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Abstract

In this paper, we define the inclusion graph Inc(A) of an S-act A which is a graph whose vertices are non-trivial subacts
of A and two distinct vertices B1,B2 are adjacent if B1 ⊂ B2 or B2 ⊂ B1. We investigate the relationship between the algebraic
properties of an S-act A and the properties of the graph Inc(A). Some properties of Inc(A) including girth, diameter and
connectivity are studied. We characterize some classes of graphs which are the inclusion graphs of S-acts. Finally, some results
concerning the domination number of such graphs are given.
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1. Introduction and preliminaries

The notion of an S-act over a monoid S is a fundamental concept in algebra, theoretical computer
science and a variety of applications like automata theory and mathematical linguistics. Assigning graphs
to algebraic structures is an approach to study algebraic properties via graph-theoretic properties. In this
direction, many authors, e.g. [2, 3, 4, 7, 11, 12, 14], have been performed in connecting graph structures
to various algebraic objects. Recently, inclusion graphs attached to rings, vector spaces and groups have
been studied in [1, 8, 5]. Moreover, some works associating graphs to S-acts can be found in [6, 9, 13].

In this paper, we associate a graph Inc(A) to an S-act A, called the inclusion graph of A, whose
vertices are non-trivial subacts of A in such a way that two distinct vertices B1,B2 are adjacent if B1 ⊂ B2
or B2 ⊂ B1. We investigate the relationship between the algebraic properties of an S-act A and the
properties of the graph Inc(A). First we determine the girth and diameter of Inc(A). Then some classes
of graphs which are the inclusion graphs of S-acts are characterized. Finally, we present some results
dealing with the domination number of such graphs.

The following is a brief account of some basic definitions about S-acts and graphs.
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Throughout this paper, unless otherwise stated, S denotes a monoid with the identity 1. By a (left)
S-act, we mean a non-empty set A on which S acts unitarily, that is, (st)a = s(ta) and 1a = a for all
s, t ∈ S and a ∈ A. A (non-empty proper) subset B of A is called a (non-trivial) subact of A if sb ∈ B for
every s ∈ S,b ∈ B. The set of all non-trivial subacts of A is denoted by Sub(A). A non-empty subset I of
S is said to be a left ideal of S if st ∈ I for any s ∈ S, t ∈ I. Considering S as an S-act, any left ideal of S is
a subact of S. An element θ ∈ A is said to be a zero element, if sθ = θ for all s ∈ S. A simple S-act is the
one with no non-trivial subact. A completely reducible S-act is one which is a disjoint union of simple
subacts. For more information about S-acts and related notions, the reader is referred to [10].

Let G be a (simple) graph with a vertex set V(G). By order of G, we mean the cardinality of V(G)
which is simply denoted by |G|. For any u, v ∈ V(G), a u,v-path (or u− v) is a path with starting vertex u
and ending vertex v. The distance between two vertices u, v, denoted by d(u, v), is defined as the length
of the shortest path joining u and v if it exists, and otherwise, d(u, v) = ∞. The diameter of G, denoted by
diam(G), is the largest distance between pairs of vertices of G. The number of vertices adjacent to a vertex
v is called the degree of v and denoted by deg(v). The girth of a graph is the length of its shortest cycle,
and a graph with no cycle has infinite girth. A null graph is a graph with no edges. A graph is connected
if there is a path between every two distinct vertices. A complete graph is a graph in which every pair of
distinct vertices are adjacent. We denote the complete graph with n vertices by Kn,n ∈ N. A path and a
cycle of length n are denoted by Pn and Cn, respectively. Two graphs G1,G2 are isomorphic if and only if
there exists a bijection from V(G1) to V(G2) preserving the adjacency and non-adjacency. For undefined
terms and concepts about graphs, one may consult [15].

2. Main results

In this section we first determine the girth of the graph Inc(A) for an S-act A. Then we characterize
those cycles which are inclusion graphs of some S-acts. Moreover, we study connectivity and diameter
for the inclusion graphs. Finally, the domination number of such graphs is briefly studied.

Note that the inclusion graph for a simple S-act is undefined because it has no vertex. So we consider
non-simple S-acts when dealing with their inclusion graphs throughout the paper.

