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Abstract
This paper deals with an exponential form for Lyapunov function, in perspective to analyze the Lyapunov characterization

of the Mittag-Leffler stability and the asymptotic stability for the fractional differential equations. In addition, a new Lyapunov
characterization of Mittag-Leffler stability for fractional differential equations will be introduced. The exponential form will be
used to prove the Lyapunov characterization of several stability notions, used in fractional differential equations. In this paper,
the Caputo fractional derivative operator will be used to do the studies.
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1. Introduction

Fractional calculus has several applications in many fields in science and engineering. Recently, a
lot of progress were done in fractional calculus: in [8] Aguilar et al. expose the homotopy perturbation
transform method, in [1] Aguilar et al. present Cattaneo-Vernotte equation for generalized heat and
particle diffusion equations, in [5] Escamilla et al. present a Gray-Scot model by using variable order
fractional differential equations, in [4] Escamilla et al. present recent models such as Bateman-Feshbach-
Tikochinsky (BFT) or Caldirola-Kanai (CK) oscillators using the Caputo and Fabrizio fractional derivative
and the Caputo-Liouville fractional derivative, in [2] Atangana compares behaviors of the exact solutions
of evolution equations in three cases: with the Caputo fractional derivative, with the Caputo and Fabrizio
fractional derivative, and with the Atangana Baleanu fractional derivative. With the stability analysis,
the fractional calculus has many applications in control theory. There exists special functions in control
theory called the comparison functions [9], they play an important role in the stability analysis. In this
paper, we are devoted to prove these functions can be used to prove some stability notions existing in
fractional calculus. The comparison functions play an important role in this present paper. That makes
the link between fractional calculus and control theory. Numerous works on the stability of the fractional
differential equations studied in the literature have used the trajectories and the Gronwall-inequality. Here
we give a useful lemma which can be used to prove many characterizations using the Lyapunov functions
in the stability analysis of the fractional differential equations (FDEs). We give KL-estimate for fractional
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differential equations which is fundamental to prove the global asymptotic stability of the FDEs. Note
that the same estimate exists in the ordinary differential equations (see [9] for more information). This
estimate for the FDEs is introduced in [6], we prove this estimation with supplementary assumption and
use it to give the exponential form for fractional differential equations.

Fractional calculus is a generalization of ordinary differential and integration to arbitrary non integer
order. Numerous fractional derivative exist in the literature : The Riemann-Liouville fractional derivative,
The Caputo fractional derivative, The Atangana-Baleanu fractional derivative, etc.. The Atangana-Baleanu
fractional derivative has received much interest, and it was provided in the literature to have many appli-
cations in physics and mechanics [2]. New fractional derivative operators continue to appear and make
the fractional calculus a very interesting field in science and engineering. In [16, 18] Caputo proposes the
definition of the fractional derivative expressed as follows

Dcαf(t) =
1

Γ(1 −α)

∫t
a

f ′(s)

(t− s)α
ds.

In this paper, we use the Caputo fractional derivative to establish all main results. Many contributions
in the fractional calculus field use the Caputo fractional derivative. Another useful fractional derivative
called Gr unwald-Letnikov derivative [6] exists in the literature and is defined as

lim
h→0

1
hα

(t−α)/h∑
j=0

(−1)j
(
α
j

)
f(t− jh).

A new generalization for this definition can be found in [14]. In the rest of this paper, we use the
Caputo idea of the fractional derivative. There exists many investigations related to the stability analysis
of the FDEs in the literature: in [18] some conditions for the stability notions of the fractional differential
equations using the Riemann-Liouville derivative were proposed, in [20] some conditions for the stability
for a particular class of conformable differential equations were also proposed, in [19] some conditions
for stability respect to small inputs were proposed to study the behavior of the solutions of the fractional
differential equations with exogenous inputs, etc.

In this present paper, we come with a KL-estimate for fractional differential equations to prove the
asymptotic stability of the FDEs. The stability of nonlinear systems received increased attention due to
its important role in areas of science and engineering. This paper deals with useful estimate to prove
Lyapunov characterization of the fractional differential equations. It treats in particular the asymptotic
stability and the Mittag-Leffler stability of the fractional differential equations with the Caputo fractional
derivative.

