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Abstract
In this paper we give some approximated solutions for an operator equation Lu = f where
L:H — H is a bounded and self adjoint operator on a separable Hilbert space H. We use frames in order to
precondition the linear equation so that convergence of iterative methods is improved. Also we find an
exact solution associated to a frame and then we seek an approximated solution in a finite dimensional
subspace of H that is generated by a finite frame sequence.
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1. Introduction

Our problem is to find u € H such that

Lu=f (1.1)
where L: H — H is a bounded and self adjoint linear operator on a separable Hilbert space H.
In general it is impossible to find the exact solution of the problem (1,1), because the separable
Hilbert space H is infinite dimensional. A natural approach to constructing an approximate
solution is to solve a finite dimensional analog of the problem (1,1). In [2, 6, 7, 10] some
approximated solutions for this equation and related problems has been developed by wavelet
bases. Usually the operator under consideration is defined on a bounded domain in IR" or on a
closed manifold. Therefore the construction of a wavelet basis with specific properties on this

domain or on the manifold is needed. Motivated by some difficulties to construct an appropriate
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basis, we therefore suggest to use a slightly weaker concept namely, frames. In [8, 9, 11], some
iterative methods for solving this system has been developed by frames.

Assume that H is a separable Hilbert space, A is a countable set of indices and ¥ = ({5; )yep
H is a frame for H. This means that there exist constants 0 < Ay < By < oo such that

Agllfllf < Taeallflu)? < Byllfll, vFeH, (1.2)
or equivalently (by the Riesz mapping)
Aglifilfe < NV, < Bylifllf-, v EEHY, (13)

where f(¥) = (f(¥)), = (flwaDa.
For the frame P, let T: £,(A) — H be the synthesis operator

T((ca)r) = Zaeacrn
and let T*:H - £, (A) be the analysis operator

T*(f) = {flyada-
Also let S := TT*: H — H be the frame operator

S(H) = Xalflyn)u,.

Note that T is surjective, T*is injective, T* is the adjoint of T and because of (1.2), T is bounded. In

fact we have

TNl = IT*ll <yBy. (1.4)
Since Ker(T) = (Ran(T*))l then £,(A) = Ran(T*) @ Ker(T). It was shown in [5], for the frame

(Y1) 1en » S is a positive invertible operator satisfying Agly < S < Byly and Byl < St <
A3ty Also, the sequence
P =(1),cr = ¥)sen
is a frame (called the canonical dual frame) for H with bounds By!, Ag!. Every f € H has the
expansion
f=Saflvddn = Talflda). (1.5)
Also a complete sequence (;),ea In H is called a Riesz basis if there exist constants Ay, By > 0
such that
AlICIE n) < Iz a¥allf < BeliCIZ,,,,
hold for all finite sequences C = (c;)ea. Each Riesz basis for a Hilbert space H is a frame for H. For
more details see [4, 5]. For an index set A c A, (¥,),¢x is called a frame sequence if it is a frame for

its closed span.
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2. Approximated inverse frames of an operator

The most straight forward approach to an iterative solution of a linear system is to rewrite the
equation (1.1) as a linear fixed-point iteration. One way to do this is the Richardson iteration.
The abstract method reads as follows:
write Lu = fas
u=((I—-Lu+f
For given uy € H, define forn = 0,
U =0 =LDu, + £ (2.1)
Since Lu—f=0,
Uy —u=>_0-Lu,+ f—u—-(f-Lu) =
(I-Lyu, —u+Lu={-L)(u, —u).
Hence
llun+1 —ully < 1T = Lllg-n llug — ullg,
so that (2.1) converges if
IIT—Lllgon < 1.
It is sometimes possible to precondition (1.1) by multiplying both sides by a matrix B,
BLu = Bf,
so that convergence of iterative methods is improved. This is very effective technique for solving
differential equations, integral equations, and related problems [1, 3]. We want to do this by
using frames.
Definition 2.1. A frame ¥ = ({5 ),ea With frame operator S, is called an approximated inverse
frame of operator L on H if ||T — SL||og < 1.
Richardson iteration, preconditioned with an approximated inverse frame of L, has the
following form
upq = (I—SL)u, + Sf,
where S is the frame operator of the frame .
Lemma 2.2. Let ¥ = (5 ),en < H be a frame for H and L. be a bounded operator on H. Then
the sequence ® = (L5 )yen is a frame for H.
Proof. See [OCH]. m
Proposition 2.3. If ¥ = (Y1) ),ex is a frame for H with frame operator S and L is a bounded
self adjoint operator on H then SL = TT;" , where T is the synthesis operator of frame ¥ and T;*
is the analysis operator of frame ® = (L )jen-
Proof. Let f € H, then