Remark 2.1. It is clear that if A and B are isomorphic S-acts, then their graphs Inc(A) and Inc(B) are
equivalent. The converse is not true in general. To see this, take the monoid S = {1, s} where s2 = 1.
Consider two S-acts A = {a,b, c} with trivial action and B = {a,b, c,d} presented by the following action
table:

a b c d

1 a b c d

s a b d c

The non-trivial subacts of A and B are

A1 = {a}, A2 = {a,b}, A3 = {b}, A4 = {b, c}, A5 = {c}, A6 = {a, c},

and
B1 = {a}, B2 = {a,b}, B3 = {b}, B4 = {b, c,d}, B5 = {c,d}, B6 = {a, c,d},

respectively. Then Inc(A) ∼= Inc(B) ∼= C6 whereas A and B are not isomorphic S-acts:

A1

A2 A3

A4

A5A6

Inc(A)

B1

B2 B3

B4

B5B6

Inc(B)

∼=
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It is natural to ask whether a graph is isomorphic to the inclusion graph of an S-act. Here we consider
complete graphs and cycles and characterize those ones satisfying this property.

We say that an S-act A is uniserial, if all of its subacts are totally ordered by inclusion, or equivalently,
for any two (cyclic) subacts B and C of A, either B ⊆ C or C ⊆ B. This generalizes the well-known notion
of a uniserial module extensively studied in the literature.

Clearly, for each S-act A, the graph Inc(A) is complete if and only if A is a uniserial S-act. The
following example shows that every complete graph is the inclusion graph of a (uniserial) S-act. As we
shall see, this is not the case for cycles in general.

Example 2.2.

(i) Consider the monogenic semigroup S = {s, s2, s3, . . . , sn+1}, sn+2 = sn+1,n ∈ N. Then all distinct
non-trivial left ideals of S form the chain

〈sn〉 ⊂ 〈sn−1〉 ⊂ 〈sn−2〉 ⊂ · · · ⊂ 〈s〉,

where 〈sk〉 = {si | k + 1 6 i 6 n + 1}, for every 1 6 k 6 n. So S is a uniserial S-act and clearly the
graph Inc(S) is isomorphic to the complete graph Kn. In particular, the inclusion graph of the monogenic
semigroup S = {s, s2, s3, s4}, s5 = s4, is isomorphic to the cycle C3 with the vertices I1 = {s4}, I2 =
{s3, s4}, I3 = {s2, s3, s4}:

I1

I2 I3

(ii) The non-trivial left ideals of the semigroup S = (N,+) are exactly the sets n+ N = {n+ k | k ∈ N}

where n ∈ N. Further, m+ N ⊂ n+ N if and only if m > n, for every m,n ∈ N. Then S is a uniserial
S-act and the graph Inc(S) is complete with countably infinite vertices.

(iii) The cycle C4 is the inclusion graph of no S-act. Indeed, suppose that C4 is the inclusion graph of an
S-act A and B1,B2,B3 and B4 are all non-trivial subacts of A as the following:

B1 B2

B3B4

With no loss of generality, assume that B1 ⊂ B2. Then B3 ⊂ B2, B3 ⊂ B4, B1 ⊂ B4. It is easily seen that
B1 ∪B3 6= A,Bi for all i ∈ {1, 2, 3, 4} which is a contradiction.

(iv) Let A = {a,b} be an S-act with trivial action. Then B1 = {a} and B2 = {b} are only non-trivial subacts
of A which are not adjacent and so girth(Inc(A)) = ∞.

Theorem 2.3. For each S-act A, girth(Inc(A)) ∈ {3, 6,∞}.

