

Journal of mathematics and computer science 15 (2015), 70-77

Software Security Modeling Based On Petri Nets

A. Mohsenzadeh1

1Department of Information Technology, Mazandaran University of Science and Technology,

 Babol, Iran

 a.mohsenzadeh@ustmb.ac.ir

Article history:

Received May 2014

Accepted January 2015

Available online February 2015

Abstract

Nowadays, mostly security solutions are mainly focused on how to defend against various threats,

including insider threats and outsider threats, instead of trying to solve security issues from their sources.

This paper proposes a security modeling process and an approach to modeling and quantifying component

security based on Petri Nets (PN) in the software design phase. Security prediction in the design phase

provides the possibility to investigate and compare different solutions to the target system before

realization. The analysis results can be used to trace back to the critical part for security enhancing.

Keywords: Software security, Petri net, Security models

1. Introduction

 Security has become an important topic for many software systems. Currently, related reports of

security failures are becoming very common. According to the results of the Software Engineering

Institute's CERT Coordination Center's survey, it shows that the number of reported application

vulnerabilities rose from 171 in 1995 to 5,990 in 2005 [1]. When the system designers are constructing

the blueprint of an organization, they often neglect that the system design must be considered from

the overall view and security technologies cannot be incorporated at random. Bruce Schneier also states

that "Security is a chain; it's only as secure as the weakest link. Security is process, not a product [2]."

 Security has been identified as a major stumbling block in the realization of highly trustworthy

software systems. The cost is much higher to repair the flaws found in the late phase of development than

those found in the early phase. To reduce development cost and effort, attempts to improve software

security should be done as early as possible. Software security modeling in the software design phase

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

71

provides the possibility to investigate and compare different solutions to the target system before

realization. Sensitivity analysis on parameters in the model enables the identification of security

bottlenecks.

 Petri nets [3] are powerful formal models. They are based on strict mathematical theories. Petri nets

are appropriate for modeling and analyzing systems with parallelization, synchronization and confliction

[4]. Many verification and analysis methods have been developed around them and many mature analysis

tools are available [5,6]. They provide convenience for qualitative and quantitative analysis in the

software design phase. A system modeled with Petri nets is easily extended. They also provide visual and

hierarchical modeling methodologies. Therefore, in this paper, each software component is modeled by an

Petri net (PN).

 The rest of this paper is organized as follows. Section 2 introduces security modeling process. Issues

related to Petri nets are presented in Section 3. Section 4 proposes a hierarchical software security

modeling method based on PN. A case study is provided in Section 5. Section 6 concludes this paper.

2. Security Modeling Process

 Current mostly security professionals would rather focus on how to defend against various

threats than overcome the causes of security issues in the information system. There are several

existing works on security requirements engineering [7,8,9,10]. Based on these researches we present a

security model - in 12 steps - based on security requirements engineering process. One view of security

modeling is given in Figure.1

Figure1. Security modeling process

- Security Analysis Team: In general, security requirements team may be constitute of security

personnel, technical personnel and non-technical personnel.

- Consistency of Definitions: First of all, before security requirements analysis of an organization will

be done, all members must be agree on all related terms and definitions during the process of

security analysis. The best approach is to develop a common dictionary which can help all members

have a consistency of views.

Eliciting Security
Requirements

Identifying Security

Goals
Generating Threat

Model
Risk Assessment

Security Analysis

Team

Consistency of

Definitions
Analyzing Characters

of System
Identifying Critical

Assets and Processes

Identifying System

Vulnerabilities

ldentifying Threats

Security Modeling

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

72

- Analyzing Characters of System: security requirements team need to understand the system

completely. This means they must understand every component and its interconnections, and

consider how to define usage scenarios and identify assumptions and dependencies.

- Identifying Critical Assets and Processes: Identifying critical assets and processes is an important

step in the security requirements engineering process. Assets and processes are abstract or concrete

resources which a system must protect from insider threat. These identified critical assets and

processes will help analysts develop the following security requirements steps. On the one hand,

they will help the security team respectively prioritize the analysis of vulnerabilities, threats, and

risks according to the critical degree of assets and processes. On the other hand, they will be helpful

to further discuss critical issues against consuming human resource, time, and energy.

- Identifying System Vulnerabilities: lots of vulnerabilities can just be known after security accidents

have happened. The analysis of system vulnerabilities mainly focuses on system hardware, software,

artificial factor, policy, procedure, and so on. In the security requirements engineering process,

iterative analysis of vulnerabilities will be an essential component for ensuring complete security of

an enterprise system. The representation of vulnerability analysis will be different when a system

lies in different phases. It can be divided into three phases: designing phase of system, realizing

phase of system, running phase of system.

