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Abstract 
In this paper we give some approximated solutions for an operator equation 𝐿𝑢 = 𝑓 where                                             

𝐿:𝐻 → 𝐻 is a bounded and self adjoint operator on a separable Hilbert space 𝐻. We use frames in order to 

precondition the linear equation so that convergence of iterative methods is improved. Also we find an 

exact solution associated to a frame and then we seek an approximated solution in a finite dimensional 

subspace of 𝐻 that is generated by a finite frame sequence. 
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1. Introduction 

Our problem is to find u ∈ H such that 

Lu = f,      (1.1) 

where L: H → H is a bounded and self adjoint linear operator on  a separable Hilbert space H. 

In general it is impossible to find the exact solution of the problem (1,1), because the separable  

Hilbert space H is infinite dimensional. A natural approach to constructing an approximate  

solution is to solve a finite dimensional analog of the problem (1,1). In [2, 6, 7, 10] some 

approximated solutions for this equation and related problems has been developed by wavelet 

bases. Usually the operator under consideration is defined on a bounded domain in ℝn  or on a 

closed manifold. Therefore the construction of a wavelet basis with specific properties on this  

domain or on the manifold is needed. Motivated by some difficulties to construct an appropriate 
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basis, we therefore suggest to use a slightly weaker concept namely, frames. In [8, 9, 11], some 

iterative methods for solving this system has been developed by frames. 

Assume that H is a separable Hilbert space, Λ is a countable set of indices and Ψ =  ψλ λ∈Λ ⊂ 

H is a frame for H. This means that there exist constants 0 < AΨ ≤ BΨ <  ∞ such that  

AΨ f H
2 ≤    f ψλ  

2 ≤ BΨ f H
2

λ∈Λ , ∀ f ∈ H,     (1.2)  

or equivalently (by the Riesz mapping) 

AΨ f H∗
2 ≤  f(Ψ) ℓ2(Λ)

2 ≤ BΨ f H∗
2  , ∀ f ∈ H∗,     (1.3)  

where f Ψ =  f ψλ  λ =   f ψλ  λ . 

For the frame Ψ, let T: ℓ2 Λ → H be the synthesis operator 

T  cλ λ =   cλψλλ∈Λ   

and let T∗: H →  ℓ2(Λ) be the analysis operator 

T∗ f =   f ψλ  λ .  

Also let S ≔ TT∗: H → H be the frame operator  

S f =    f ψλ ψλλ . 

Note that T is surjective, T∗is injective, T∗ is the adjoint of T and because of (1.2), T is bounded. In 

fact we have 

 𝑇 =   𝑇∗ ≤  𝐵Ψ.     (1.4) 

     Since 𝐾𝑒𝑟 𝑇 =  𝑅𝑎𝑛 𝑇∗  
⊥

 then ℓ2 Λ =  𝑅𝑎𝑛 𝑇∗  ⊕ 𝐾𝑒𝑟(𝑇). It was shown in [5], for the frame 

      𝜓𝜆 𝜆∈Λ , 𝑆 is a positive invertible operator satisfying 𝐴Ψ𝐼𝐻 ≤ 𝑆 ≤ 𝐵Ψ𝐼𝐻   and 𝐵Ψ
−1𝐼𝐻 ≤ 𝑆1 ≤ 

     𝐴Ψ
−1𝐼𝐻. Also, the sequence 

Ψ =  𝜓 𝜆 𝜆∈Λ =  𝑆−1𝜓𝜆 𝜆∈Λ  

is a frame (called the canonical dual frame) for 𝐻 with bounds 𝐵Ψ
−1 , 𝐴Ψ

−1 . Every 𝑓 ∈ 𝐻 has the 

expansion 

𝑓 =    𝑓 𝜓𝜆 𝜆 𝜓 𝜆 =    𝑓 𝜓 𝜆 .𝜆     (1.5)  

