set of real no.) is real, continuous, and convex function and 

   1 2 3 1 2 3, , ..., , , , ...,n n nP p p p p Q q q q q   , where ip  and iq  are probability mass functions. 

The advantage of these generalized divergences is that many divergence measures can be obtained from 

these generalized f - measures by suitably defining the function f . Some resultant divergences by

 ,fS P Q , are as follows. 

a. If we take    1 logf t t t   in (1.1), we obtain 

     
1

1 1
, log ,

2 2 2

n
i i

f i i R

i i

p q
S P Q p q J P Q

q

 
   

 
 ,                                                            (1.2) 

where  ,RJ P Q is called the Relative J- divergence [12].  

b. If  we take          
1

1 1 , 0,1s

sf t s s t t s R


        in (1.1), we obtain 
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(1.3) 

where    , , 0,1s Q P s R   is one parametric generalized divergence measure, which is known as 

adjoint of the Unified Relative Jensen- Shannon and Arithmetic- Geometric divergence measure of type ‘

s ’  ,s P Q [32], s is called parameter and  ,P Q is the Triangular discrimination [11],  ,F Q P is 

adjoint of the Relative Jensen- Shannon divergence  ,F P Q [29],  ,G Q P is adjoint of the Relative 

Arithmetic- Geometric divergence  ,G P Q [31], and  2 ,P Q is the Chi- Square divergence (Pearson 

div. measure) [25]. 

Similarly, we can obtain many divergences by using linear convex functions. Since these divergences are 

not worthful in practice, therefore we can skip them.  

Now, there are two generalized means which are being used in this paper for calculations only. This are as 

follows. 
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.                                                                  (1.4) 
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.                                                                                           (1.5) 

Means (1.4) and (1.5) are called p - Logarithmic power mean and Identric mean respectively. 
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2. New information divergence measure, properties and relations 

In this section, we introduce new information divergence measure of class  ,fS P Q . Properties and 

relations of this new divergence with other divergences are also given. Let us start with definition of 

convex function. 

Convex function: A function  f x is said to be convex over an interval  ,a b if for every  1 2, ,x x a b

and 0 1  , we have        1 2 1 21 1f x x f x f x          , and said to be strictly convex if 

equality does not hold only if 0  or 1  . 

The following properties (Theorems 2.1, 2.2, and 2.3) of new generalized f - divergence  ,fS P Q  and 

their proofs can be seen in literature [18], so we omit the details. 

Theorem 2.1 (Positivity) Let :f R R  be a real, convex function and  , n nP Q   , then we have 

   , 1
f

S P Q f .                                                                                                                                  (2.1) 

If f is normalized, i.e.,  1 0f  then  , 0fS P Q  , and if f is strictly convex, equality holds in (2.1) if 

and only if 1, 2, 3,...i ip q i n   , i.e.,  , 0fS P Q  and  , 0fS P Q  if and only if P Q . 

Theorem 2.2 (Linearity property) If 1f and 2f are two convex functions such that 1 2F af bf   then

     
1 2

, , ,F f fS P Q a S P Q b S P Q  , where a andb are constants and  , n nP Q   . 

Theorem 2.3 (Relation with Csiszar’s f - divergence) Let :f R R  be a convex and normalized 

function, i.e.,   0 0f t t    and  1 0f  respectively then for  , n nP Q   , we have 

     , , ,
ff f C

S P Q C P Q E P Q  ,                                                                                                      (2.2) 

where  ,fS P Q is given by (1.1),  ,fC P Q is well known Csiszar’s f - divergence, given by 

 
1

,
n

i
f i

i i

p
C P Q q f

q

 
  

 
 ,                                                                                                                    (2.3) 

and 

   
1

,
f

n
i

C i i

i i

p
E P Q p q f

q

 
   
 

 .                                                                                                     (2.4)   

Now, let :f R R  be a mapping defined as 

 
1 1

log
2 2

t t
f t

t

  
  

