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Abstract 
Point multiplication is the most important part of elliptic curve cryptography which consumes 

remarkable time of implementation. Therefore efficiency enhancement of entire system is depending on 

efficiency of this part. Increasing the efficiency of the modular multiplication improve overall 

performance of the cryptographic system as it frequency used in some application such as Elliptic Curve 

Cryptography. By applying Residue Number System (RNS) to Montgomery multiplication as a method 

for modular multiplication, delay of modular multiplication will be reduced. Appropriate RNS moduli 

sets replace time consuming operation of multiplication by smaller operations. In this paper two balanced 

moduli set with proper dynamic range is presented and the efficiency of conversion from RNS to RNS 

which is the most time consuming part of the Montgomery modular multiplication will be increased. 

 
Keywords: residue number system (RNS), RNS Montgomery, reverse converter, elliptic curve 

cryptography 

 

1. Introduction 

One of the best public key cryptography systems are RSA [1] and Elliptic curves cryptography [2] [3]. 

ECC can provide security equivalent RSA with smaller key and a fewer calculations. ECC systems are 
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face with several problems. As well as we know the important operation in ECC is point multiplication 

that include two basic operations are on field P: point doubling (P.D) and point addition (P.A). In order 

to improving performance of operation on P, Montgomery multiplication [4] can be employed. 

Montgomery multiplication performs modulo reduction without division. So as to increase efficiency 

of Montgomery, RNS Montgomery presented [5] [6]. RNS is a non-weighted number system and 

operations on large numbers are done over small moduli. As described in [5], two RNS bases are 

required to perform RNS Montgomery multiplication and conversion from one basis to another is 

needed in this process. In [7], RNS bases in the form of 2
n
-ci where 0 ≤  ci  <2

k/2
 are considered. In 

[8],[9], in one bases efficient RNS moduli set such as {2
n
, 2

n
-1, 2

n
+1, 2

n-2(n+1)/2
+1, 2

n+2(n+1)/2
+1} [10], 

{2
n
-1, 2

n
 , 2

n
 +1, 2

2n
+1 -1} [11] and {2

n
-1, 2

n
 , 2n +1, 2

2n
+1} [12] are considered and for first bases the 

moduli set in the form of 2
n
-ci [7] are considered. Although in [7] it is proved that in the special case of 

2
n
-ci where 0≤ ci <2

k/2
, modulo reduction can be efficiently implemented, but using well formed moduli 

such as 2
n
-1, 2

n
+1, 2

n
, 2

n
-3, 2

n
+3, where efficient modulo adder [13-15], multiplier and residue to 

binary converter and binary to residue converter are presented for these moduli by researcher [16-21], 

can leads to more efficient RNS Montgomery implementation.  

In this paper, two efficient RNS bases {2
n
, 2

n
+1, 2

n-1
-1} and {2

n
+3, 2

n
-1, 2

n
-3} are selected for RNS 

Montgomery multiplication and required conversions are efficiently implemented. The selected RNS 

bases are balanced and this lead to modulo channel with approximately same delay. Fast and efficient 

implementation of RNS Montgomery multiplication leads to meliorate the performance of P.A and 

P.D. 

This paper organized as follow: Section 2 provides the related background of RNS and RNS 

Montgomery. In section 3, the RNS bases and efficient design of required conversions in RNS 

Montgomery regarding to proposed bases are presented. Performance of proposed work are evaluated 

and compared in section 4 and finally section 5 concludes the paper. 

 

2.  Related Background 

This section in three subsections mathematical background of RNS Montgomery multiplication and 

RNS will be discussed, respectively. 

2.1 Montgomery in RNS 

RNS Montgomery multiplication is presented by [5]. In RNS Montgomery multiplication two RNS 

bases (moduli set) are required. Considering X and Y as two large integer number with RNS 

representation (x1,…, xm) and (y1, …, ym) in first basis (p1, …, pm) and in the second basis we consider X 

and Y as (x´1, …, x´m) and (y´1, …, y´m) in second basis (p´1, …, p´m). 