     Also a complete sequence  𝜓𝜆 𝜆∈Λ in 𝐻 is called a Riesz basis if there exist constants 𝐴Ψ, 𝐵Ψ  > 0 

     such that 

𝐴Ψ 𝐶 ℓ2 Λ 
2 ≤   𝑐𝜆𝜓𝜆𝜆  𝐻

2 ≤ 𝐵Ψ 𝐶 ℓ2 Λ 

2 , 

     hold for all finite sequences 𝐶 =  𝑐𝜆 𝜆∈Λ. Each Riesz basis for a Hilbert space 𝐻 is a frame for 𝐻. For 

     more details see [4, 5]. For an index set Λ ⊂ Λ,  𝜓𝜆 𝜆∈Λ   is called a frame sequence if it is a frame for 

     its closed span. 
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2. Approximated inverse frames of an operator 

The most straight forward approach to an iterative solution of a linear system is to rewrite the 

equation (1.1) as a linear fixed-point iteration. One way to do this is the Richardson iteration.  

The abstract method reads as follows: 

write Lu = f as 

u =  I − L u + f.  

For given u0 ∈ H, define for n ≥ 0, 

un+1 =  I − L un +  f.     (2.1)  

Since Lu − f = 0, 

un+1 −  u =  I − L un +  f − u −  f − Lu =  

 I − L un − u + Lu =  I − L  un − u .  

Hence 

 un+1 − u H ≤  I − L H→H  un − u H ,  

so that (2.1) converges if 

 I − L H→H < 1.  

It is sometimes possible to precondition (1.1) by multiplying both sides by a matrix B, 

BLu = Bf,  

so that convergence of iterative methods is improved. This is very effective technique for solving  

differential equations, integral equations, and related problems [1, 3]. We want to do this by 

using frames. 

Definition 2.1. A frame Ψ =  ψλ λ∈Λ with frame operator S, is called an approximated inverse  

frame of operator L on H if  I − SL H→H < 1. 

 Richardson iteration, preconditioned with an approximated inverse frame of L, has the 

following form 

un+1 =  I − SL un + Sf,  

where S is the frame operator of the frame Ψ. 

Lemma 2.2. Let Ψ =  ψλ λ∈Λ ⊂ H be a frame for H and L  be a bounded operator on H. Then 

the sequence Φ =  Lψλ λ∈Λ is a frame for H. 

Proof. See [OCH]. ∎ 

Proposition 2.3. If Ψ =  ψλ λ∈Λ is a frame for H with frame operator S and L is a bounded  

self adjoint operator on H then SL = TTL
∗ , where T is the synthesis operator of frame Ψ and TL

∗ 

is the analysis operator of frame Φ =  Lψλ λ∈Λ.      

Proof. Let f ∈ H, then 

SLf =   Lf ψλ λ ψλ =   f Lψλ ψλ =λ T( f Lψλ )λ = TTL
∗f,  



H. Jamali / J. Math. Computer Sci.    12 (2014), 105-112 
 

108 
 

that means TTL
∗ = SL. ∎ 

Using this proposition we can say that a frame Ψ =  ψλ λ∈Λ is an approximated inverse frame 

of an bounded self adjoint operator L if  I − TTL
∗ H→H < 1. By taking adjoint this is equivalent 

to  I − TLT∗ H→H < 1. 

From linear algebra we know that if  I − SL H→H < 1 then SL is nonsingular and 

 SL −1 =   I − SL n .∞
n=0      (2.2) 

If L is a bounded self adjoint operator on H and if Ψ =  ψλ λ∈Λ is an approximated inverse  

frame of L, then the solution u of the equation (1.1) is as follow: 

u =  SL −1 SL u =   u Lψλ  SL −1ψλλ   

=   Lu ψλ  SL −1ψλλ =   f ψλ  SL −1ψλλ  , 

also by Proposition 2.3 we have 

u =   f ψλ  TTL
∗ −1ψλλ .  

Now we note that each f ∈ H has the representation as 

f =  TLT∗ −1 TLT∗ f =   f ψλ  TLT∗ −1 Lψλ λ ,  

that means  TLT∗ −1(Lψλ) is a dual frame of the frame Ψ =  ψλ λ . Specially we have the 

following expansion for the exact solution 𝑢 of the equation (1.1) 

u =   u Lψλ  TLT∗ −1ψλλ =   Lu ψλ  TLT∗ −1ψλλ =   f ψλ  TLT∗ −1Lψλ .λ   

The following theorem tries to approximate  TLT∗ −1Lψλ . 