 
,                                                                                                                        (2.5) 
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   
1 1 1

log , 1 0
2 2

t
f t f

t t

   
     

  
and 

 
 2

1
0

2 1
f t t R

t t


    


.                                                                                                          (2.6) 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. Now put

 f t  in (1.1), we get 

 
 

 *

1

3 3
, log ,

4 2

n
i i i i

f

i i i

p q p q
S P Q M P Q

p q

   
   

   
 .                                                          (2.7)  

We conclude the followings for new divergence  * ,M P Q . 

a. In view of theorem 2.1, we can say that  * , 0M P Q   and is convex in the pair of probability 

distribution  , n nP Q   . 

b.  * , 0M P Q  if and only if P Q or i ip q (attending its minimum value). 

c.      * * *, , ,M P Q M Q P M P Q  is non- symmetric divergence measure. 

Now, we derive two simple relations (Propositions 2.1 and 2.2) for  * ,M P Q . 

Proposition 2.1 Let  , n nP Q   , then we have the following new inter relation 

     * 1
, , ,

4
M P Q F Q P G Q P    ,                                                                                             (2.8) 

where  * ,M P Q is given by (2.7) and    , , ,F Q P G Q P together are given by (1.3). 

Proof: Since we know that AM GM , i.e., for , 0a b   

2

a b
ab


 .                                                                                                                                        (2.9) 

Now put 1a  and
1

b
t

 in (2.9) for 0t  , we get 

1/2
1

1
1 1 1 1 1 1

log log
2 2 2 2

t tt

t t t t t


    

       
   

.                                                                  (2.10) 

Now multiply (2.10) by
1

2

t 
for 0t  , we get 
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1 1 1 1
log log

2 2 4

t t t

t t

   
 

 
.                                                                                                             (2.11) 

Now put , 1,2,3,...,
2

i i

i

p q
t i n

q


  in (2.11), multiply by iq and then sum over all 1,2,3,...,i n , we get 

   1 1

3 3 3 2
log log

4 2 8

n n

i i i i i i i

i ii i i i

p q p q p q q

p q p q 

  


 

      
      
      

  , i.e., 

 
 

*

1

2 21
, log

4 2

n

i i i i

i i i

p q q q
M P Q

p q

 




  
   
   

 , i.e., 

 *

1 1

21
, log log

4 2 2

n n

i i i i i

i

i ii i i

q p q p q
M P Q q

p q q 

 
 



 
 
 
  , i.e., 

      * 1
, , ,

4
M P Q F Q P G Q P  . Hence prove the inequality (2.8). 

Proposition 2.2 Let  , n nP Q   , then we have the following new inter relation. 

     * 21
, , ,

2
RM P Q J Q P Q P    ,                                                                                   (2.12) 

where    * , , ,RM P Q J Q P and  2 ,Q P are given by (2.7), (1.2), and (1.3) respectively. 

Proof: Since we know the following by (2.2). 

     
1 1

, ,
2f

n n
i i i

f C i i i

i ii i

p q p
S P Q E P Q q f p q f

q q 

   
      

   
  .                                      (2.13) 

Now put  f t and  f t in (2.13), we get 

 
 

1 1

3 3 1
log log

4 2 2 2

n n
i i i i i i i

i i

i ii i i i

p q p q p q q
p q

p q p p 

    
    

   
  , i.e.,  

   
 *

1 1

1
, log

2 2

n n
i i ii i

i i

i ii i

q p qp q
M P Q p q

p p 

  
    

  
  , i.e, 

   
 *

1

1
, ,

2

n
i i i

R

i i

q p q
M P Q J Q P

p

 
  

 
 , i.e., 
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   
   

2

*

1

1
, ,

2

n
i i i i i

R

i i i

q p p q p
M P Q J Q P

p p

   
    
    

 , i.e., 

     * 21
, , ,

2
RM P Q J Q P Q P    , 

1 1

1
n n

i i

i i

p q
 

 
  

 
  . 

