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Abstract

In this paper, we define the inclusion graph Inc(A) of an S-act A which is a graph whose vertices are non-trivial subacts
of A and two distinct vertices By, By are adjacent if By C By or Bp C By. We investigate the relationship between the algebraic
properties of an S-act A and the properties of the graph Inc(A). Some properties of Inc(A) including girth, diameter and
connectivity are studied. We characterize some classes of graphs which are the inclusion graphs of S-acts. Finally, some results
concerning the domination number of such graphs are given.
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1. Introduction and preliminaries

The notion of an S-act over a monoid S is a fundamental concept in algebra, theoretical computer
science and a variety of applications like automata theory and mathematical linguistics. Assigning graphs
to algebraic structures is an approach to study algebraic properties via graph-theoretic properties. In this
direction, many authors, e.g. [2, 3, 4, 7, 11, 12, 14], have been performed in connecting graph structures
to various algebraic objects. Recently, inclusion graphs attached to rings, vector spaces and groups have
been studied in [1, 8, 5]. Moreover, some works associating graphs to S-acts can be found in [6, 9, 13].

In this paper, we associate a graph Inc(A) to an S-act A, called the inclusion graph of A, whose
vertices are non-trivial subacts of A in such a way that two distinct vertices By, B, are adjacent if By C B»
or B C B;. We investigate the relationship between the algebraic properties of an S-act A and the
properties of the graph Inc(A). First we determine the girth and diameter of Inc(A). Then some classes
of graphs which are the inclusion graphs of S-acts are characterized. Finally, we present some results
dealing with the domination number of such graphs.

The following is a brief account of some basic definitions about S-acts and graphs.
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Throughout this paper, unless otherwise stated, S denotes a monoid with the identity 1. By a (left)
S-act, we mean a non-empty set A on which S acts unitarily, that is, (st)a = s(ta) and 1a = a for all
s,t € Sand a € A. A (non-empty proper) subset B of A is called a (non-trivial) subact of A if sb € B for
every s € S,b € B. The set of all non-trivial subacts of A is denoted by Sub(A). A non-empty subset I of
S is said to be a left ideal of S if st € I for any s € S,t € I. Considering S as an S-act, any left ideal of S is
a subact of S. An element 0 € A is said to be a zero element, if s0 = 0 for all s € S. A simple S-act is the
one with no non-trivial subact. A completely reducible S-act is one which is a disjoint union of simple
subacts. For more information about S-acts and related notions, the reader is referred to [10].

Let G be a (simple) graph with a vertex set V(G). By order of G, we mean the cardinality of V(G)
which is simply denoted by |G|. For any u,v € V(G), a u,v-path (or u—v) is a path with starting vertex u
and ending vertex v. The distance between two vertices u,v, denoted by d(u, V), is defined as the length
of the shortest path joining u and v if it exists, and otherwise, d(u,v) = co. The diameter of G, denoted by
diam(G), is the largest distance between pairs of vertices of G. The number of vertices adjacent to a vertex
v is called the degree of v and denoted by deg(v). The girth of a graph is the length of its shortest cycle,
and a graph with no cycle has infinite girth. A null graph is a graph with no edges. A graph is connected
if there is a path between every two distinct vertices. A complete graph is a graph in which every pair of
distinct vertices are adjacent. We denote the complete graph with n vertices by K,,,n € IN. A path and a
cycle of length n are denoted by P,, and C,,, respectively. Two graphs Gi, G, are isomorphic if and only if
there exists a bijection from V(G;) to V(G;) preserving the adjacency and non-adjacency. For undefined
terms and concepts about graphs, one may consult [15].

2. Main results

In this section we first determine the girth of the graph Inc(A) for an S-act A. Then we characterize
those cycles which are inclusion graphs of some S-acts. Moreover, we study connectivity and diameter
for the inclusion graphs. Finally, the domination number of such graphs is briefly studied.

Note that the inclusion graph for a simple S-act is undefined because it has no vertex. So we consider
non-simple S-acts when dealing with their inclusion graphs throughout the paper.

Remark 2.1. It is clear that if A and B are isomorphic S-acts, then their graphs Inc(A) and Inc(B) are
equivalent. The converse is not true in general. To see this, take the monoid S = {1, s} where s = 1.
Consider two S-acts A = {a, b, c} with trivial action and B = {a, b, ¢, d} presented by the following action
table:

e /e
o oo
o olo
o Al

The non-trivial subacts of A and B are
Al — {a}/ AZ — {al b}/ A3 - {b}/ A4 — {b/ C}/ AS — {C}I A6 — {Cl, C}/

and
Bl = {Cl}, BZ = {a/ b}/ B3 = {b}/ B4 = {b/ c, d}/ B5 = {C/ d}/ B6 = {(1, ¢, d}/

respectively. Then Inc(A) = Inc(B) = C¢ whereas A and B are not isomorphic S-acts:

Ao Aj Bo B3

[l2

Al A4 Bl B4

Ag As Be Bs

Inc(A) Inc(B)
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It is natural to ask whether a graph is isomorphic to the inclusion graph of an S-act. Here we consider
complete graphs and cycles and characterize those ones satisfying this property.