The remainder of this paper is organized as follows. In Section 2, we introduce certain necessary
definitions and provided the necessary lemmas. In Section 3, we describe the class of the FDEs, and
provide the main results. In Section 4, we provide an example and illustrate our main results. Our proofs,
conclusions, and remarks are summarized in the Section 5.

Notations. PD denotes the set of all continuous functions χ : R>0 → R>0 satisfying χ(0) = 0 and
χ(s) > 0 for all s > 0. A class K function is an increasing PD function. The class K∞ denotes the set
of all unbounded K functions. A continuous function β : R>0 ×R>0 → R>0 is said to be class KL if
β(., t) ∈ K for any t > 0 and β(s, .) is non increasing and tends to zero as its arguments tends to infinity.

Given x ∈ Rn, ‖x‖ stands for its Euclidean norm: ‖x‖ :=
√
x2

1 + . . . + x2
n. For a matrix A, λmax(A) and

λmin(A) denote the maximal and the minimal eigenvalue of A, respectively. If the condition Re (λi) < 0, ∀
i = 1, 2, ...,n, holds, then the matrix A is said Hurwitz.

2. Preliminary definitions and results

Before beginning the main results of this paper, we recall some definitions used in fractional calculus.
We give the Riemann-Liouville fractional derivative and the Caputo fractional derivative. The definitions
recalled here are not limited to the papers cited in this section and can be found in many other papers.
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Definition 2.1 ([7, 11, 17, 18]). Given a function f : [a,+∞[−→ R, then the Riemann-Liouville fractional
derivative of f of order α is defined as

DRLα f(t) =
1

Γ(1 −α)

d

dt

∫t
a

(t− s)−αf(s)ds

for all t > a, α ∈ (0, 1) , and where Γ(.) is gamma function.

Definition 2.2 ([11, 17, 18]). Given a function f : [a,+∞[−→ R, then the Caputo fractional derivative of f
of order α is defined by

Dcαf(t) =
1

Γ(1 −α)

∫t
a

f ′(s)

(t− s)α
ds

for all t > a, α ∈ (0, 1) , and where Γ(.) is gamma function.

Definition 2.3 ([3, 7, 17]). Given a function f : [a,+∞[−→ R, then the Riemann-Liouville integral of f of
order α is defined by

IRLα f(t) =
1
Γ(α)

∫t
a

(t− s)α−1f(s)ds

for all t > a, α ∈ (0, 1) , and where Γ(.) is gamma function.

In addition, if α = 1, we recover the classical integral defined as IRL1 f(t) =
∫t
a f(s)ds. Let recall the

Mittag-Leffler function used in the structure of the solution of many fractional differential equations. The
Mittag-Leffler function is defined using a series. There exists many other special functions in fractional
calculus as the generalized function introduced in [12], the Mittag-Leffler function [15] and others. We
have the following definition.

Definition 2.4 ([13, 15]). Let α > 0, β ∈ R and z ∈ C. The Mittag-Leffler function is defined by the series

Eα,β (z) =

∞∑
k=0

zk

Γ(αk+β)
.

The exponential form is obtained if α = 1 and β = 1. In other words the following relationship is hold
E1,1 (z) = exp(z). The Mittag-Leffler function with one parameter follows if α = 1, we have the following
relationship Eα (z) = Eα,1 (z).

Lemma 2.5. For all α ∈ (0, 1) the function Eα,1 (−t) is non increasing function respect to the argument t. In other
words, the function g(t) = Eα,1 (−t) is a L function.

See in Figure 1, the behavior of the function g in time for different values of the order α.

Figure 1: Behavior of g for α = 0.5 and α = 0.75 and α = 0.85.
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With the comparative functions in control theory, the above function is a class L function (Eα,1 (−t) ∈
L). See definition related to the L function in the notation section. In general many fractional differential
equations take the form Dcαx(t) = λx(t) +m(t). Thus, it is important to know how to get the solution of
this differential equation. The structure of this solution is described in the following lemma and the proof
can be found in [10].

Lemma 2.6 ([3]). Let the fractional differential equation defined by Dcαx(t) = λx(t) +m(t) with initial condition
defined as x(t0) = η, then the unique solution is given by

x(t) = ηEα (λ(t− t0)
α) +

∫t
t0

(t− s)α−1Eα,α (λ(t− s)α)m(s)ds.

Lemma 2.7 ([6, Comparison theorem for FDE]). If Dcαx(t) > Dcαy(t) with x(t0) = y(t0) for all α ∈ (0, 1),
then x(t) > y(t).