Proof. First we show that for each n > 6, girth(Inc(A)) 6= n. On the contrary, let B1 −B2 − · · ·−Bn−B1 be
the shortest cycle of order n. If B1 ∪B4 6= A, then B1 −B1 ∪B4 −B4 is a path with shorter length between
B1 and B4 which is a contradiction. So B1 ∪ B4 = A, and by the same way, B1 ∩ B4 = ∅, B1 ∪ B5 = A

and B1 ∩ B5 = ∅. Hence, B4 = B5 which is a contradiction. It remains to show that girth(Inc(A)) 6= 4, 5.
Let B1 − B2 − B3 − B4 − B1, where B1 ⊂ B2, be the shortest cycle in Inc(A). Then B3 ⊂ B2, B3 ⊂ B4 and
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B1 ⊂ B4. It is easily seen that B1 ∪ B3 6= A,Bi for all i ∈ {1, 2, 3, 4}. Then B1 − B1 ∪ B3 − B2 − B1 forms a
cycle of order 3 which is a contradiction. If B1 − B2 − B3 − B4 − B5 − B1, where B1 ⊂ B2, is the shortest
cycle in Inc(A), then B3 ⊂ B2, B3 ⊂ B4, B5 ⊂ B4 and B5 ⊂ B1. This implies that B5 is adjacent to B2 which
is a contradiction.

In light of Remark 2.1, Example 2.2 and Theorem 2.3, those cycles which are the inclusion graphs are
fully characterized.

Corollary 2.4. The cycle Cn is the inclusion graph of an S-act if and only if n = 3 or n = 6.

In the following, we study the connectivity and diameter of the inclusion graphs.

Theorem 2.5. Let A be an S-act. Then Inc(A) is disconnected if and only if it is a null graph with |Inc(A)| = 2.
Moreover, if Inc(A) is connected, then diam(Inc(A)) 6 3.

Proof. Suppose that |Inc(A)| > 3. We show that there exists a path between B1,B2 for every two distinct
non-trivial subacts B1,B2 of A. Let B1 and B2 be non-adjacent. If B1 ∩ B2 6= ∅ or B1 ∪ B2 6= A, then there
exists a B1,B2-path. Now let B1 ∩ B2 = ∅ and B1 ∪ B2 = A. Since |Inc(A)| > 3, A contains a non-trivial
subact B3 with B3 6= B1,B2. If B1 ∩ B3 = ∅ and B1 ∪ B3 = A, then B2 = B3 which is a contradiction. So
either B1 ∩ B3 6= ∅ or B1 ∪ B3 6= A. In the same way, either B2 ∩ B3 6= ∅ or B2 ∪ B3 6= A. We consider the
following cases:

Case 1. Let B1 ∩B3 6= ∅ and B2 ∩B3 6= ∅. Note that B1 ∩B3 6= B2, B2 ∩B3 6= B1. Then

B1 −B1 ∩B3 −B3 −B2 ∩B3 −B2,

is a B1,B2-path provided that B1 ∩B3 6= B1,B3 and B2 ∩B3 6= B2,B3. Otherwise, we get a path with shorter
length between B1,B2. Hence, d(B1,B2) 6 4.

Case 2. Let B1 ∩B3 6= ∅ and B2 ∪B3 6= A. We have B1 ∩B3 6= B2, B2 ∪B3 6= B1. Then

B1 −B1 ∩B3 −B3 −B2 ∪B3 −B2,

is a B1,B2-path provided that B1 ∩B3 6= B1,B3 and B2 ∪B3 6= B2,B3. Otherwise, we get a path with shorter
length between B1,B2. Hence, d(B1,B2) 6 4.

Other cases have the same proof.
The converse is obvious. For the second part, first note that the above proof implicitly states that if

Inc(A) is connected, then diam(Inc(A)) 6 4. We claim that 4 is impossible for the diameter. Assume on
the contrary that Inc(A) is a connected inclusion graph of an S-act A with diam(Inc(A)) = 4. Then there
exist two distinct vertices B1,B5 in Inc(A) for which B1 − B2 − B3 − B4 − B5 is the shortest B1,B5-path. It
is clear to see that B1 ∪B4 = A,B1 ∩B4 = ∅, B1 ∪B5 = A and B1 ∩B5 = ∅. Thus we get B4 = B5 which is a
contradiction.

Corollary 2.6. Let A be an S-act with two zero elements and |A| > 3. Then Inc(A) is connected.

Proof. If θ1 and θ2 are two zero elements of A, then the sets {θ1}, {θ2} and {θ1, θ2} are distinct non-trivial
subacts of A. Hence, by Theorem 2.5, Inc(A) is connected.