We say that an S-act A is uniserial, if all of its subacts are totally ordered by inclusion, or equivalently,
for any two (cyclic) subacts B and C of A, either B C C or C C B. This generalizes the well-known notion
of a uniserial module extensively studied in the literature.

Clearly, for each S-act A, the graph Inc(A) is complete if and only if A is a uniserial S-act. The
following example shows that every complete graph is the inclusion graph of a (uniserial) S-act. As we
shall see, this is not the case for cycles in general.

Example 2.2.
(i) Consider the monogenic semigroup S = {s,s?,s3,...,s" "1}, s"*2 = s"*1 n ¢ IN. Then all distinct
non-trivial left ideals of S form the chain

(s™)C (s c(s"TH e C s,

where (s*) = {s* | k+1 < i< n+1)}, for every 1 < k < n. So S is a uniserial S-act and clearly the
graph Inc(S) is isomorphic to the complete graph K. In particular, the inclusion graph of the monogenic
semigroup S = {s, s2,53, 54,82 = st is isomorphic to the cycle C3 with the vertices I; = (s¥], I, =

{s3,s%), I5 ={s2, s, s

I

I I3

(ii) The non-trivial left ideals of the semigroup S = (IN, +) are exactly the sets n +IN = {n+k | k € N}
where n € IN. Further, m +IN C n+ N if and only if m > n, for every m,n € IN. Then S is a uniserial
S-act and the graph Inc(S) is complete with countably infinite vertices.

(iii) The cycle Cy is the inclusion graph of no S-act. Indeed, suppose that Cy is the inclusion graph of an
S-act A and By, By, Bz and By are all non-trivial subacts of A as the following;:

Bq B>

By Bs

With no loss of generality, assume that By C B,. Then Bz C By, B3 C By, By C By. It is easily seen that
B1UBj3 # A,B; for all i € {1,2,3,4} which is a contradiction.

(iv) Let A ={a, b} be an S-act with trivial action. Then B; = {a} and B, = {b} are only non-trivial subacts
of A which are not adjacent and so girth(Inc(A)) = co.

Theorem 2.3. For each S-act A, girth(Inc(A)) € {3, 6, co}.

Proof. First we show that for each n > 6, girth(Inc(A)) # n. On the contrary, let By — B, —--- — By, — By be
the shortest cycle of order n. If B; UB4 # A, then B; — By U B4 — By is a path with shorter length between
B; and B4 which is a contradiction. So B; UBs = A, and by the same way, ByNBs = (), BijUBs = A
and B; N Bs = (). Hence, By = Bs which is a contradiction. It remains to show that girth(Inc(A)) # 4,5.
Let By — B, — B3 — B4 — By, where By C By, be the shortest cycle in Inc(A). Then B3 C By, B3 C By and
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By C By. It is easily seen that By UB3 # A,B; for all i € {1,2,3,4}. Then B; —B; UB3 — By — B; forms a
cycle of order 3 which is a contradiction. If B; — B, — B3 — B4 — Bs — By, where By C By, is the shortest
cycle in Inc(A), then B3 C By, B3 C By, Bs C B4 and Bs C By. This implies that Bs is adjacent to B, which
is a contradiction. O

In light of Remark 2.1, Example 2.2 and Theorem 2.3, those cycles which are the inclusion graphs are
fully characterized.

Corollary 2.4. The cycle Cy, is the inclusion graph of an S-act if and only if n =3 or n = 6.
In the following, we study the connectivity and diameter of the inclusion graphs.

Theorem 2.5. Let A be an S-act. Then Inc(A) is disconnected if and only if it is a null graph with |Inc(A)| = 2.
Moreover, if Inc(A) is connected, then diam(Inc(A)) < 3.

Proof. Suppose that [Inc(A)| > 3. We show that there exists a path between By, B, for every two distinct
non-trivial subacts By, By of A. Let By and B, be non-adjacent. If By N By # () or By UBy # A, then there
exists a B, Bo-path. Now let B 1B, = () and B; UB, = A. Since [Inc(A)| > 3, A contains a non-trivial
subact B3 with B3 # By, B,. If By Bz = () and B; UB3 = A, then B, = B3 which is a contradiction. So
either B; N B3 # 0 or By UBj3 # A. In the same way, either B, N B3 # () or B, UB3 # A. We consider the
following cases:

Case 1. Let By N B3 # () and B, N B3 # (). Note that B; N B3 # By, B, N B3 # By. Then
B1 —B1 N Bz —B3z—B, N B3z — By,

is a By, Bp-path provided that B; N Bz # By, Bz and B, N Bz # By, Bs. Otherwise, we get a path with shorter
length between By, B. Hence, d(B1, By) < 4.