Lemma 2.8 (KL estimate for FDEs). Let α ∈ K∞ be locally Lipschitz. Let a positive definite function y, which
in addition is radially unbounded function, then there exists a class KL function β such that for all initial condition
y(t0) ∈ R+, the solution of the scalar differential equation Dcαy = −α(y) satisfies

y(t,y0) 6 β(‖y(t0)‖ , t− t0).

The proof of this lemma was introduced on the fractional calculus by Delavari et al. in [6]. Here we
will use the comparison theorem of the FDEs and add the radially unbounded condition to prove this
fundamental lemma. This lemma without supplementary assumption was discussed in the literature. The
Lemma 2.8 brings some precisions and can simplify many proofs using the Lyapunov characterization
existing in the Literature. The first party of the proof is inspired to [11, 21].

Proof. We know that α is a class K∞ function, then from the fact that Dcαy = −α(y) it follows that
Dcαy 6 0. Using the comparison Lemma 2.7 we have that y(t) 6 y(t0) for all t > t0. From the assumption
the function y is radially unbounded then there exists c > 0 such that y(t) > c. Furthermore, from the
fact that α is an increasing function, we have

Dcαy = −α(y) 6 −α(c) = −α(c)× y(t0)

y(t0)
= −

α(c)

y(t0)
× y(t0) 6 −

α(c)

y(t0)
× y(t).

Let k =
α(c)
y(t0)

, then we obtain that
Dcαy 6 −ky(t).

We know that there exists a positive continuous function m such that [19]

Dcαy(t) = −ky(t) −m(t).

Using the Lemma 2.6, we have the following equality

y(t) = y(t0)Eα (−k(t− t0)
α) −

∫t
t0

(t− s)α−1Eα,α (−k(t− s)α)m(s)ds.

With the fact that
∫t
t0
(t− s)α−1Eα,α (−k(t− s)α)m(s)ds > 0, we obtain the following inequality

y(t) 6 y(t0)Eα (−k(t− t0)
α) .

By the Lemma 2.5 the function Eα (−k(t− t0)
α) ∈ L and multiplying it by the variable s, we get

sEα (−k(t− t0)
α) which is a class KL function. Let β(‖y(t0)‖ , t − t0) = sEα (−k(t− t0)

α), we obtain
that

y(t) 6 β(‖y(t0)‖ , t− t0).
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This lemma will serve to find an exponential form for Lyapunov function which is important to obtain
the Mittag-Leffler stability and the asymptotic stability. We have the following lemma.

Lemma 2.9 (Exponential form for Lyapunov function for FDEs). If there exists a continuously differentiable
function V : R+ ×Rn −→ R, and class K∞ functions α1,α2,α3 satisfying the following conditions

1. α1 (‖x‖) 6 V(t, x) 6 α2 (‖x‖);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −α3 (‖x‖),

then there exits a positive constant k such that

DcαV(t, x) 6 −kV(t, x).

This lemma will have many consequences as we will see in the next section, related to the stability
analysis of the FDEs. It’s important to note that by the first assumption, α1 is an increasing function, thus
α1 (‖x(t)‖) > α1 (‖x(t0)‖). The first assumption prove V is radially unbounded then it holds in particular
that V(t, x) > α1 (‖x(t0)‖) . For the rest of the proof we repeat the proof of Lemma 2.8 as is described in
the following proof.

Proof. It follows from assumption 3 that DcαV(t, x) 6 −α3 (‖x‖) 6 0. Using comparison Lemma 2.7 we
have that V(t) 6 V(t0) for all t > t0. Another fact, we have that V(t, x) > α1 (‖x(t0)‖). This remark
is fundamental for the rest of the proof. Due to the fact the function α is an increasing function, using
assumptions 1 and 3 we have the following

DcαV(t, x) 6 −α3 (‖x‖) 6 −α3 ◦α−1
2 (V(t, x))

6 −α3 ◦α−1
2 ◦α1(‖x(t0)‖)

= −α3 ◦α−1
2 ◦α1(‖x(t0)‖)×

V(t0)

V(t0)

= −
α3 ◦α−1

2 ◦α1(‖x(t0)‖)
V(t0)

× V(t0)

6 −
α3 ◦α−1

2 ◦α1(‖x(t0)‖)
V(t0)

× V(t, x).

