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Abstract 
 

In this article, we develop a direct solution technique for solving fractional integro-differential equations 

(FIDEs) in the Caputo sense using a quadrature shifted Legendre Tau (Q-SLT) method. The spatial 

approximation is based on shifted Legendre polynomials. A new formula expressing explicitly any 

fractional-order derivatives of shifted Legendre polynomials of any degree in terms of shifted Legendre 

polynomials themselves is proved. Extension of the Tau method for FIDEs is treated using the shifted 

Legendre–Gauss–Lobatto quadrature. The method is illustrated by considering some examples whose 

exact solutions are available. The results obtained through this method are stable and comparable with the 

existing methods for a variety of problems with practical applications. 

 

Keyword: Shifted Legendre Tau method, Fractional-order derivative, Caputo derivative, Fractional 

Integro-differential. 

1. Introduction 

Integro-differential equations are encountered as model in many fields of science and engineering such as 

population growth, one dimensional viscoelasticity and reactor dynamics [1-4]. Many mathematicians and 

applied researchers have tried to model real processes using the fractional calculus. Nigmatullin and 

Nelson described in terms of fractional kinetics in complex systems [5]. Jesus, Machado and Cunha 

analyzed the fractional order dynamics in botanical electrical impedances [6,7]. Petrovic, Spasic and 

Atanackovic developed a fractional-order mathematical model of a human root dentin [8]. In biology, it 
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has been deduced that the membranes of cells of biological organism have fractional-order electrical 

conductance [10] and then are classified in groups of non-integer order models. Fractional derivatives 

embody essential features of cell rheological behavior and have enjoyed greatest success in the field of 

rheology [11]. Also, it has been shown that modeling the behavior of brainstem vestibule-oculumotor 

neurons by fractional ordinary differential equations (FODEs) has more advantages than classical integer-

order modeling [9]. 

 In this study, we consider a class of fractional integro-differential equations as follows 

𝐿𝐷(𝑦)(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝐷∗
𝑞
𝑦(𝑠)𝑑𝑠,       𝑚 − 1 < 𝑞 ≤ 𝑚,𝑚 ∈ ℕ,   𝑡 ∈ 𝐼 = [0, 𝑡],             

𝑡

0

 (1) 

with the initial condition 

𝑦(𝑖)(0) = 𝛽𝑖,      𝑖 = 0…𝑛 − 1                                                         (2)  

 where 𝐷∗
𝑞
 is the fractional derivative operator given in the Caputo sense, 𝑓(𝑥) and 𝑘(𝑥, 𝑠) are the known 

functions that are supposed to be sufficiently smooth, 𝐿 is derivative operator in the form 𝐿𝐷(𝑦)(𝑥) =

∑ 𝑎𝑖𝐷
(𝑖)𝑦(𝑥)𝑛

𝑖=0  and 𝛽𝑖 for any 𝑖 is constant. M. F. Al-Jamal and E. A. Rawashdeh [12] present a 

numerical solution based on open Newton-Cotes formula. Existence and uniqueness of the solution of Eq. 

(1) have been shown in [13]. We want to consider the above FIDEs by using the spectral method. 

Spectral methods provide a computational approach that has achieved substantial popularity over the last 

four decades. They have gained new popularity in automatic computations for a wide class of physical 

problems in fluid and heat flow. So, they have been applied successfully to numerical simulations of 

many problems in science and engineering (for more detail see [23]). Recently, Esmaeili and Shamsi [14] 

introduced a direct solution technique for obtaining the spectral solution of a special family of fractional 

initial value problems using a pseudo-spectral method. Neamaty and et al. [15] used Wavelet operational 

matrices for solving fractional differential equations. An extension of spectral methods for numerical 

solutions of some fractional differential equations is given in [16–19]. Moreover, Doha et al. [20] 

introduced a new efficient Chebyshev spectral algorithm for solving linear and nonlinear multi-term 

fractional orders differential equations. In fact, Doha et al. [21] used a quadrature Jacobi dual-Petrov–

Galerkin method for solving some ODEs. In the present paper, we construct the solution using the Q-SLT 

approach. This approach is based on the pseudo-spectral and Tau techniques. The fundamental goal of 

this paper is to propose a suitable way to approximate FIDEs in the Caputo sense using a quadrature 

shifted Legendre Tau approach. This approach extends the Tau method for FIDEs by approximating the 

weighted inner products in the Tau method by using the shifted Legendre–Gauss–Lobatto quadrature. 