Hence prove the inequality (2.12). 

Remark: By taking together (2.8) and (2.12), we get 

         * 21 1
, , , , ,

4 2
RF Q P G Q P M P Q J Q P Q P         . 

 

3. New information inequalities 

In this section, we introduce two new information inequalities (Theorems 3.1 and 3.2) on  ,fS P Q ; one 

of them is in terms of one parametric divergence  ,s Q P . Such inequalities are for instance needed in 

order to calculate the relative efficiency of two divergences. 

Theorem 3.1 Let :f R R  be a real, convex function on  , R    with 0 1 ,        .  

If , nP Q and satisfying the assumption
1

0 1,2,3,...,
2 2

i i

i

p q
i n

q
 


       , then we have 

the following inequalities 

   , ,f fS P Q B   ,                                                                                                                      (3.1) 

where  ,fS P Q is given by (1.1) and 

 
       1 1

,f

f f
B

   
 

 

  



.                                                                                      (3.2) 

Proof: Since f is convex on  0, , therefore we can write the following for    , , 0,1R R     

by the definition of convex function 

       1 1f f f             .                                                                                (3.3) 

Now assume
x


 





for  ,x   in (3.3), we get 

 
       x f x f

f x
   

 

  



.                                                                                            (3.4) 
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Now put
2

i i

i

p q
x

q


 in (3.4), multiply by iq and then sum over all 1,2,...i n , we obtain the require 

inequality (3.1).  

Theorem 3.2 Let :f R R  be a real, convex and twice differentiable function on  , R    with

0 1 ,        . If there exists the real constants ,m M with m M and 

  2 sm t f t M   for all    , , 0,1t s R    . 

If , nP Q and satisfying the assumption
1

0 1,2,3,...,
2 2

i i

i

p q
i n

q
 


       , then we have 

           , , , , , ,
s ss f f sm B Q P B S P Q M B Q P                 ,                      (3.5) 

where  ,fS P Q ,  ,s Q P are given by (1.1) and (1.3) respectively, and 

 
       1 1

,f

f f
B

   
 

 

  



.                                                                                        (3.6) 

 
       1 1

,
s

s s
B

     
 

 

  



.                                                                                      (3.7) 

Proof: Let us define a function :mF R R  as 

           
1

1 1s

m sF t f t m s s t f t m t


        ,                                                                  (3.8) 

where      
1

1 1s

s t s s t


     ,  0,1s R  .                                                                           (3.9) 

Since  f t and  s t are both twice differentiable, therefore  mF t is twice differentiable as well, So  

      2 2 2 0s s s

mF t f t mt t t f t m         . 

Since      0 , 0,mF t t        , therefore  mF t is convex as well. 

Now we write inequality (3.1) for the function  mF t , we obtain 

   , ,
m mF FS P Q B   , i.e.,  

 
1

1 1

1 1
2 2

s
n n

i i i i
i i

i ii i

p q p q
q f m s s q

q q



 

    
       

   
   
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       

 
  

     
 

1 1 1 1 11 1
1

s s
f f

m s s
      

   

       
  

 
, i.e., 

       , , , ,
sf s fS P Q m Q P B mB       , i.e., 

       , , , ,
s s f fm B Q P B S P Q         .  

Hence prove the first inequality of (3.5). 

The second inequality of (3.5) obtains by a similar approach for the function 

       
1

1 1s

MF t M s s t f t


      . We omit the details. 

 

4. Bounds of the new information divergence measure 

In this section, we obtain bounds of the new information divergence measure  * ,M P Q in terms of one 

parametric generalized divergence measure  ,s Q P for different values of s , by using new inequalities 

(3.5) and means (1.4) and (1.5). 