Case 2. Let B N B3 # ) and B, UB3 # A. We have By N B3 # By, B, U B3 # B1. Then
B1 —B1NBs—Bs—ByUB3— By,

is a By, Bp-path provided that B; N Bz # By, Bz and B, U Bz # By, Bs. Otherwise, we get a path with shorter
length between By, B. Hence, d(B1, B2) < 4.

Other cases have the same proof.

The converse is obvious. For the second part, first note that the above proof implicitly states that if
Inc(A) is connected, then diam(Inc(A)) < 4. We claim that 4 is impossible for the diameter. Assume on
the contrary that Inc(A) is a connected inclusion graph of an S-act A with diam(Inc(A)) = 4. Then there
exist two distinct vertices By, Bs in Inc(A) for which By — By — B3 — B4 — Bs is the shortest By, Bs-path. It
is clear to see that By UBy = A,B1 N By =0, B UB5 = A and By N Bs = (. Thus we get By = Bs which is a
contradiction. O

Corollary 2.6. Let A be an S-act with two zero elements and |A| > 3. Then Inc(A) is connected.

Proof. 1f 01 and 0, are two zero elements of A, then the sets {01},{02} and {01, 05} are distinct non-trivial
subacts of A. Hence, by Theorem 2.5, Inc(A) is connected. O

In what follows, we study the connectivity of the inclusion graphs of cyclic, free and cofree S-acts. Let
us first recall some definitions from [10].
By a cyclic S-act, we mean an S-act A generated by an element a € A, that is, A = Sa where

Sa={sa|seS}

An S-act A is called free if it has a basis X, i.e., each element a € A is uniquely represented as a = sx for
some s € S and x € X. In this case, A = [ [, .x S. The dual categorical notion of free is the cofree S-act
which is isomorphic to an S-act of the form X®, the set of all maps from S to a non-empty set X, with the
action given by (sf)(t) = f(ts) fors,t € Sand f X3. The set X is called a cobasis for A.
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Proposition 2.7. Let A be an S-act. Then the following assertions hold:

(i) If A is cyclic, then Inc(A) is connected. In particular, Inc(S) is connected.
(ii) If A is a free S-act with a basis X where |X| > 2, then Inc(A) is connected.
(ii) If A is a cofree S-act and |A| > 3, then Inc(A) is connected.

Proof.

(i) Consider a cyclic S-act A with disconnected inclusion graph. Using Theorem 2.5, A has only two
non-trivial subacts, say B and C, such that BUC = A and BN C = (). Clearly, B and C are simple subacts
of A so that A is completely reducible. Note that a cyclic S-act is completely reducible if and only if it is
simple (see [10, Lemma 1.5.32]). This implies that A is simple which is a contradiction.

(ii) It follows from hypothesis that the number of non-trivial subacts of A is greater than 2. Hence,
Theorem 2.5 gives the assertion.

(iii) Using the assumption, A can be considered as the S-act X5 for a cobasis X where [X| > 1. Since every
constant map in A is a zero element and there exist exactly |X| constant maps in A, A contains at least two
zero elements and hence Inc(A) is connected by Corollary 2.6. O

A non-trivial subact M of an S-act A is called minimal, if B C M for some subact B of A implies that
B = M. We denote the set of all minimal subacts of A by Min(A).

Remark 2.8. Let A be an S-act. If deg(M) < oo for a minimal subact M of A, then the number of minimal
subacts of A is finite. Indeed, if M1, M, M3, - - - be infinite minimal subacts of A other than M, then the
infinite strict ascending chain

McMUM;CcMUM{UM, C -+,

gives that deg(M) = oo which is a contradiction. Further, if Inc(A) is complete, then A contains at most
one minimal subact.

Theorem 2.9. Let A be an S-act and Inc(A) have no cycle. Then Inc(A) is a null graph (with one or two vertices)
or Py where i €{1,2,3,4}.

Proof. 1t follows from the assumption that A has a minimal subact. If M, My, M3 are three distinct
minimal subacts of A, then

Mi—MiUMy; —My; —MyUM3 — Mz —MzUM; — My,

is a cycle which is a contradiction. So [Min(A)| < 2. The following cases may occur.