Algorithm 1 shows the RNS Montgomery multiplication [7]. M = p1×p2…×pi and M'= p'1×p'2…×p'i are 

the dynamic range for first and second bases, respectively. Consider T which is T < M < M´, so that 

gcd (T, M) = gcd (T, M´) = gcd (M, M´) = 1. Montgomery multiplication performs modulo reduction 

without division. The most important part of Montgomery algorithm is moduli selection that leads to 

design pretty faster converter and efficient arithmetic unit. Choosing moduli set is necessary to provide 

these features, so in this approach the RNS basis in order to achieve the high performance of 

multiplication is proposed.  

According to algorithm 1, in the process of Montgomery multiplication conversion from one basis to 

another is required. Figure 1 shows the required conversions.  
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Algorithm 1: RNS Montgomery multiplication 
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Figure 1.  Overview of base extension in Montgomery algorithm 

 

Conversion from one basis to another needs the mathematical background of the RNS. Therefore in 

the following the related background of the RNS is detailed.  

 2.2 Residue Number System  

The RNS is an unconventional number system which is defined in terms of relatively-prime moduli set 

{m1, m2, …, mn} that is gcd (mi, mj) = 1 for i ≠ j. A weighted number X can be represented as X = (x1, 

x2, … , xn), where 

ii
i

ii mx
m

XmXx  0, mod                                                                            (1) 

Such a representation is unique for any integer X in the range [0, M-1], where M  is the dynamic range 

of the moduli set {m1, m2, …, mn} which is equal to the product of mi terms (
1

n

ii
M m


 )[22]. 

RNS includes three main parts: forward converter, reverse converter and arithmetic operation [23]. 

Several algorithms for reverse conversion can be employed such as Chinese reminder Theorem (CRT), 

Mixed Radix Conversion (MRC) or the modified version of these algorithms [23]. Since MRC is used 

in the required conversion in this paper, the mathematical details of MRC is discussed in the 

following. 

In MRC [24], [25], the number X can be calculated from residues by: 
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1

1
112123...

n

i
in vPvPPvPvX                                                                            (2) 

The coefficients {v1, v2,…, vn} can be obtained from residues as follows: 

1 1v x                                                                                                                                              (3) 

2
2

1

1122 )(
P

P
Pvxv


                                                                                                                     (4) 

3
33

1

22

1

1133 ))((
P

PP
PvPvxv


                                                                                                   (5) 

In the general case  

nPnP
nPnv

nP
Pv

nP
Pvnxnv

1

1)1

1

2)2

1

1)1(((








                                                                  (6) 

jP
iP

1
denotes the multiplicative inverse of Pi modulus Pj. 

 

3. Selected RNS Bases 

In order to increase the efficiency of Montgomery in RNS, efficient RNS bases are required. To 

achieve this, for first and second bases {2
n
, 2

n
+1, 2

n-1
-1} and {2

n
+3, 2

n
-1, 2

n
-3} when n is even, are 

considered as moduli sets, respectively. As mentioned before, conversion from one base to another is 

needed in the process of RNS Montgomery multiplication. In the following, the required conversion 

will be detailed. 

3.1 Residue-to-binary conversion in first bases  

By using MRC and considering P1 = 2
n
, P2 = 2

n
+1 and P3 = 2

n-1
-1 and residues Z = (x1, x2, x3), we have 

1 2 32 (2 1)(2 )n n nX v v v                                                                                                         (7) 

 Where 

v1=x1                                                                                                                                                                                                                                  (8)

 
2

2

1

2 2 1 1 P
P

v x x P                                                                                                               (9)

 
3 3

3

1 1

3 3 1 1 2 2P P
P

v x x P v P   

                                                                                           

 (10)  