Proposition 4 Let  ,s Q P  and  * ,M P Q  be defined as in (1.3) and (2.7) respectively. For

, nP Q , we have 

a. For 0,1s  and 0s  , we have 

 
       *1

, , , ,
2 1 s s fs

B Q P B M P Q    
 

    
 

 
   

1
, ,

2 1 s ss
B Q P  

 
   

.                                                                                           (4.1) 

b. For 1s   , we have 

 
       *1

, , , ,
2 1 s s fs

B Q P B M P Q    
 

    
 

 
   

1
, ,

2 1 s ss
B Q P  

 
   

,                                                                                           (4.2) 

where  ,fB   and  ,
s

B   are evaluated below by equations (4.4) and (4.5) respectively.  

Proof: Put  f t from (2.5) into (1.1), (3.6) and  s t from (3.9) into (3.7), together with considering 

mean (1.4), we get the followings respectively.  
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 
 

 *

1

3 3
, log ,

4 2

n
i i i i

f

i i i

p q p q
S P Q M P Q

p q

   
   

   
 .                                                          (4.3) 

 
       1 1

,f

f f
B

   
 

 

  



 

= 

     

 

1 1
1 1 log 1 1 log

2 2

2

 
   

 

 

   
       

   


.                                                           (4.4)

 

 
       1 1

,
s

s s
B

     
 

 

  



 

=  
     1 1 1 1 1

1

s s

s s
   

 


     
      

 

=  
   1 1

1

1

s s s s

s s
      

     

 

   
          

 

=          
1

1 21 , 1 , 1 , 0,1s ss s sL s L s R    


             .                                       (4.5) 

Now let us consider the function    
 

2 1

2 1

s

s
g t t f t

t t

  


, where  f t is given by (2.6), and 

 
 

 
21

0, 01

0, 12 1s

ss t s
g t

st t

     
     

     

.                                                                                          (4.6) 

So  g t is monotonically decreasing for 0s  and monotonically increasing for 1s   . 

Therefore, we have 

 
 

 
 

 
 

,

1
, 0

2 1
inf

1
, 1

2 1

s

t

s

g s

m g t

g s
 


 


 




  

  
   
 

.                                                                            (4.7) 
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 
 

 
 

 
 

,

1
, 0

2 1
sup

1
, 1

2 1

s

t

s

g s

M g t

g s
 


 


 




  

  
   
 

.                                                                           (4.8) 

The inequalities (4.1) and (4.2) are obtained by using (4.3), (4.4), (4.5), (4.7), and (4.8) in (3.5). 

Now we consider some special cases of proposition 4 at 1, 0, 1,s s s    and at 2s  for getting 

bounds of the new divergence measure  * ,M P Q , in terms of other divergences. 

Result 4.1 Let  ,P Q  and  * ,M P Q  be defined as in (1.3) and (2.7) respectively. For , nP Q , we 

have 

 
         *

3 2

1
2 , , 1 , , ,

4 1 2
fL L P Q B M P Q


      


 

 
        

 

 
     3 2

1
2 , , 1 ,

4 1 2
L L P Q


    


 

 
       

.                                                         (4.9) 

Proof: We evaluate  ,s Q P and  ,
s

B   at 1s   , i.e., 

 

 
1

2 2

1

1 1 1 1

21 1 1
, 1

2 2 2 2

n n n n
i i i i i i i i i i

i i

i i i ii i i i i

p q q q p q p q p q
Q P q q

q p q p q





   

         
           

        
     

= 
 

 1 1 1 1 1

1 1 1
2 1 2 2

2 2 2 2

n n n n n
i i i i i i i i i i i

i i i i ii i i i i i i i

q p q p q p q p q p q

p q p q p q p q    

     
         

       
      

= 
   

 
2 2

1 1

41 1 1
,

4 4 4

n n
i i i i i i

i ii i i i

p q p q p q
P Q

p q p q 

  
  

 
  .                                                         (4.10) 

     
1 3 2

1
, 2 , , 1

2
B L L       

       .                                                                       (4.11) 

After putting (4.10) and (4.11) together with (4.4) in (4.2) at 1s   , we get the result (4.9) in terms of 

Triangular discrimination.
 