SLf = Y (Lf[W) Wy = ZalfILdn)wy =TfILY Dy = TTL S,
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that means TT; = SL. m
Using this proposition we can say that a frame ¥ = (U5, ); e iS an approximated inverse frame
of an bounded self adjoint operator L if ||l — TT}||y_y < 1. By taking adjoint this is equivalent
to ||[T — T, T*||gopy < 1.
From linear algebra we know that if ||I — SL||;;_z < 1 then SL is nonsingular and
(SL)™h = Xi-o( = SL)™.  (2.2)
If L is a bounded self adjoint operator on H and if ¥ = ()5, is an approximated inverse
frame of L, then the solution u of the equation (1.1) is as follow:
u = (SL)"(SL)u = Xy (ulLys)(SL)
= Y{Luldn) (SL) ™1y = Zdflwn )(SL) ™My
also by Proposition 2.3 we have
u = N (fP) (TT) 1y
Now we note that each f € H has the representation as
f= (LT (TLT)f = pdflun) (LT ™ (L),
that means (T, T*)~1(Lys,) is a dual frame of the frame ¥ = ({, ). Specially we have the
following expansion for the exact solution u of the equation (1.1)
u = S (ul L )T, T ™My = ZadLul ) (T T "1y = Fadfla ) (T, T) L.
The following theorem tries to approximate (T, T*)~Lys,.
Theorem 2.4. let ¥ = (5, ), be an approximated inverse frame of a bounded self adjoint
operator L. For each N € N define
P) = Zamo = TTY) ;.
Then for each N € N, (Y ),/\ is a frame for H. Also if Ty denotes its synthesis operator, then
I =Ty T lion < 11— TTEINE -
Proof. Let f € H,
TyTi = TaIL )Y = Za(fILPn) Znmo( = TT) Py
= Yoo — TT)" TadflLun) Wy = Tyoo( — T TT
= Y=o =TT (I - (1= TT))f = f— (I - TTHNFIE
Therefore
f—TyTif= (1—TTHONIE,
that means
I =Ty T lgon = | (= TTON| S = TTEIRSE < 1.m
Now, we are going to use frames and design an algorithm in order to approximate the solution u of
the problem (1.1). This algorithm works based on the frame bounds and frame operator.

Theorem 2.5. Let ¥ = (1, ), be a frame for H with frame operator S and L: H — H be a bounded self
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adjoint operator on H. Suppose that A and B are the bounds of the frame ® = (¢, )y = (L5 ). Given
ug € H, defineforn > 1
U, =up_q +5 LS(f Lu,_1).
Then
lu—uylly < (E2) lully,
so that u,, converges to the exact solution u as n — oo,
Proof. By definition of u,
u—u, =u—u,_1 A+BLSL(U—un 1)
= (1= 2 LSL)(u —uy_1) = (1 — 4 LSL) (U= u,_) = -
= (1—:4LSL)" (u —up),
thus
lu = uglly < 1= LSt Mully - (23)
But for every v € H we have
((1- A+BLSL)v|v)_||v||H +=(LSLv|v)
= |IVII% — 25 Zal(vidn)I?
< |IvIIE = 22 01vIlE = (E=2)IvIiE.
The last inequality obtains by the frame property of the frame ® = (Lys; )y ex. Similarly we have
—(EM)vilE < (1= 2Z5LSL)v|v).
So we conclude that
”I - A+BLSL||H_)H - g+:' (2'4)
Combining this inequality with (2.3) give
lu—uglle < E2)" ully,
and so u, convergestouasn — c. m

3. Using frames in Galerkin methods

In this section we will find a sequence of solutions u; of finite dimensional analogs of the
problem (1.1), related to the some finite frame sequences, such that converges to the exact
solution u of the problem (1.1). By (1.5), u has the expansion
u = Yaealuld)(S) oy,

where (\"k)x is a frame for H and S’ is the frame operator of the frame (¢;); = (L‘l’x)x' Since L is
self adjoint then