- Identifying Threats: The goal of this step is to use these information collected by previous

steps and identify threats of a system. The best way of enumerating threats is to view each critical

asset and critical process as a root node, then to analyze all potential vulnerabilities concerning the

asset/process. Finally, system threats will be thoroughly identified by traversing all vulnerabilities

according to confidentiality, confidentiality, integrity of information.

- Identifying Security Goals: Based on the list of threats identified by the previous step, security goals

can use them to prevent or avoid the actions on the asset that realizes the threat. The aim of this step

is to require administers of the organization and the security requirements team that must come to an

agreement on a set of prioritized security goals. Moreover, the existing security goals will confine

the scope of the rest of the security requirements engineering process.

- Generating Threat Model : In order to protect each critical asset and process in system from insider

abuse or insider attack, it is very necessary to combine with security goals and implement some

structure graphs and models during the process of security requirements analysis, such as attack tree

model, and misuse case diagram.

- Risk Assessment: The purpose of this step is to determine the likelihood that the threats will

materialize as real attacks and assess theirs impact and risk. Many methods of risk assessment can be

used in this step, and the methods can be divided into three types: 1) qualitative assessment; 2)

quantitative assessment; 3) mixed assessment, namely a combination of qualitative and quantitative

assessment.

- Eliciting Security Requirements: This step is the core of the security modeling and will derives final

security requirements. Correct security requirements or security requirements set can be attained by

detailedly analyzing each security goal, seriously considering related threats, overall executing risk

assessment, and reducing risks to an acceptable step.

- Security Modeling: The purpose of this step is providing security model Based on the previous steps.

Hence, in Section 4, we present a security model based on these 12 steps.

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

73

3. Petri nets

 A Petri net is a 5-tuple [3], PN = (P, T, F, W, M0). P is a finite set of places (drawn as circles). T is a

finite set of transitions (drawn as rectangles). F is a set of arcs. An arc connects a transition to a place or a

place to a transition. W: F → {1, 2, . . .} is a set of weight functions. M0: P → {1, 2, . . .} is the initial

marking. P∩T = φ and P∪T ≠̸ φ. A transition is enabled if and only if each of its input places contains at

least one token. The firing of a transition removes one token from each input place and places one token

in each output place.

4. PN Based Security Modeling

 Suppose that every software component contains vulnerabilities which can be compromised. The

failed component can be repaired using some techniques. A software system consists of several such

components hierarchically in sequence, parallel, loop styles.

4.1. Security Modeling

Figure 2 demonstrates a simple security evaluation model of a component represented by Petri net. For

description convenience, ci is used to represent the model. The transition ts represents the normal behavior

of the component. Each token appearing in the place ps , called the safe place, indicates that the

component has been executed successfully. An attack on the component by an intruder is represented by

the transition tu. Each token appearing in the place pu, called the unsafe place, denotes that the component

ci has been compromised. After being compromised, a recovery action should be taken, such as

rebooting. The transition tr represents the recovery action after being compromised. Each token appearing

in the place pr, called the recovery place. The places pi and po , are input and output places of the

component respectively. As well, place and transition descriptions are in Tables 1 and 2

Figure2. Security evaluation model for component ci

Ci Component

tu

tr

ts

pc

tst

to ti po
if status = false

Recovery action status = true pr

pu

ps
if status = true

pi

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

74

Table1. PNs places for security evaluation model ci

Place Place Name Description

pi pinput Initial state

po poutput Final state

pc pcheck Check the component status

ps psafe Success state

pu punsafe Failure state

pr precovery Repair state

Table2. PNs transitions for security evaluation model ci

Transition Transitions Name Description

ti tinput To evaluate component security , ti will fire

to toutput After completing the security survey of

component ci, this transition will fire

ts tsafe if the execution of the component is normal

this transition will fire

tu tunsafe if the component has been attacked then tu

will fire

tr trecovery To recover the damaged component, this

transition will fire

tst tstatus To survey component status, ti will fire

4.2. Loop model

 A loop model is used in an iterative execution environment, in which a component is executed

iteratively for some times. An example of this model is depicted in Figure3. The number of iterations

determined in transition ti . The transition tl in activates the iterated component. The transition to causes

the loop to stop. Suppose that the probability of a successful intrusion by an intruder in the iterative

component is β. The probability of successful execution in a loop model, with n times iteration, is

 ∏ (1 − β)𝑛
𝑖=1 .

Figure3. A Loop security evaluation model

tst

tl

tu

ts

Count = =1

tr

pu

ps

Number of

count == i

Count ++

if count == i

if count != i

Count ++

pc

to ti

po

pr

pi

Ci Component

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

75

4.3. Sequence model

 In a sequence model, components are executed in a sequential manner. Only a single

component is executed at any instant of time. The control is transferred to its successor upon the

completion of a component. Figure 4 shows an example of components composed in sequence

style. Suppose that the probability of successful intrusion by an intruder in a component i is βi.