Result 4.2 Let  ,F Q P  and  * ,M P Q  be defined as in (1.3) and (2.7) respectively. For , nP Q , we 

have 

 
       *

1

1 1 1
log , , 1 , , ,

2 1
fI L F Q P B M P Q   

  


  
      

   
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 
   1

1 1 1
log , , 1 ,

2 1
I L F Q P 

  


  
     

   
.                                                                (4.12) 

Proof: We evaluate  ,s Q P and  ,
s

B   at 0s  , i.e., 

     
1

0
0 0

1

, lim , lim 1 1
2

s
n

i i
s i

s s
i i

p q
Q P Q P s s q

q



 


  
          
   


 

 
1

2
log ,

n
i

i

i i i

q
q F Q P

p q

 
  

 
 .                                                                                                     (4.13) 

 
     

  0 0

1 1 1 1 0
, lim

1 0

s s

s
B

s s


   
 

 

     
  

   

. 

After applying D’ Hospital Rule, we obtain 

 

 
     

  0 0

1 log 1 log log log log log
, lim

2 1

s s

s
B

s


           
 

     

     
   

     

 

=  1

1 1
log , , 1I L  

 


 
  

 
.                                                                                                   (4.14)  

After putting (4.13) and (4.14) together with (4.4) in (4.1) at 0s  , we get the result (4.12) in terms of 

Relative Jensen- Shannon divergence. 

Result 4.3 Let  ,G Q P  and  * ,M P Q  be defined as in (1.3) and (2.7) respectively. For , nP Q , we 

have 

 
         *

1

1
log , , 1 , , ,

2 1
fI L G Q P B M P Q      

 
      

 

 
     1

1
log , , 1 ,

2 1
I L G Q P    

 
     

.                                                       (4.15) 

Proof: We evaluate  ,s Q P and  ,
s

B   at 1s  , i.e., 

     
1

1
1 1

1

, lim , lim 1 1
2

s
n

i i
s i

s s
i i

p q
Q P Q P s s q

q



 


  
          
   

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 
1

log ,
2 2

n
i i i i

i i

p q p q
G Q P

q

   
   

   
 .                                                                                      (4.16) 

 
     

  1 1

1 1 1 1 0
, lim

1 0

s s

s
B

s s


   
 

 

     
  

   

. 

After applying D’ Hospital Rule, we obtain 

 

 
     

  

 
1 1

1 log 1 log log loglog log
, lim

2 1

s s

s
B

s


           
 

     

    
   

     

 

=    1log , , 1I L      .                                                                                               (4.17)  

After putting (4.16) and (4.17) together with (4.4) in (4.1) at 1s  , we get the result (4.15) in terms of 

Relative Arithmetic- Geometric divergence. 

Result 4.4 Let  2 ,P Q  and  * ,M P Q  be defined as in (1.3) and (2.7) respectively. For , nP Q , 

we have 

 
         2 *

12

1 1
2 , 1 , , ,

4 1 4
fL P Q B M P Q     

 

 
       

 

 
     2

12

1 1
2 , 1 ,

4 1 4
L P Q   

 

 
      

.                                                                 (4.18) 

Proof: We evaluate  ,s Q P and  ,
s

B   at 2s  , i.e., 

 
 

2 2

2

1 1 1

1 1
, 1

2 2 2 4

n n n
i ii i

i i

i i ii i

p qp q
Q P q p

q q  

    
       
       
  

 

 
 

2

2

1

1 1
,

8 8

n
i i

i i

p q
P Q

q




 
  

  
 .                                                                                                (4.19) 

     
2 1

1
, 2 , 1

2
B L          .                                                                                          (4.20) 

After putting (4.19) and (4.20) together with (4.4) in (4.1) at 2s  , we get the result (4.18) in terms of 

Chi- Square divergence. 
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5. Bounds of the Relative J- divergence 

In this section, we obtain bounds of the Relative J - divergence measure  ,RJ P Q in terms of one 

parametric generalized divergence measure  ,s Q P for different values of s , by using new inequalities 

(3.5) and means (1.4) and (1.5). 