Let k =
α3◦α−1

2 ◦α1(‖x(t0)‖)
V(t0)

, then we obtain that

DcαV(t, x) 6 −kV(t, x).

3. Stability analysis of fractional differential equations

The fractional differential equations considered in this section are represented by the following equa-
tion

Dcαx = f(t, x), (3.1)

where x ∈ Rn is a state variable, and f : R+×Rn → Rn a continuous locally Lipschitz function satisfying
in particularly f(t, 0) = 0. Given the initial condition x0 ∈ Rn, the solution of (3.1) starting at x(t0) at time
t = t0 is denoted by x(.) = x(., x(t0)).

Note that the solution of the fractional differential equation defined by (3.1) exists because the function
f is continuous and locally Lipschitz. The theory of the existence is not the subject of this paper, thus we
suppose it. Let recall some stability notions used in fractional calculus. We begin with the definition of
the stability of the fractional differential equations.
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Definition 3.1 ([21]). The trivial solution of the fractional differential equation (3.1) is said to be stable if
for every ε > 0 there exists a δ = δ (ε) such that for any initial condition ‖x(t0‖ < δ, the solution x(t) of
the system (3.1) satisfies the inequality ‖x(t)‖ < ε for all t > t0.

The trivial solution of the system Dcαx = f(t, x) is said to be asymptotically stable if it is stable and
furthermore limt→+∞ x(t) = 0.

Definition 3.2 ([21]). We denote by C∞ ((0,+∞), Rn) the set of function x ∈ C∞ ((0,+∞), Rn) such that
Dcαx(t) exists and is continuous on (0,+∞).

For the main results of this paper, we recall the definitions of the Mittag-Leffler stability and the
asymptotic stability.

Definition 3.3 ([11]). The origin of the fractional differential equation defined by (3.1) is said to be Mittag-
Leffler stable, if for any initial condition ‖x(t0)‖ its solution satisfies

‖x(t, x0)‖ 6 [m(‖x(t0)‖)Eα (λ(t− t0)
α)]

1
b ,

where b > 0, and m is locally Lipschitz on a domain contained in Rn with a Lipschitz constant K and
satisfies m(0) = 0.

Definition 3.4 ([9]). The origin of the fractional differential equation defined by (3.1) is said to be globally
uniformly asymptotic stable if there exists a class KL function β such that for any initial condition ‖x(t0)‖
its solution satisfies

‖x(t, x0)‖ 6 β(‖x(t0)‖ , t− t0).

To see the applications of the KL-estimate for the FDEs, we make the following theorem to prove the
global uniform asymptotic stability.

Theorem 3.5. Let x = 0 be an equilibrium point for the fractional differential equations (3.1) and there exists a
positive continuous function V : R+ ×Rn −→ R, and class K∞ functions χ2,χ3,χ4, satisfying the following
conditions

1. χ2 (‖x‖) 6 V(t, x) 6 χ3 (‖x‖);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −χ4 (‖x‖),

then the origin of the fractional differential equation (3.1) is globally uniformly asymptotically stable.

Above theorem is originated to Yan Li et al. in [11] and has already proved. In the application
of the above theorem, one may calculate χ−1

2 ◦ (2µ), where µ ∈ KL, the result can also depend to the
Mittag-Leffler function. And then we make the following theorem to prove the Mittag-Leffler stability.

Theorem 3.6. Let x = 0 be an equilibrium point for the fractional differential equation (3.1) and there exists a
positive continuous function V : R+ ×Rn −→ R, and class K∞ functions χ2,χ3,χ4 satisfying the following
conditions

1. χ2 (‖x‖) 6 V(t, x) 6 χ3 (‖x‖);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −χ4 (‖x‖).

If in addition
χ−1

2 (2µ (χ3(s), t− t0)) 6 rsEα (−k(t− t0)
α) ,

where r is a positive constant, then the origin of the fractional differential equation (3.1) is Mittag-Leffler stable.

In many problems after using a given Lyapunov function, the α-derivative along the trajectories of
the fractional differential equation under consideration, the result can also depend on the used Lyapunov
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function, for that we give the following theorem to prove the Mittag-Leffler stability.