u = Yoea(ulLy, )87 s = Tea(Llulw, )V = Zaealflv, )(S) 1. (B.1)
Proposition 3.1. Let ¥ = ("’k)x c H be a frame for H and A A be a finite subset of A such that not
all elements of ¥z = (\"k)xex are zero. Then Wy is a frame sequence.
Proof. See [5]. m
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Let A; € A, € Az c .- 2 A be finite subsets of A where not all elements of A; are zero. By
Proposition 3.1 each ¥, and consequently @, is a frame sequence. We assume that @, are
frame sequences with common bounds A and B. If L is invertible, it follows that @, are frame
sequences with common bounds ﬁz and B||L||%. Let V; = span®,, = span(L\yk)xeAi and
S'i: Vi = V; be its frame operator, then for every f € V; we have
S'if = Tnen (L, )Ly, = LZren (fILw )v;) = L(Zaen, (Lf|w, )w,) = LS;Lf,
therefore S'; = L;S;L;, where L; is the restriction of L on V;, and S; is the frame operator of the
frame sequence ¥ 5,. Specially we obtain ()™ =L71s 1L and so
supien [|(5) " [| < ILM2/A Vi N, (32)
Now we are ready to present the main result that is the following theorem.
Theorem 3.2. Let ¥, @, and A; be as above. Assume that
U = B (flv,) () o
thenuy; » uasi— oo.
Proof. Let (c;)yen € £2(A) and Y e 6y, = 0. Using (3.2) we have
||(Si,)_1 Lren Cx%”\,i =< ”(Sl)_l” [ Zaen, Cx‘bx”\,i < (L /a0) [ iea, Cxq;x”\,i:
hence
(S) " Sien - ,asi—> 0. (3.3)
Since (<f|"’x>)xa\ € 05(A) and £, (A) = Ran(T*) @ Ker(T) then
(<f|\|jk))xe1\ = ({(Fldu)ren + (©ren
for some f' € Hand (c;),ex € Ker(T). Thus
erm(ﬂ%)(si’)_l by = erAi(f'|¢x)(Si,)_l¢x + Doen, CX(Si,)_lq)X'
therefore
Srendf) (5D dn = Taeadf10)(S) " b+ (S Taen ibr (34)
Also because of (c;);ea € Ker(T), it follows
u = Yoealflw, ) SN 1y = erA(f'ld)x)(S,)_lq)x + (S,)_l Yoen s =1,
combining this with (3.3) and (3.4) induce the resultasi — . m
Now consider the operator equation (1.1), where L is a bounded, self adjoint and H-elliptic
operator from H to H*, that is (Lv)(v) > C||v||? for a constant C and every v € H. In this
case, by Lax-Milgram Lemma, the equation has a unique solution. Our problem is equivalent to
find u such that
(Lwv =f(v),YyveH. (3.5
Now let ¥, ®, A, and A; be as the previous section. Projecting the problem ontoH; = span¥,_, we
can again apply the Lax-Milgram Lemma and conclude that the problem
(Lu)(v) =f(v),vveH, (3.6)
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has a unique solution. If there exists a constant M such that (S{)_l < M,Vi € N, similar to the
previous section we can show that
u=Tealflv)(8) b
and
4 = Biea (flv,)(5) o
The following theorem holds.
Theorem 3.3. Let L: H —» H* be a bounded, self adjoint and H-elliptic. If there exists a constant
M such that (S{)_l <M,Vi€eN,thenu; - uasi— o and there exists a constant c such that
llu—uilly < cinfyey,llu—vlly.
Proof. Subtracting (3.6) from (3.5) with v € H;, we obtain
Llu—u)v=0,vveH;. (3.7)
By the ellipticity of L,
Cllu—uillf < (L(u—up))u—u) = (Lu—u))(u—v) < Ll = ullgllu=vily,
Therefore
Cllu —uillg < [ILlHlu = vlly, Vv € H;,
that means
llu = uilly < (IILII/C) infyep, llu — vy,
as we desired. m
We can express the problem (3.6) in the form of a linear system of the finite dimensional space H;. If
we write u; = }:1 e“;]. ¢; then (3.6) is equivalent to a linear system
AE=b,
where & = (gj) € R is the unknown vector, A; = ((chj)(q)j))i><i is the stiffness matrix and b =
(fd;) € R'. Since L is bounded and elliptic then we can define a bounded and elliptic bilinear form
a:H x H - R by a(u,v) = (Lu)v. That is there exist constants M and C such that
la(u, v)| < Mljully[Ivily, a(v, v) = ClIv]I§.
Now we consider the equivalent problem to find
u € H,a(u,v) =f(v),Vv eEH.
In order to seeking the approximated solution u; € H;, we project this problem onto H;,
u; € H;,a(y;,v) =f(v),vv e H,.
This solution procedure is called the Galerkin method. Since H; < H;,; and U;>; H; = H, then there
exist a sequence (v;);>1,V; € Hj, such that ||u — v;||y = 0 asi — c. Applying the previous
theorem,
llu—uilly < cllu—villy.

Therefore we conclude |Ju — u;||y = 0 as i — oo, that means the Galerkin method converges.
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