Proposition 5 Let  ,s Q P  and  ,RJ P Q  be defined as in (1.3) and (1.2) respectively. For , nP Q

, we have 

a. For 0s  and 0s  , we have 

         1 1
, , , ,

2s

s s

s f RB Q P B J P Q             

     1 , ,
s

s s

sB Q P           .                                                                                        (5.1) 

b. For 1s  and 1s  , we have 

         1 1
, , , ,

2s

s s

s f RB Q P B J P Q               

     1 , ,
s

s s

sB Q P           ,                                                                                        (5.2) 

where  ,fB   is evaluated below by equation (5.6) and  ,
s

B   is given by (4.5).  

Proof: Let  : 0,f R  be a function defined as 

   1 logf t t t  .                                                                                                                               (5.3) 

   
1

log , 1 0
t

f t t f
t

    and 

  2

1t
f t

t

  .                                                                                                                                        (5.4) 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. 

Put  f t from (5.3) into (1.1) and (3.6), together with considering mean (1.4), we get the followings 

respectively.  

     
1

1 1
, log ,

2 2 2

n
i i

f i i R

i i

p q
S P Q p q J P Q

q

 
   

 
 .                                                                (5.5) 
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 
             

 

1 1 1 1 log 1 1 log
,f

f f
B

         
 

   

       
 

 
 

  
 

 
    1

log log
1 1 1 1 ,L

 
     

 



     


.                                                     (5.6) 

Now let us consider the function    
 2 2 1

2

1
s s s s

t
g t t f t t t t

t

    


    , where  f t is given by 

(5.4), and 

   1
0, 1

1
0, 0

s s
s

g t st s t
s

  
 

      
 

.                                                                                        (5.7) 

So  g t is monotonically decreasing for 1s  and monotonically increasing for 0s  . 

Therefore, we have 

 
 

   

   

1

1,

, 1
inf

, 0

s s

s st

g s
m g t

g s 

  

  

  

  

   
  

  

.                                                                           (5.8) 

 
 

   

   

1

1
,

, 1
sup

, 0

s s

s s
t

g s
M g t

g s 

  

  

  

  


   
  

  

.                                                                        (5.9) 

The inequalities (5.1) and (5.2) are obtained by using (4.5), (5.5), (5.6), (5.8), and (5.9) in (3.5). 

Now we consider some special cases of proposition 5 at 1, 0, 1,s s s    and at 2s  for getting 

bounds of the Relative J - divergence measure  ,RJ P Q , in terms of other divergences. 

Result 5.1 Let  ,P Q  and  ,RJ P Q  be defined as in (1.3) and (1.2) respectively. For , nP Q , we 

have 

           3 2

1
1 2 , , 1 , 2 , ,

2
f RL L P Q B J P Q         

 
       

 
 

       3 2

1
1 2 , , 1 ,

2
L L P Q       

 
      

 
.                                                       (5.10) 

Proof: After putting (4.10) and (4.11) together with (5.6) in (5.1) at 1s   , we get the result (5.10) in 

terms of Triangular discrimination. We omit the detail. 

Result 5.2 Let  ,F Q P  and  ,RJ P Q  be defined as in (1.3) and (1.2) respectively. For , nP Q , we 

have 
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         1

1 1
2 1 log , , 1 , 2 , ,f RI L F Q P B J P Q    

 


  
       

  
 

     1

1 1
2 1 log , , 1 ,I L F Q P  

 


  
      

  
.                                                             (5.11) 

Proof: After putting (4.13) and (4.14) together with (5.6) in (5.1) at 0s  , we get the result (5.11) in 

terms of Relative Jensen- Shannon divergence. We omit the detail. 