Theorem 3.7. Let x = 0 be an equilibrium point for the fractional differential equation (3.1) and there exists a
positive continuous function V : R+ ×Rn −→ R, and satisfying the following conditions

1. ‖x(t)‖a 6 V(t, x) ;
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −kV(t, x),

where k is non negative constant. Then the origin of the fractional differential equation (3.1) is Mittag-Leffler stable.

Let see now a particular Lyapunov characterization of the Mittag-Leffler stability given in the following
theorem.

Theorem 3.8. Let x = 0 be an equilibrium point for the fractional differential equation (3.1) and there exists a
positive continuous function V : R+ ×Rn −→ R, and a class K∞ function χ satisfying the following conditions

1. aχ (‖x‖) 6 V(t, x) 6 bχ (‖x‖);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −kχ (‖x‖),

where a,b,k are non negative constants. Then the origin of the fractional nonlinear system (3.1) is Mittag-Leffler
stable.

4. Illustrative example

In this section, we give an example to illustrate the Lyapunov characterization of the Mittag-Leffler
stability and the asymptotic stability given in the Section 3. Let the following linear fractional differential
equation defined as

Dcαx = Ax+Bx, (4.1)

where x ∈ Rn is the state variable, A is an Hurwitz matrix in Rn×n, and B is an matrix in Rn×n. Let
a Lyapunov candidate function defined by V(t, x) = xTPx where ATP + PA = −Q and P = In. The
α-derivative of V along the trajectories of (4.1) yields that

DcαV(t, x) 6 2xTPDcαx = [Ax+Bx]T Px+ xTP [Ax+Bx]

= xTATPx+ (Bx)TPx+ xTPAx+ xTP(Bx)

= xT
(
ATP+ PA

)
x+ (Bx)TPx+ xTP(Bx)

6 −λmin(Q) ‖x‖2 + 2λmax(P) ‖B‖ ‖x‖2

= − [λmin(Q) − 2λmax(P) ‖B‖] ‖x‖2 .

Let that k = λmin(Q) − 2λmax(P) ‖B‖ < 0, then all assumptions of the Theorem 3.7 are satisfied with
λmin(P) ‖x‖2 6 V(t, x). That prove the trivial solution of the fractional differential equation (4.1) is Mittag-
Leffler stable, furthermore (4.1) is asymptotic stable due to the linearity of the fractional differential
equation. We can see that after calculating the state of the fractional differential equation (4.1), we obtain
the following inequality

‖x(t)‖ 6 [V(t0, x0)Eα (−k(t− t0)
α)]1/2 .

5. Proofs of the theorems

5.1. Proof of Theorem 3.5
Let x = 0 be an equilibrium point for the fractional differential equation (3.1) and there exists a

positive continuous function V : R+×Rn −→ R, and class K∞ functions χ2,χ3,χ4 satisfying the following
conditions

1. χ2 (‖x‖) 6 V(t, x) 6 χ3 (‖x‖);
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2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −χ4 (‖x‖).

Commutating the assumptions (1) and (3) we have that

DcαV(t, x) 6 −χ4
(
χ−1

3 (V(t, x)
)

.

Using KL-estimate for fractional differential equations in the Lemma 2.8 there exists a class KL function
µ such that

V(t, x) 6 µ (χ3(‖x0‖), t− t0) .

Using again the first assumption we obtain that

χ2 (‖x‖) 6 µ (χ3(‖x0‖), t− t0) .

Recalling that χ−1
2 (a+ b) 6 χ−1

2 (2a) + χ−1
2 (2b) as χ2 ∈ K∞ and a,b ∈ R, then we have

‖x(t)‖ 6 χ−1
2 (2µ (χ3(‖x0‖), t− t0)).

Let the function β(‖x0‖ , t− t0)) = χ
−1
2 (2µ (χ3(‖x0‖), t− t0)) ∈ KL. We obtain that

‖x(t)‖ 6 β(‖x0‖ , t− t0)).

We conclude that the origin of the fractional differential equation (3.1) is globally uniformly asymptotically
stable.

5.2. Proof of Theorem 3.6
Let x = 0 be an equilibrium point for the fractional differential equation (3.1) and there exists a positive

continuouse function V : R+ × Rn −→ R, and class K∞ functions χ2,χ3,χ4 satisfying the following
conditions

1. χ2 (‖x‖) 6 V(t, x) 6 χ3 (‖x‖);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −χ4 (‖x‖).

Using the assumptions (1) and (3) we get that

DcαV(t, x) 6 −χ4
(
χ−1

3 (V(t, x)
)

.