The probability of successful execution without compromise in a sequence model composed of n

components is ∏ (1 − β𝑖)
𝑛
𝑖=1 .

Figure4. A sequence security evaluation model

4.4. Parallel model

 A parallel model is usually used in a concurrent execution environment, in which a set of components

are executed concurrently to improve performance. An example of this model is depicted in Figure 5.

Suppose that the probability of successful intrusion by an intruder in a component i is βi. So the

probability of successful intrusion of a composed system, consisting of n components, is 𝑀𝑎𝑥𝑖=1
𝑛 (βi). The

probability of successful execution in a parallel model composed by n components is 1-𝑀𝑎𝑥𝑖=1
𝑛 (βi).

tt

tst

pi

to po tu

tr pr tst

pu

ps
ts

pc

tu

tr pr

pu

ps
ts

pc ti

Component C2

Component C1

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

76

Figure5. A parallel security evaluation model

5. Case study

This section presents a case study to show the applicability and feasibility of our method. The study

for security modeling evaluation of a single component is illustrated. Suppose that there is a software

system including a critical component. Also, a recovery mechanism is used to resume it when it is

compromised. Figure 6 shows a simple security critical software component modeled by PN. The

transition tu represents an intrusion action. The resume action is depicted by tr. Occurrence of tokens in

the place pu represents a compromised state caused by an intrusion. The transition ts represents a

successful execution of the component. The reachable markings, shown in Table3, are obtained from

Figure5.

tst

tu

tr
pr

pun

ps
ts

pc

tst

tu

tr pr

pu

ps
ts

pc

to ti po

Component C2

Component C1 Pi

tu

tr

ts

pc

tst

to ti po

pr

pu

ps

pi

A. Mohsenzadeh / J. Math. Computer Sci. 15 (2015), 70-77

77

Marking pi po pc pu pr ps

M1 1 0 0 0 0 0

M2 0 1 0 0 0 0

M3 0 0 1 0 0 0

M4 0 0 0 1 0 0

M5 0 0 0 0 1 0

M6 0 0 0 0 0 1

6. Conclusion

 We have proposed a method to model and evaluate a software component security based on Petri

nets. In fact, a hierarchical modeling method for a software system with vulnerabilities and recovery

mechanisms based on Petri nets is proposed. A complicated software system is modeled hierarchically

according to the composing styles based on different components. Parallelization, synchronization and

confliction characteristics can be easily modeled with Petri nets. We will work on the following open

issues in the future. 1) A security Unified Modeling Language (UML) profile will be proposed for

quantitatively representing security properties in design models and 2) The methods for translating UML

models, annotated with quantitative security information, into PNs will be developed.

References

[1] "CERT/CC Statistics 1988-2005", Pittsburgh, CERT CC,http://www.cert.org/stats/cerCstats.html,

Feb. (2006).

[2] B. Schneier. "Secrets & Lies". John Wiley & Sons, Inc.,(2000).

[3] T. Murata, “Petri nets: properties, analysis and applications”, Proceedings of the IEEE 77 (4)

(1989) 541–580.

[4] N. Yang, H. Yu, H. Sun, Z. Qian, “Modeling UML sequence diagrams using extended Petri nets”,

in: International Conference on Information Science and Applications, ICISA2010, IEEE

Computer Society, (2010), pp. 596–603.

[5] A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing, M. Westergaard,

S. Christensen, K. Jensen, “CPN tools for editing, simulating,and analysing coloured Petri nets”,

in:24th International Conference on Applications and Theory of Petri Nets, ICATPN 2003, in:

Lecture Notes in Computer Science, vol.2679, Springer, Berlin, Heidelberg, (2003), pp. 450–462.

[6] S. Baarir, M. Beccuti, D. Cerotti, M.D. Pierro, S. Donatelli, G. Franceschinis, “The great SPN

tool: recent enhancements”, ACM SIGMETRICS Performance Evaluation Review 36 (4) (2009)

4–9.

[7] N. R. Mead, T. Stehney, "Security Quality Requirements Engineering (SQUARE) Methodology",

Proc. of the 2005 workshop on software engineering for secure systems-building trustworthy

applications, Missouri, USA, (2005), pp. 1-7.

[8] C. B. Haley, R. Laney, J. D. Moffett, et aI., "Security Requirements Engineering: A Framework

for Representation and Analysis", IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

vol. 34(1) (2008), pp. 133-153.

[9] D. Gordon, T. Stehney, N. Wattas, E. Yu, "Quality Requirements Engineering (SQUARE): Case

Study on Asset Management System", Phase II (CMU/SEI-2005-SR-005). Pittsburgh, PA,

Software Engineering Institute, Carnegie Mellon University, (2005).

[10] Hui Wang, Zongpu Jia, Zihao Shen,"Research on Security Requirements Engineering Process"

978-1-4244-3672-9/09/$25.00 © (2009) IEEE – pp 1285-1288.