Theorem 1: Required multiplicative inverses in Eq. (10), are
3

1 2

1 2n

P
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2
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Proof. 
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Using theorem 1, v2 can be calculated as: 

2 1
2 1 2

n

v x x


 
    

                                                                                                                             (11)  

Based on equation of v3 in MRC we have:  

 
3 3

3

1 1

3 3 1 1 2 2P P
P

v x x P v P   

                                                                                                    

(12)  

Using theorem 1, v3 can be calculated as: 

   
1

1 0 2 2

3 3 1 2

2 1

2 2 2 ... 2

n

n n

Y K

v x x v



 



     
 

                                                                      (13)  

Lemma 1: In modulo 2
n
-1, multiplication of n-bit residue number x by 2

k 
 is equal to k-bit circular left 

shift residue number x [26]. 

Lemma 2: In modulo 2
n
-1, the negative of residue number x is obtained by one's complement of x, 

where  0 ≤  x < 2
n
− 1 [26]. 

By using Lemma 1 and 2 we have: 

13 2 1n
v Y K

 
 

                                                                                                                                 
(14) 

Where  

12 2 2 1
( ( ,0) ..... ( , 2)) nK CLS v CLS v n  

   
                                                                               

(15) 

CLS (k, p) denotes p-bit left shift of k [27]. For Y calculation we have:  
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1

2
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2 bit 2 1

.... 00....0 ... 2
n

n
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n
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Based on Lemma 1 and 2, Y can be rewritten as follows: 
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Figure 2.  Hardware implementation of X conversion in first basis 
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  12 1, 1 1,1
2 1

...
nnY x x




                                                                                                                             

(19)

  

1

2

3 1,0
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11...1

n

n

Y x







 
 
 
                                                                                                                    

(20)  

Finally after calculation of coefficients {v1, v2, v3} we came back to general equation of X. Thus: 


2

1 2 3 3

 bit

2 2 00...0 2n n n

n

X v v v v   

                                                                                           

(21)

 
2

3 1 2 3

2  bit(2 1) bit

2 0...0 2n n

nn

X v v v v



  

                                                                                                            

(22)




21

(2 1) bit

3 3 1 2 2

n

n

kk

X v v v v

 

 


                                                                                                              

 (23)  

Hardware implementation of X in Eq. (23) is shown in figure 2. Operand preparation unit (OPU) 1, 2 

and 3 provides the required negation and shift according to Eq. (18-23). Details report of the required 

hardware and considered Carry save adder (CSA) with end around carry (EAC) [27], Modulo adder 

[29][30], subtractor [31] and carry propagate adder (CPA) with EAC [32] which used in this paper are 

included in section 4 and table 2.  

 

3.2 binary-to-Residue conversion in second bases 

Calculation of number X from moduli set of {2
n
+3, 2

n
-1, 2

n
-3} can be done with two MRC levels as 

shown in figure 3: 

 

MRC 1

MRC 2

x1           x2  

x3       

X

Y

 
Figure 3.  Two MRC levels of conversion in second basis 

 

As mentioned before the coefficients {v1, v2, v3} have to be obtained. Assume P1 = 2
n
+3, P2 = 2

n
-1,    

P3 = 2
n
-3 and Z = (x1, x2, x3). Thus: 

1 1v x                                                                                                                                                         (24)

 1 2 2 3nY v v  
                                                                                                                  

(25)

 
 

2
2

1

2 2 1 1 P
P

v x x P 

                                                                                                               

(26) 
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 Theorem  2: Required multiplicative inverse in Eq. (26), is 

1 2

1 2 1
2

n

nP 




 

Proof. 