Theorem 2.4. let Ψ =  ψλ λ  be an approximated inverse frame of a bounded self adjoint 

operator L. For each N ∈ ℕ define 

ψλ
N =   I − TTL

∗ nψλn=0 .  

Then for each N ∈ ℕ,  ψλ
N 

λ
 is a frame for H. Also if TN  denotes its synthesis operator, then 

 I − TN TL
∗ H→H ≤  I − TTL

∗ H→H
N+1 . 

Proof. Let f ∈ H, 

TN TL
∗f =   f Lψλ ψλ

N
λ =   f Lψλ   I − TTL

∗ nψλn=0λ   

=   I − TTL
∗ n   f Lψλ λ ψλn=0 =   I − TTL

∗ nTTL
∗fn=0   

=   I − TTL
∗ n I −  I − TTL

∗  fn=0 = f −  I − TTL
∗ N+1f.  

Therefore 

f − TN TL
∗f =  I − TTL

∗ N+1f,  

that means 

 I − TN TL
∗ H→H =   I − TTL

∗ N+1 
H→H

≤  I − TTL
∗ H→H

N+1 < 1.∎  

 Now, we are going to use frames and design an algorithm in order to approximate the solution u of  

the problem (1.1). This algorithm works based on the frame bounds and frame operator. 

Theorem 2.5. Let Ψ =  ψλ λ  be a frame for H with frame operator S and L: H → H be a bounded self 
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adjoint operator on H. Suppose that A and B are the bounds of the frame Φ =  ϕλ λ =  Lψλ λ . Given 

u0 ∈ H, define for n ≥ 1 

un = un−1 + 2

A +B
LS f − Lun−1 .  

Then 

 u − un H ≤  B−A
B +A

  u H ,  

so that un  converges to the exact solution u as n → ∞. 

Proof. By definition of un  

u − un = u − un−1 −
2

A +B
LSL(u − un−1)  

=  I − 2

A +B
LSL  u − un−1 =  I − 2

A +B
LSL 

2
 u − un−2 = ⋯  

=  I − 2

A +B
LSL 

n
 u − u0 ,  

thus 

 u − un H ≤  I − 2

A +B
LSL 

H→H

n
 u H  .     (2.3) 

But for every v ∈ H we have 

  I − 2

A +B
LSL v v =  v H

2 − 2

A +B
 LSLv v   

=  v H
2 − 2

A +B
   v ϕλ  

2
λ   

≤  v H
2 − 2A

A +B
 v H

2 =  B−A

B +A
  v H

2 . 

The last inequality obtains by the frame property of the frame Φ =  Lψλ λ∈Λ. Similarly we have 

− B−A

B +A
  v H

2 ≤   I − 2

A +B
LSL v v .  

So we conclude that 

 I − 2

A +B
LSL 

H→H
≤ B−A

B +A
.     (2.4)  

Combining this inequality with (2.3) give 

 u − un H ≤  B−A

B +A
 

n
 u H ,  

and so un  converges to u as n → ∞. ∎ 

3. Using frames in Galerkin methods 

In this section we will find a sequence of solutions ui of finite dimensional analogs of the 

problem (1.1), related to the some finite frame sequences, such that converges to the exact 

solution u of the problem (1.1). By (1.5), u has the expansion 

u =   u ϕλ  S′ 
−1ϕλλ∈Λ ,  

where  ψ
λ
 
λ
 is a frame for H and S′ is the frame operator of the frame  ϕλ λ =  Lψ

λ
 
λ
. Since L is 

self adjoint then 

u =   u Lψ
λ
  S′ −1ϕλλ∈Λ =   Lu ψ

λ
  S′ −1 =   f ψ

λ
 (S′)−1ϕλ.λ∈Λλ∈Λ      (3.1) 

Proposition 3.1. Let Ψ =  ψ
λ
 
λ
⊂ H be a frame for H and Λ ⊂ Λ be a finite subset of Λ  such that not 

all elements of ΨΛ =  ψ
λ
 
λ∈Λ 

 are zero. Then ΨΛ  is a frame sequence. 