In what follows, we study the connectivity of the inclusion graphs of cyclic, free and cofree S-acts. Let
us first recall some definitions from [10].

By a cyclic S-act, we mean an S-act A generated by an element a ∈ A, that is, A = Sa where

Sa = {sa | s ∈ S}.

An S-act A is called free if it has a basis X, i.e., each element a ∈ A is uniquely represented as a = sx for
some s ∈ S and x ∈ X. In this case, A ∼=

∐
x∈X S. The dual categorical notion of free is the cofree S-act

which is isomorphic to an S-act of the form XS, the set of all maps from S to a non-empty set X, with the
action given by (sf)(t) = f(ts) for s, t ∈ S and f ∈ XS. The set X is called a cobasis for A.
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Proposition 2.7. Let A be an S-act. Then the following assertions hold:

(i) If A is cyclic, then Inc(A) is connected. In particular, Inc(S) is connected.

(ii) If A is a free S-act with a basis X where |X| > 2, then Inc(A) is connected.

(ii) If A is a cofree S-act and |A| > 3, then Inc(A) is connected.

Proof.

(i) Consider a cyclic S-act A with disconnected inclusion graph. Using Theorem 2.5, A has only two
non-trivial subacts, say B and C, such that B∪C = A and B∩C = ∅. Clearly, B and C are simple subacts
of A so that A is completely reducible. Note that a cyclic S-act is completely reducible if and only if it is
simple (see [10, Lemma I.5.32]). This implies that A is simple which is a contradiction.

(ii) It follows from hypothesis that the number of non-trivial subacts of A is greater than 2. Hence,
Theorem 2.5 gives the assertion.

(iii) Using the assumption, A can be considered as the S-act XS for a cobasis X where |X| > 1. Since every
constant map in A is a zero element and there exist exactly |X| constant maps in A, A contains at least two
zero elements and hence Inc(A) is connected by Corollary 2.6.

A non-trivial subact M of an S-act A is called minimal, if B ⊆M for some subact B of A implies that
B =M. We denote the set of all minimal subacts of A by Min(A).

Remark 2.8. Let A be an S-act. If deg(M) <∞ for a minimal subact M of A, then the number of minimal
subacts of A is finite. Indeed, if M1,M2,M3, · · · be infinite minimal subacts of A other than M, then the
infinite strict ascending chain

M ⊂M∪M1 ⊂M∪M1 ∪M2 ⊂ · · · ,

gives that deg(M) = ∞ which is a contradiction. Further, if Inc(A) is complete, then A contains at most
one minimal subact.

Theorem 2.9. Let A be an S-act and Inc(A) have no cycle. Then Inc(A) is a null graph (with one or two vertices)
or Pi where i ∈ {1, 2, 3, 4}.

Proof. It follows from the assumption that A has a minimal subact. If M1,M2,M3 are three distinct
minimal subacts of A, then

M1 −M1 ∪M2 −M2 −M2 ∪M3 −M3 −M3 ∪M1 −M1,

is a cycle which is a contradiction. So |Min(A)| 6 2. The following cases may occur.

Case 1. Let A have only one minimal subact, say M. Then every subact of A contains M. We claim that
|Inc(A)| 6 3. On the contrary, let B1,B2,B3 be another distinct non-trivial subacts of A. Since Inc(A) has
no cycle, B1 ∪ B3 = B2 ∪ B3 = A and B1 ∩ B3 = B2 ∩ B3 = M whence B1 = B2 which is a contradiction.
Thus the graph Inc(A) is one of the graphs: one-vertice graph, or the paths P1 or P2.