 1 1 2

1 1 2 12 1
2 3 1 2

nn

n nP P  


     

Then Eq. (26) can be rewritten as follow: 

  2

2 2 1 2 1
2

n

nv x x 


 

                                                                                                                           
(27)  

 By using Lemma 1 and 2 we have: 


2

2 2, 1 2,0 ,1 0,1

1 bit
 bit 1 bit 2 1

( ..... 00..0 ..... ) 2

n

n

n n

n
n n
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                                                                        (28)                            

2 2,1 2,0 2, 1 2,2 ,1 0,1

1 bit
 bit 1 bit 2 1

..... 0 ..... 00..0

n

n n

n
n n

v x x x x x x


 

 
 

                                                                        

(29)

 

2 3,1 3,0 3, 1 3,2 ,1 2,1 1,1 0,1

 bit  bit  bit 2 1

..... 1 .... 111....1

n

n n

n n n

v x x x x x x x x



 
 

                                                         

(30)

2 3,1 3,0 3, 1 3,2 ,1 2,1 1,1 0,1

 bit  bit  bit 2 1

..... 1 .... 111....1

n

n n

n n n

v x x x x x x x x



  
  

                                               

(31)
 

2 1 2 3 2 1nv K K K


                                                                                                                   (32)  

Where  

1 3,1 3,0 3, 1 3,2.....nK x x x x
                                                                                                              

(33)

2 ,1 2,11 ....nK x x
                                                                                                                     

(34)

3 1,1 0,1111....1K x x
                                                                                                                    

(35) 

At the end of MRC1, Y can be computed by: 

 1 22 3nY v v  
                                                                                                              

(36)

 
21 22

1 2 2 1 2 2 1 2 2 22 3 3 0n

v v

Y v v v v v v v v v v       

                                                                  

(37) 

Hardware implementation of Y in Eq. (37) in first level of MRC conversion is shown in figure 4.  

For implementation of second level of MRC conversion as shown in figure 3 we used Eq. (40) as 

follows: 



   S. Sharifi, M. Esmaeildoust, M. Taheri, K. Navi / J. Math. Computer Sci.    12 (2014), 51-64 
 

59 
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Figure  4.  Hardware implementation of X conversion in second basis 
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Based on Theorem 3 and Lemma 1 and 2 Eq. (40) can be written as the following equation: 

  2 4

2 3, 1 3,0
(2 3)

.... 1 2 ... 2
n

n

nv Y x x 




    
                                                                     

(41) 

2

3 3 (2 3)

( ,0) ..... ( , 4)

( ,0) ...... ( , 4) n

CLS Y CLS Y n
v

CLS x CLS x n


   


  
                                                                     

(42) 

Finally X is calculated as the following:  

   2 1

2 2

2 1

2 2 2 2

(2 3) 2 1 2 2 3

2 2 0

n n n n

n n

X Y v Y v

Y v v v v





       

                                                             

(43)

 
2 1

2 2 2 2

2  bit ( 1) bit

2 0...0 2 0...0 1 2n n

n n

X Y v v v v



  
       

                                                                    

(44)


2

1

2 2 2 2

 bit

00....0 1 2
n x

x

X Y v v v v   


                                                                                             

(45) 

By calculating X in Eq. (45) for second level of MRC conversion, the residue to binary converter for 

the moduli set {2
n
+3, 2

n
-1, 2

n
-3} is designed completely and shown in figure 4. Details report of the 

required hardware is included in section 4 and table 3. 

3.3 Forward conversion  

In order to achieve RNS to RNS conversion according to figure 1, Forward conversion in the 

considered moduli set is required. Forward converter for the moduli 2
n
, 2

n
+1, 2

n
+3, 2

n
-1 and 2

n
-3 are 

designed by researchers [19] [20]. 