Proof. See [5]. ∎  
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Let Λ1 ⊂ Λ2 ⊂ Λ3 ⊂ ⋯ ↗ Λ be finite subsets of Λ where not all elements of Λ1 are zero. By  

Proposition 3.1 each ΨΛi
 and consequently ΦΛi

 is a frame sequence. We assume that ΦΛi
 are 

frame sequences with common bounds A and B. If L is invertible, it follows that ΦΛi
 are frame  

sequences with common bounds A

 L−1 
2 and B L 2. Let Vi = spanΦΛi

= span Lψ
λ
 
λ∈Λi

 and 

S′i : Vi → Vi be its frame operator, then for every f ∈ Vi we have 

S′if =   f Lψ
λ
 Lψ

λλ∈Λi
= L(  f Lψ

λ
 ψ

λ
)λ∈Λi

= L(  Lf ψ
λ
 ψ

λ
)λ∈Λi

= LSiLf, 

therefore S′i = LiSiLi, where Li  is the restriction of L on Vi, and Si is the frame operator of the 

frame sequence ΨΛi
. Specially we obtain  S′i 

−1 = Li
−1Si

−1Li
−1 and so 

supi∈ℕ   Si
′ 
−1
 ≤  L−1 2 A , ∀ i ∈ ℕ.     (3.2)  

Now we are ready to present the main result that is the following theorem. 

Theorem 3.2. Let ΨΛ,ΦΛ and Λi be as above. Assume that 

ui =   f ψ
λ
  Si

′ 
−1
ϕλ,λ∈Λi

  

then ui → u as i → ∞. 

Proof. Let  cλ λ∈Λ ∈ ℓ2(Λ) and  cλϕλλ∈Λ = 0. Using (3.2) we have 

  Si
′ 
−1
 cλϕλλ∈Λi

 
V i

≤   Si
′ 
−1
   cλϕλλ∈Λi

 
V i
≤ ( L−1 

2
A1 )  cλϕλλ∈Λi

 
V i

,  

hence 

 Si
′ 
−1
 cλϕλλ∈Λi

→ 0, as i → ∞.     (3.3)  

Since   f ψ
λ
  

λ∈Λ
∈ ℓ2(Λ) and ℓ2 Λ = Ran(T∗) ⊕ Ker(T) then 

  f ψ
λ
  

λ∈Λ
=   f′ ϕλ  λ∈Λ +  cλ λ∈Λ 

for some f ′ ∈ H and  cλ λ∈Λ ∈ Ker T . Thus 

  f ψ
λ
  Si

′ 
−1
ϕλλ∈Λi

=   f′ ϕλ  Si
′ 
−1
ϕλλ∈Λi

+  cλ Si
′ 
−1
ϕλλ∈Λi

,  

therefore 

  f ψ
λ
  Si

′ 
−1
ϕλλ∈Λi

=   f′ ϕλ  Si
′ 
−1
ϕλλ∈Λi

+  Si
′ 
−1
 cλϕλλ∈Λi

.     (3.4)  

Also because of  cλ λ∈Λ ∈ Ker T , it follows 

u =   f ψ
λ
  S′ −1ϕλλ∈Λ =   f′ ϕλ  S′ 

−1
ϕλλ∈Λ +  S′ 

−1
 cλϕλλ∈Λ = f ′,  

combining this with (3.3) and (3.4) induce the result as i → ∞. ∎  

Now consider the operator equation (1.1), where L is a bounded, self adjoint and H-elliptic 

operator from H to H∗, that is  Lv  v ≥ C v 2 for a constant C and every v ∈ H. In this 

case, by Lax-Milgram Lemma, the equation has a unique solution. Our problem is equivalent to  

find u such that 

 Lu v = f v , ∀ v ∈ H.     (3.5)  

Now let Ψ,Φ,Λ, and Λi be as the previous section. Projecting the problem ontoHi = spanΨΛi
, we 

 can again apply the Lax-Milgram Lemma and conclude that the problem 

 Lui  v = f v , ∀ v ∈ Hi ,     (3.6)  
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has a unique solution. If there exists a constant M such that  Si
′ 
−1
≤ M,∀ i ∈ ℕ, similar to the  

previous section we can show that 

u =   f ψ
λ
  S′ 

−1
ϕλ,λ∈Λ   

and 

ui =   f ψ
λ
  Si

′ 
−1
ϕλ.λ∈Λi

  

The following theorem holds. 