Case 2. Let A have two distinct minimal subacts, say M1,M2. If M1 ∪M2 = A, then A has no another
non-trivial subact and Inc(A) is a null graph with two distinct vertices. If M1 ∪M2 6= A, then Inc(A)
contains at least the three vertices M1,M2,M1 ∪M2. we claim that |Inc(A)| 6 5. Assume contrarily that
B1,B2,B3 are another distinct non-trivial subacts of A. We show that each Bi contains only one minimal.
Otherwise, M1 ∪M2 ⊂ Bi and thenM1 −M1 ∪M2 −Bi−M1 is a cycle which is a contradiction. Moreover,
if Bi and Bj intersect in a minimal subact as M1, then Bi ∪ Bj 6= A because M2 * Bi ∪ Bj and in this case
the cycle M1 − Bi − Bi ∪ Bj −M1 yields a contradiction. Therefore, each Bi contains only one minimal
subact and each minimal subact is contained in only one Bi. This contradicts the number of Bi’s. So, in
addition to M1,M2,M1 ∪M2, Inc(A) contains at most two another vertices. It is straightforward to see
that Inc(A) is one of the paths P2 or P3 or P4.
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Here we study the domination number of the inclusion graphs and determine them for the graphs of
some S-acts.

Let G be a graph. The (open) neighborhood N(x) of a vertex x ∈ V(G) is the set of vertices which are
adjacent to x. For a subset T of vertices, we put

N(T) =
⋃
x∈T

N(x), N[T ] = N(T)∪ T .

A set of vertices T in G is a dominating set, if N[T ] = V(G). The domination number of G is the minimum
cardinality of a dominating set of G and is denoted as γ(G).

An S-act A is said to be Artinian, if every descending chain of subacts of A terminates. It can be easily
seen that every non-empty subact of an Artinian S-act contains a minimal subact.

Proposition 2.10. Let A be an S-act. Then γ(Inc(A)) 6 2 provided that each of the following assertions hold:

(i) A contains a minimal subact;

(ii) A contains a zero element;

(iii) |Sub(A)| <∞;

(iv) |A| <∞;

(v) A has trivial action;

(vi) A is Artinian.

Proof.

(i) Let M be a minimal subact of A and W := {B ∈ Sub(A) |M * B}. If W = ∅, then for every non-trivial
subact B of A, M ⊆ B and so {M} is a dominating set. If W 6= ∅, then {M,

⋃
B∈W B} forms a dominating

set in Inc(A). Hence, γ(Inc(A)) 6 2.

(ii) Using (i), {z} is a minimal subact of A where z is a zero element.
The assertions (iii),(iv),(v) and (vi) are consequences of (i).

Proposition 2.11. The following assertions hold:

(i) Let A be the coproduct of a family {Ai | i ∈ I} of S-acts with |I| > 1 and γ(Inc(Aj)) = 1 for some j ∈ I. Then
γ(Inc(A)) = 2.

(ii) If F is a free S-act with a non-singleton basis and γ(Inc(S)) = 1, then γ(Inc(F)) = 2.

Proof.

(i) Suppose that {T } is a dominating set of Inc(Aj). Let B =
∐

i∈I Bi be a non-trivial subact of A where
Bi’s are (possibly empty) subacts of Ai. If Bj ⊆ T , then B ⊆

∐
i∈IUi where Uj = T ,Ui = Ai for all i 6= j

and if T ⊆ Bj, then T ⊆ B. Thus {
∐

i∈IUi, T } is a dominating set of Inc(A) so that γ(Inc(A)) 6 2. Now
we show that γ(Inc(A)) 6= 1. On the contrary, let {B =

∐
i∈I Bi} be a dominating set of Inc(A) and s ∈ I.

Then one of the subacts
∐

i 6=sAi or As is non-adjacent to B in Inc(A) which is a contradiction.

(ii) follows from (i).

Example 2.12. Consider the monoid S = {1, s} where s is an idempotent element and the S-act A = {a,b, c}
with the action defined by 1c = c, sc = a and a,b are fixed elements. Then all non-trivial subacts of A are
the sets {a}, {b}, {a,b} and {a, c}. It is clear that {{a}, {b}} is a dominating set in Inc(A) and γ(Inc(A)) = 2.

An independent set in a graph is a set of pairwise non-adjacent vertices. The independence number
of G, written as α(G), is the maximum size of an independent set.
Remark 2.13. In [13], it has shown that the independence number of the intersection graph of an S-act A
equals the number of minimal subacts of A. But this is not the case for the inclusion graphs. For instance,
let A = {a,b, c,d} be an S-act with trivial action. Then α(Inc(A)) = 6 whereas |Min(A)| = 4.
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