Critical moduli in first and second bases are 2
n
+1 and 2

n
+3, respectively. Forward conversion for (3n)-

bit word in moduli 2
n
+1 and (3n+1)-bit word in critical moduli 2

n
+3 in second bases have been 

calculated and show in table 1 as follow: 

 

Table 1.Delay of critical channel of forward conversion in 2
n
+1 and 2

n
+3 

 Critical moduli Hardware cost Delay for conversion 

First bases {2
n
+1} (4n+10)tFA (2n+5)tFA [19] 

Second bases {2
n
+3} (5n+19)tFA (3n+10)tFA [20] 

 

 
4. Performance evaluation  

In this section, in order to evaluate the performance of the proposed conversion for comparison with 

[7], we are going to calculate the hardware cost and conversion delay of  two proposed sets {2
n
, 2

n
+1, 

2
n-1

-1} and {2
n
+3, 2

n
-1, 2

n
-3} when tNOT, tFA, tXNOR/OR and tXOR/OR are delay represented of NOT gate, a 

full adder (FA), a pairs of XNOR/OR and a pairs of XOR/OR, respectively. As shown in figure 2 for 

first set, for calculating Eq. (18-20), (2n-2) NOT gates in OPU1 is used, so delay OPU1 equals to tNOT. 

In Eq. (11) for calculating v2 is used a modulo (2n+1) subtractor which has (2n+2)-bit delay [30]. 

Hence, for obtaining  Eq. (14) from Eq. (15) and  Eq. (17-20) is used from (n+1) NOT gates in OPU2 

and a 4- operand modulo (2
n-1

-1) adder is required which include three (n-1)-bit CSA with EAC 

following by (n-1)-bit CPA with EAC. Each CSA with EAC has the delay of FA, and the delay of a 
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CPA with EAC is twice the delay of a regular CPA. Since Eq. (19) and Eq. (20) have constant value of 

1 then FAs in CSA1 reduced to pairs of XNOR/OR gates. Area for CSA Tree is (n-3)(n-1)-bit CSA 

with EAC tree which arranged in l levels. Delay of circular shifting or bits rearrangement in OPU3 is 

ignored, since it is a rearrangement of wires. Realization of Eq. (23) required (3n)-bit CPA. Finally 

total delay and hardware cost for first set are calculated in table 2. 

 

Table 2. Hardware and delay specification of reverse converter for the moduli set {2
n
, 2

n
+1, 2

n-1
-1} 

Parts FA 

 

NOT 

 

XNOR/OR 

pairs 

Delay 

OPU1  2n-2  tNOT 

CSA1 1  n-2 tFA 

Modulo subtractor 

[28] 

2n+2   (n+1)tFA 

OPU2  n+1  tNOT 

CSA Tree n
2
-4n-3   *l.tFA 

CSA2 n-1   tFA 

CSA3 n-1   tFA 

CPA1 n-1   (2n-2)tFA 

CPA2 3n   (3n)tFA 

Total delay n
2
+4n-3 3n-1 n-2 (6n+2+l) tFA+2tNOT 

*Here l is the number of levels of CSA tree with (n-1) input 

In second set, required hardware for convert from Residue to binary in Eq. (29) is (2n) NOT gates in 

OPU1 following by n-bit CSA with EAC and n-bit CPA with EAC are used. Since Eq. (34) and Eq. 

(35) have constant value of 1 then FAs in CSA1 reduced to pairs of XNOR/OR. For calculating the 

Eq. (37) need to n-bit CSA that following by (2n+1)-bit CPA with EAC has been used. In Eq. (41) 

OPU3 has n NOT gates and two CSA Trees which one of them consists of (n-5)(4n)-bit CSA with 

EAC tree area which arranged in k levels for calculation of Y into two (4n)-bit parts which has 

constant value of 0 then FAs in CSA tree reduced to pairs of XOR/AND gates and following by 

OPU4, eleven n-bit CSA with EAC and n-bit CPA with EAC. As mention before delay of circular 

shifting or bits rearrangement in OPU4 was ignored, since it is a rearrangement of wires. Another CSA 

Tree for x3 calculation has (n-5)(2n)-bit CSA with EAC tree area which arranged in I levels which has 

constant value of 1 then FAs in CSA tree reduced to pairs of XNOR/OR gates. Finally for operations 

of Eq. (45) OPU5 with (n+1) NOT gates, one (3n+1)-bit CSA and (3n+1)-bit CPA has been applied. 