Using the exponential form for Lyapunov function for FDEs in Lemma 2.9 there exists a positive constant
k such that

DcαV(t, x) 6 −kV(t, x).

Doing same reasoning as in the proof of Lemma 2.8 we obtain that

V(t, x) 6 V(t0, x0)Eα (−k(t− t0)
α) .

Using again the first assumption we have that

χ2 (‖x‖) 6 V(t0, x0)Eα (−k(t− t0)
α) .

Recalling that χ−1
2 (a+ b) 6 χ−1

2 (2a) + χ−1
2 (2b) as χ2 ∈ K∞ and a,b ∈ R, then we have

‖x(t)‖ 6 χ−1
2 (2V(t0, x0)Eα (−k(t− t0)

α)).

If in addition
χ−1

2 (2µ (s, t− t0)) 6 csEα (−k(t− t0)
α) ,

where µ (s, t− t0) = sEα (−k(t− t0)
α), we have the following inequality

‖x(t)‖ 6 cV(t0, x0)Eα (−k(t− t0)
α) .

Then the origin of the fractional differential equations (3.1) is Mittag-Leffler stable.
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5.3. Proof of Theorem 3.7
Let x = 0 be an equilibrium point for the fractional differential equation (3.1) and there exists a positive

continuous function V : R+ ×Rn −→ R, satisfying the following conditions
1. ‖x(t)‖a 6 V(t, x);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −kV(t, x),

where k is non negative constant. By the condition in assumption (3) we have that

DcαV(t, x) 6 −kV(t, x).

Doing the same reasoning as in the proof of the Lemma 2.8 we obtain that

V(t, x) 6 V(t0, x0)Eα (−k(t− t0)
α) .

Using the first assumption we have that

‖x(t)‖ 6 [V(t0, x0)Eα (−k(t− t0)
α)]1/a .

Then the origin of the fractional differential equations (3.1) is Mittag-Leffler stable.

5.4. Proof of Theorem 3.8
Let x = 0 be an equilibrium point for the fractional nonlinear system (3.1) and there exists a positive

continuous function V : R+ ×Rn −→ R, and class K∞ functions χ satisfying the following conditions
1. aχ (‖x‖) 6 V(t, x) 6 bχ (‖x‖);
2. V(t, x) has Caputo fractional derivative of order α for all t > t0 > 0;
3. DcαV(t, x) 6 −kχ (‖x‖),

where a,b,k are non negative constants. Using the conditions in the assumptions (1) and (3) we have that

DcαV(t, x) 6 −kχ

(
χ−1(

1
b
V(t, x(t))

)
.

We observe that we obtain directly the following inequality

DcαV(t, x) 6 −
k

b
V(t, x(t)).

Doing same reasoning as in the proof of Lemma 2.8 we obtain that

V(t, x) 6 V(t0, x0)Eα

(
−
k

b
(t− t0)

α

)
.

Using again the first assumption we get that

χ (‖x‖) 6 V(t0, x0)Eα

(
−
k

b
(t− t0)

α

)
.

Let that β(‖x0‖ , t− t0)) = V(t0, x0)Eα
(
−kb(t− t0)

α
)

which is a class KL function. Recall the fact that
β(s, t − t0)) = χ(Eα

(
−kb(t− t0)

α
)
χ(s)). Note that a transformation of the function β done here with

the function χ is particular and restrictive. That is one of the decomposition which we can obtain with
comparison function. This decomposition is motived by result which we want to obtain. Then we have
that

‖x(t)‖ 6 χ−1(χ(Eα

(
−
k

b
(t− t0)

α

)
)χ(V(t0, x0))).

Explicitly by above inequality, we obtain that

‖x(t)‖ 6 χ(V(t0, x0))Eα

(
−
k

b
(t− t0)

α

)
.

Then the origin of the fractional differential equation (3.1) is Mittag-Leffler stable.
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6. Conclusion

We have discussed in this paper the Mittag-Leffler stability and globally uniformly asymptotic stability
of the fractional differential equations using Caputo fractional derivative. It contributes to give particu-
larly the existence of KL-estimate and give the exponential form for Lyapunov function for FDEs. Theses
tools have many applications in Lyapunov characterization of the stability of the fractional differential
equations. This paper offer also basic properties in comparison functions.
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