Theorem 3.3. Let L: H → H∗ be a bounded, self adjoint and H-elliptic. If there exists a constant 

M such that  Si
′ 
−1
≤ M,∀ i ∈ ℕ, then ui → u as i → ∞ and there exists a constant c such that 

 u − ui H ≤ c infv∈Hi
 u − v H .  

Proof. Subtracting (3.6) from (3.5) with v ∈ Hi , we obtain 

L u − ui v = 0, ∀ v ∈ Hi .     (3.7)  

By the ellipticity of L, 

C u − ui H
2 ≤  L u − ui   u − ui =  L u − ui   u − v ≤  L  u − ui H u − v H ,  

Therefore 

C u − ui H ≤  L  u − v H , ∀ v ∈ Hi ,  

that means 

 u − ui H ≤ ( L C) infv∈Hi
 u − v H ,  

as we desired. ∎ 

We can express the problem (3.6) in the form of a linear system of the finite dimensional space Hi. If  

we write ui =  ξ
j
ϕj

i
j=1  then (3.6) is  equivalent to a linear system 

Aiξ = b,  

where ξ =  ξ
j
 ∈ ℝi is the unknown vector, Ai =   Lϕj  ϕj  

i×i
  is the stiffness matrix and b = 

 fϕj ∈ ℝ
i. Since L is bounded and elliptic then we can define a bounded and elliptic bilinear form 

a: H × H → R by a u, v =  Lu v. That is there exist constants M and C such that 

 a(u, v) ≤ M u H v H , a v, v ≥ C v H
2 .  

Now we consider the equivalent problem to find 

u ∈ H, a u, v = f v , ∀ v ∈ H.  

In order to seeking the approximated solution ui ∈ Hi , we project this problem onto Hi, 

ui ∈ Hi , a ui , v = f v , ∀ v ∈ Hi .  

This solution procedure is called the Galerkin method. Since Hi ⊂ Hi+1 and  Hii≥1
         = H, then there 

exist a sequence  vi i≥1 , vi ∈ Hi, such that  u − vi H → 0 as i → ∞. Applying the previous 

theorem, 

 u − ui H ≤ c u − vi H .  

Therefore we conclude  u − ui H → 0 as i → ∞, that means the Galerkin method converges. 



H. Jamali / J. Math. Computer Sci.    12 (2014), 105-112 
 

112 
 

 

References 

[1] K.G. Atkinson, Iterative variants of the Nystrom method for the numerical solution ofintegral equations, Numer. Math. 22 

(1973) 17-31. 

[2] M. Bahmanpour, M. A. Friborzi Araghi, Numerical solution of Fredholmand Volterraintegral equation of the first kind 

using wavelets bases,J. Math. Computer Sci. 5 (2012) 337-345. 

[3] W. Briggs, A Multigrid Tutorial, society for Industrial and Applied Mayhematics, Philadel- 

phia, PA, 1987. 

[4] P.G. Casazza, The art of frame theory, Taiwaness J. Math. 4 (2000) 129-201. 

[5] O.Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003. 

[6] A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations:convergence rates, Math. of 

comp. 70:233 (2001) 27-75. 

[7] A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelets methods II-beyond the elliptic case,Found. of Comp. Math. 2 

(2002) 203-245. 

[8] S. Dahlek, M. Fornasier and T. Raasch, Adaptive frame methods for elliptic operator equa-tions, Advances in comp. 

Math. 27 (2007) 27-63. 

[9] S. Dahlek, T. Raasch and M. Werner, Adaptive frame methods for elliptic operator equations:the steepest descent 

approach, IMA J. Numer. Anal. 27 (2007) 717-740. 

[10] M. M. Shamaooshaky, P. Asghari, H. Adibi, The numerical solution of non linier Fredholm-Hammerstein integral 

equation of the second kind utilizing Chebyshev wavelets, J. Math. Computer Sci.10 (2014) 235-246. 

[11] R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J. Numer.Anal. 41 (2003) 1074-

1100. 