This technique requires a formula for fractional-order derivatives of shifted Legendre polynomials of any 

degree in terms of shifted Legendre polynomials themselves which is also presented. Finally, examples 

are given to illustrate the efficiency and implementation of the method. Comparisons are made to confirm 

the reliability of the method. 

The organization of this paper is as follows. In Section 2, some relevant properties of Legendre 

polynomials is explained. Also, we state and present a theory which gives explicitly a formula that 

expresses the fractional-order derivatives of the shifted Legendre polynomials of any degree in terms of 

the shifted Legendre polynomials themselves. In Section 3, we construct and develop an algorithm for 

solving FIDEs in the Caputo sense by using the Q-SLT method. In Section 4, the proposed method is 

applied to some examples. Also a conclusion is given in Section 5. 
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2. Fractional derivatives of shifted Legendre polynomials 

There are many definitions for fractional derivatives, and not necessarily equivalent to each other. The 

most commonly used definitions of fractional derivatives are the Riemann-Liouville and the Caputo 

definitions. By assuming 𝑚 ∈ ℕ is the smallest integer greater than or equal 𝑞 > 0, indeed 𝑚 is the 

integer satisfying the inequality  𝑚 − 1 < 𝑞 ≤ 𝑚, and Γ(. ) is the Euler's gamma function, we will have 

the following definitions.  

   

Definition 2.1.  The Riemann-Liouville operator of fractional differentiation of order 𝑞 is defined by 

𝐷𝑞𝑦(𝑥) =
𝑑𝑚

𝑑𝑡𝑚
(

1

Γ(𝑚−𝑞)
∫ (𝑥 − 𝑧)𝑚−𝑞−1𝑦(𝑧)𝑑𝑧
𝑥

0
) ,     𝑥 > 0,   𝑞 ∉ ℕ, 𝑞 > 0,𝑚 − 1 < 𝑞 ≤ 𝑚.  

Definition 2.2. The Caputo operator of fractional differentiation of order 𝑞 is defined by 

𝐷∗
𝑞
𝑦(𝑥) =

1

Γ(𝑚−𝑞)
∫ (𝑥 − 𝑧)𝑚−𝑞−1𝑦(𝑚)(𝑧)𝑑𝑧
𝑥

0
,     𝑥 > 0,    𝑞 > 0,𝑚 − 1 < 𝑞 ≤ 𝑚.  

In this paper, we focus the Caputo operator of fractional differentiation, so let us write 𝐷𝑞 instead 𝐷∗
𝑞
.  

Some important properties are (for further details, we refer to [20]): 

- 𝐷𝑞𝑥𝜈 = {

Γ(𝜈+1)

Γ(𝜈+1−𝑞)
 𝑥𝜈−𝑞      (𝜈 ∈ ℕ 𝑎𝑛𝑑 𝜈 ≥ 𝑚) 𝑜𝑟 (𝜈 ∉ ℕ 𝑎𝑛𝑑 𝜈 > 𝑚 − 1),

0                                                                       𝜈 ∈ {0,1,… ,𝑚 − 1}.
  

- 𝐷𝑞(𝜆 𝑦1(𝑥) + 𝜇 𝑦2(𝑥)) = 𝜆𝐷
𝑞𝑦1(𝑥) + 𝜇 𝐷

𝑞𝑦2(𝑥),    𝜆, 𝜇 ∈ ℝ. 

- 𝐷𝑞𝑐 = 0,      (𝑐 ∈ ℝ). 

Let Li(x) be the standard Legendre polynomial of degree 𝑖, then we have that 

𝐿𝑖(−𝑥) = (−1)
𝑖𝐿𝑖(𝑥),           𝐿𝑖(−1) = (−1)

𝑖,        𝐿𝑖(1) = 1.                                                            (3) 

Let 𝑤(𝑥) = 1, then we define the weighted space 𝐿𝑤
2 (−1,1), equipped with the following inner product 

and norm 

(𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑤(𝑥)𝑑𝑥,                  ‖𝑓‖ = (𝑓, 𝑓)
1
2.                                                                    (4)

1

−1

 

The set of Legendre polynomials forms a complete 𝐿2(−1,1) − orthogonal system,   and  

‖𝐿𝑖‖
2 =

2

2𝑖 + 1
≔ ℎ𝑖.                                                                                       (5) 

The shifted Legendre polynomial is defined as follow: 

𝐿𝑡,𝑖(𝑥) = 𝐿𝑖 (
2𝑥

𝑡
− 1) ,    𝑡 > 0.                                                                     (6) 

According to Eq. (3), it can be shown that 

𝐿𝑡,𝑖(0) = (−1)
𝑖 ,            

𝑑𝑞

𝑑𝑥𝑞
𝐿𝑡,𝑖(0) =

(−1)𝑖−𝑞Γ(𝑖 + 𝑞 + 1)

𝑡𝑞Γ(𝑖 − 𝑞 + 1)Γ(𝑞 + 1)
.                                                      (7)  
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The analytic form of shifted Legendre polynomial of degree 𝑖 is given by 

 𝐿𝑡,𝑖(𝑥) = ∑
(−1)𝑖+𝑘(𝑖+𝑘)!