Since Eq. (45) has constant values of 0 then full adders in CSA9 reduced to pairs of XOR/AND gates. 

Total delay for second set is calculated in table 3. 
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Table 3. Hardware and Delay Specification of Reverse Converter for the moduli set {2
n
+3, 2

n
-1, 2

n
-3} 

Parts 

 

FA 

 

NOT 

 

XOR/AND 

pairs 

XNOR/OR  

Pairs 

Delay 

 

OPU1  2n   tNOT 

CSA1 1   n-1 tFA 

CPA1 n    (2n) tFA 

CSA 2 2n+1    tFA 

CPA2 2n+1    (2n+1) tFA 

OPU3  n   tNOT 

CSA Tree1 4n
2
-20n  2n

2
-7n+3  *k.tFA 

CSA Tree2 2n
2
-10n   n

2
-3n *I tFA 

CSA 3-13 n×11    (1×11) tFA 

CPA3 n    (2n) tFA 

OPU 5  n+1   tNOT 

CSA9 2n+1  n  tFA 

CPA3 3n+1    (3n+1)tFA 

Total delay 6n
2
-8n+5 4n+1 2n

2
-6n+3 n

2
-2n-1 (9n+16+k+ I)tFA+3tNOT 

*Here I and k are the number of levels of two CSA trees with (n-3) input 

Total delay and hardware cost for RNS to RNS conversion from first to second basis and inverse are 

computed in table 4. 

 

Table 4. Total delay and hardware cost for two proposed sets 

 Hardware cost Delay 

RNS to RNS conversion from 

first to second basis 

(n
2
+8n+7)tFA+(3n-1)tNOT+(n-2)tXNOR/OR (8n+7+l)tFA +2tNOT 

RNS to RNS conversion from 

second to first basis 

(6n
2
-3n+24)tFA+(4n+1)tNOT+(2n

2
-

6n+3)tNOR/AND+( n
2
-2n-1) tXNOR/OR 

(12n+26+k+I)tFA 

+3tNOT 

 

For p = 192-b implementation according to NIST report [33], p = 2
192

- 2
64

-1 is considered. By the 

proposed RNS bases, moduli sets {2
66

, 2
66

+1, 2
65

-1} and {2
66

+3, 2
66

-1, 2
66

-3} when n = 66 are 

achieved. In table 5 delay and hardware cost of proposed sets with [7] has been compared.  Before 

beginning, in order to have a better comparison to obtain total area and delay estimation, the unit gate 

model is considered [14]. According to this model [14], time and area requirements for each of the 

following components are explained as follows: each two-input monotonic gate (e.g., AND, NAND) 

counts as one gate in area and delay, an XOR/XNOR gate has two gates in area and delay and a FA 

counts as seven gates in area and has four gates in delay. 
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Table 5. Total delay of required RNS to RNS conversion for 192 bit key length 

 Delay Unit gate delay 

proposed  (1298) tFA  5192 

[7] (5376) tFA 21504 

 

Table 5 shows the delay comparison with three moduli RNS bases proposed in [7]. As the result 

shows, noticeable improvement in RNS to RNS conversion in RNS Montgomery multiplication is 

achieved. Besides, using well formed RNS moduli results arithmetic operation in RNS Montgomery 

multiplication with higher efficiency [23].  

 

5. CONCLUSION 

Montgomery modular multiplication in RNS is an efficient way to achieve higher speed of modular 

multiplication. Conversion from RNS to RNS is the critical part of this approach. In this paper, 

efficient RNS bases are selected to achieve high speed operation and the required RNS to RNS 

conversions are designed in efficient way. The proposed design enjoys efficient bases with suitable 

arithmetic unit as well as high speed RNS to RNS conversion that is proper for ECC. The results 

shows noticeable improvements in terms of delay of conversions are achieved compared to state-of-

the-art-work in literature. 
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