Case 1. Let A have only one minimal subact, say M. Then every subact of A contains M. We claim that
Inc(A)| < 3. On the contrary, let By, By, Bz be another distinct non-trivial subacts of A. Since Inc(A) has
no cycle, By UB3 = B, UB3 = A and B; N B3z = Bo N B3 = M whence B; = B, which is a contradiction.
Thus the graph Inc(A) is one of the graphs: one-vertice graph, or the paths P; or P,.

Case 2. Let A have two distinct minimal subacts, say M1, M. If M; UM; = A, then A has no another
non-trivial subact and Inc(A) is a null graph with two distinct vertices. If M UM, # A, then Inc(A)
contains at least the three vertices M1, My, M1 U M. we claim that [Inc(A)| < 5. Assume contrarily that
B1, B2, B3 are another distinct non-trivial subacts of A. We show that each B; contains only one minimal.
Otherwise, M; UM, C B; and then M; —M; UM; —Bj — M is a cycle which is a contradiction. Moreover,
if By and Bj intersect in a minimal subact as My, then B; U Bj # A because M, ¢ BiU B; and in this case
the cycle M; — By — B; U Bj — M yields a contradiction. Therefore, each B; contains only one minimal
subact and each minimal subact is contained in only one B;. This contradicts the number of Bi’s. So, in
addition to M, My, M; U My, Inc(A) contains at most two another vertices. It is straightforward to see
that Inc(A) is one of the paths P, or P3 or Pj. O
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Here we study the domination number of the inclusion graphs and determine them for the graphs of
some S-acts.

Let G be a graph. The (open) neighborhood N(x) of a vertex x € V(G) is the set of vertices which are
adjacent to x. For a subset T of vertices, we put

N(T) = JN(x), NTI=NTUT.
xeT

A set of vertices T in G is a dominating set, if N[T] = V(G). The domination number of G is the minimum
cardinality of a dominating set of G and is denoted as y(G).

An S-act A is said to be Artinian, if every descending chain of subacts of A terminates. It can be easily
seen that every non-empty subact of an Artinian S-act contains a minimal subact.

Proposition 2.10. Let A be an S-act. Then y(Inc(A)) < 2 provided that each of the following assertions hold:

(1) A contains a minimal subact;
(ii) A contains a zero element;
(iii) [Sub(A)| < oo;
(iv) |A] < oo;
(v) A has trivial action;
(vi) A is Artinian.
Proof.

(i) Let M be a minimal subact of A and W :={B € Sub(A) | M € B}. If W = (), then for every non-trivial
subact B of A, M C B and so {M} is a dominating set. If W # (), then {M, Jg cw B} forms a dominating
set in Inc(A). Hence, y(Inc(A)) < 2.

(ii) Using (i), {z} is a minimal subact of A where z is a zero element.
The assertions (iii),(iv),(v) and (vi) are consequences of (i). O

Proposition 2.11. The following assertions hold:

(i) Let A be the coproduct of a family {A; | i € I} of S-acts with |I| > 1 and y(Inc(A;)) = 1 for some j € 1. Then
vY(Inc(A)) =2.

(ii) If Fis a free S-act with a non-singleton basis and y(Inc(S)) = 1, then y(Inc(F)) = 2.
Proof.
(i) Suppose that {T} is a dominating set of Inc(A;j). Let B = [ [;.; Bi be a non-trivial subact of A where
Bi’s are (possibly empty) subacts of A;. If B; C T, then B C [ [;.; U; where U; = T,U; = A forall i # j
and if T C Bj, then T C B. Thus {] [;; Ui, T} is a dominating set of Inc(A) so that y(Inc(A)) < 2. Now
we show that y(Inc(A)) # 1. On the contrary, let {B = [ [;<; Bi} be a dominating set of Inc(A) and s € 1.
Then one of the subacts ]_[# < Ai or Ag is non-adjacent to B in Inc(A) which is a contradiction.

(ii) follows from (i). O]

Example 2.12. Consider the monoid S = {1, s} where s is an idempotent element and the S-act A = {a, b, c}
with the action defined by 1c = ¢, sc = a and a, b are fixed elements. Then all non-trivial subacts of A are
the sets {a}, {b},{a, b} and {a, c}. It is clear that {{a}, {b}} is a dominating set in Inc(A) and y(Inc(A)) = 2.

An independent set in a graph is a set of pairwise non-adjacent vertices. The independence number
of G, written as «(G), is the maximum size of an independent set.
Remark 2.13. In [13], it has shown that the independence number of the intersection graph of an S-act A
equals the number of minimal subacts of A. But this is not the case for the inclusion graphs. For instance,
let A ={a, b, c, d} be an S-act with trivial action. Then x(Inc(A)) = 6 whereas [Min(A)| = 4.
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