Result 5.3 Let  ,G Q P  and  ,RJ P Q  be defined as in (1.3) and (1.2) respectively. For , nP Q , we 

have 

 
         1

2 1
log , , 1 , 2 , ,f RI L G Q P B J P Q


      





        

 
     1

2 1
log , , 1 ,I L G Q P


    





      .                                                          (5.12) 

Proof: After putting (4.16) and (4.17) together with (5.6) in (5.2) at 1s  , we get the result (5.12) in terms 

of Relative Arithmetic- Geometric divergence. We omit the detail. 

Result 5.4 Let  2 ,P Q  and  ,RJ P Q  be defined as in (1.3) and (1.2) respectively. For , nP Q , we 

have 

 
         2

12

1 1
2 , 1 , 2 , ,

4
f RL P Q B J P Q


     



  
     

 
 

 
     2

12

1 1
2 , 1 ,

4
L P Q


   



  
    

 
.                                                                         (5.13) 

Proof: After putting (4.19) and (4.20) together with (5.6) in (5.2) at 2s  , we get the result (5.13) in 

terms of Chi- Square divergence. We omit the detail. 

 

6. Numerical verification of results obtained 

In this section, we give two examples for calculating the divergences      *, , , , ,RJ P Q P Q M P Q and 

verify the inequalities (Or bounds of  * ,M P Q and  ,RJ P Q in terms of  ,P Q ) (4.9) and (5.10). 

Example 6.1 Let P be the binomial probability distribution with parameters  10, 0.5n p  and Q its 

approximated Poisson probability distribution with parameter  5np   for the random variable X , 

then we have 
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Table 1:  10, 0.5, 0.5n p q    

ix  0 1 2 3 4 5 6 7 8 9 10 

 i ip x p   .000976 .00976 .043 .117 .205 .246 .205 .117 .043 .00976 .000976 

 i iq x q   .00673 .033 .084 .140 .175 .175 .146 .104 .065 .036 .018 

2

i i

i

p q

q


  

.573 .648 .757 .918 1.086 1.203 1.202 1.063 .831 .636 .527 

 

By using Table 1, we get the followings. 

   0.527 1.203
2

i i

i

p q

q
 


    .                                                                                                (6.1) 

 
 

2
11

1

,
i i

i i i

p q
P Q

p q


 


  0.0917.                                                                                                     (6.2) 

   
11

1

, log
2

i i
R i i

i i

p q
J P Q p q

q

 
   

 
  0.0808.                                                                              (6.3) 

 
 

11
*

1

3 3
, log

4 2

i i i i

i i i

p q p q
M P Q

p q

   
   

   
  0.0076525.                                                             (6.4) 

Put the approximated numerical values from (6.1) to (6.4) in (4.9) and (5.10), we get 

   3 *9.110 10 0.017059 0.007652 , 0.014414M P Q      

and 

  
1

0.04248 0.169675 0.0404 , 0.13991
2

RJ P Q
 

    
 

 

respectively and hence verified the inequalities (4.9) and (5.10) for 0.5p  . 

 

Example 6.2 Let P be the binomial probability distribution with parameters  10, 0.7n p  and Q its 

approximated Poisson probability distribution with parameter  7np   for the random variable X , 

then we have 
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Table 2:  10, 0.7, 0.3n p q    

ix  0 1 2 3 4 5 6 7 8 9 10 

 i ip x p   .0000059 .000137 .00144 .009 .036 .102 .20 .266 .233 .121 .0282 

 i iq x q   .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709 

2

i i

i

p q

q


  

.503 .510 .532 .586 .697 .788 1.002 1.392 1.396 1.099 .698 

 

By using Table 2, we get the followings. 

   0.503 1.396
2

i i

i

p q

q
 


    .                                                                                                (6.5) 

 
 

2
11

1

,
i i

i i i

p q
P Q

p q


 


  0.1812.                                                                                                     (6.6) 

   
11

1

, log
2

i i
R i i

i i

p q
J P Q p q

q

 
   

 
  0.1686.                                                                              (6.7) 

 
 

11
*

1

3 3
, log

4 2

i i i i

i i i

p q p q
M P Q

p q

   
   

   
  0.0115412.                                                          (6.8)     

Put the approximated numerical values from (6.5) to (6.8) in (4.9) and (5.10), we get 

   *0.01586 0.031810 0.0115412 , 0.02762M P Q     

and  

  
1

0.03991 0.22497 0.0843 , 0.176588
2

RJ P Q
 

    
 

 

respectively and hence verified the inequalities (4.9) and (5.10) for 0.7p  . 

Similarly, we can verify the other inequalities (4.12), (4.15), (4.18), (5.11), (5.12), and (5.13).  
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7. Asymptotic approximation on new generalized f- divergence 

In this section, we introduce asymptotic approximation of  ,fS P Q in terms of well known divergence

 2 ,P Q and get the approximate relations of  * ,M P Q and  ,RJ P Q with  2 ,P Q , respectively. 

Theorem 7.1 If  : 0,f R  is twice differentiable, convex, and normalized function, i.e.,   0f t 

and  1 0f   respectively, then we have 

 
 

 2
1

, ,
8

f

f
S P Q P Q


 .                                                                                                           (7.1) 

Equivalently  

 
 

 

 
2

, 1

, 8

fS P Q f

P Q





   when P Q   , 

where , 0   , i.e., ,  are very small and    2, , ,fS P Q P Q are given by (1.1) and (1.3) 

respectively. 

Proof: We know by Taylor’s series expansion of function  f t at 1t  , that 

       
 

     
2

21
1 1 1 1 1

2

t
f t f t f f t g t


       ,                                                         (7.2) 

where  
 

 
 

 
2

1 1
1 1 ...

3 4

t t
g t f f

 
     and we can see that   0g t  as 1t  ,  1 0f   

because  f t is normalized, therefore from (7.2) we get  

     
 

 
2

1
1 1 1

2

t
f t t f f


    .                                                                                                 (7.3) 

Now Put 
2

i i

i

p q
t

q


 in (7.3), multiply with iq  and then sum over all 1,2,...,i n , we get the desire 

result (7.1). 

Remark: Particularly if we take  
 1 1

log
2 2

t t
f t

t

  
  

 
and  1 logt t in (7.1), we get 

   * 21
, ,

32
M P Q P Q ,    21

, ,
2

RJ P Q P Q respectively, where  ,RJ P Q and  * ,M P Q are 

given by (1.2) and (2.7) respectively. 
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8. Conclusion and discussion 

In this work, we introduced new information divergence measure, characterized, defined the properties 

and derived relations with other divergences. Asymptotic approximation of this new divergence and 

Relative J- divergence has been derived as well. Two new information inequalities on  ,fS P Q in terms 

of standard one parametric generalized divergence have been introduced and further bounds of the new 

divergence and Relative J- divergence have been obtained in terms of the other well known divergences 

in an interval  , , 0 1      with  as an application of new information inequalities. 

These bounds have been verified numerically by taking two discrete distributions: Binomial and Poisson. 

We found in articles [3, 16] that square root of some particular divergences is a metric space but not each 

because of violation of triangle inequality, so we strongly believe that divergence measures can be 

extended to other significant problems of functional analysis and its applications, such investigations are 

actually in progress because this is also an area worth being investigated. Such types of divergences are 

also very useful to find the mutual information [12, 13, 17], i.e., how much information is conveyed of 

one random variable about other and utility of an event [4, 30], i.e., an event is how much useful compare 

to other event. 

We hope that this work will motivate the reader to consider the extensions of divergence measures in 

information theory, other problems of functional analysis and fuzzy mathematics.  
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