(𝑖−𝑘)!(𝑘!)2𝑡𝑞
𝑥𝑘 .                                                                     (8)𝑖

𝑘=0  

We let 𝑤𝑡(𝑡) = 𝑤(𝑡) = 1, then similarly the set of shifted Legendre polynomials forms a complete 

𝐿𝑤𝑡(−1,1) −orthogonal system. Due to Eq. (4) and Eq. (5), we will have 

(𝑓, 𝑔)𝑤𝑡 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑤𝐿(𝑥)𝑑𝑥,            ‖𝑓‖𝑤𝑡 = (𝑓, 𝑓)𝑤𝑡

1
2.                                                           (9)

1

−1

 

and 

‖𝐿𝑡,𝑖‖𝑤𝑡

2
=

𝑡

2𝑖 + 1
=
𝑡

2
ℎ𝑖 ≔ ℎ𝑡,𝑖.                                                                                                            (10) 

A function 𝑢(𝑥), square integrable in (0, 𝑡),  may be expressed in term of shifted Legendre polynomial as 

𝑢(𝑥) = ∑𝑎𝑘𝐿𝑡,𝑘(𝑥),

∞

𝑘=0

 

where the coefficients 𝑎𝑘 are  given by 

𝑎𝑘 =
1

ℎ𝐿,𝑘
∫ 𝑢(𝑥)𝐿𝑡,𝑘(𝑥)𝑑𝑥,     𝑘 = 0,1,2,….                                                                        (11)
𝐿

0

 

In practice, we can write 

𝑢(𝑥) ≅ ∑𝑎𝑘𝐿𝑡,𝑘(𝑥),                                                                    (12)

𝑁

𝑘=0

 

By using the Eq. (8), we have the following properties. 

Lemma 2.1. let 𝐿𝑡,𝑖(𝑡) be a shifted Legendre polynomial. Then 

 𝐷𝛼𝐿𝑡,𝑖(𝑥) = 0,           𝑖 = 0,1, … , ⌈𝛼⌉ − 1,    𝛼 >

0.                                                               (13) 

Theorem 2.2. [22]  The fractional derivative of order α in the Caputo sense for the Legendre polynomials 

is given by 

𝐷𝛼𝐿𝑡,𝑖(𝑥) =∑Z𝛼(𝑖, 𝑗)𝐿𝑡,𝑗(𝑥),                 𝑖 = 𝑚,𝑚 + 1,…,                                               (14)

∞

𝑗=0

 

where  𝑍𝛼(𝑖, 𝑗) = ∑ Ω𝑖𝑗𝑘
𝑖
𝑘=𝑚  , and 

                                Ω𝑖𝑗𝑘 = (2𝑗 + 1)∑
(−1)𝑖+𝑘+𝑗+𝑟(𝑖+𝑘)!(𝑗+𝑟)!

𝑡𝛼(𝑖−𝑘)!𝑘!(𝑗−𝑟)!(𝑟!)2Γ(𝑘−𝛼+1)Γ(𝑘+𝑟−𝛼+𝑎)
.

𝑗
𝑟=0   
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3. A quadrature shifted Legendre Tau method 

In this section, we use the Q-SLT method to solve numerically Eq. (1) to gather Eq. (2) as follow: 

We denote xN,j(xt,N,j) and 𝑤𝑁,𝑗(𝑤𝑡,𝑁,𝑗), 0 ≤ 𝑗 ≤ 𝑁, the nodes and weights of the standard  

(respectively shifted) Legendre–Gauss–Lobatto quadratures on the intervals (−1,1)  and (0, 𝑡)  
respectively. Therefore one can easily show that  

𝑥𝑡,𝑁,𝑗 =
𝑡

2
(𝑥𝑁,𝑗 + 1), 

𝑤𝑡,𝑁,𝑗 =
𝑡

2
𝑤𝑁,𝑗.                     0 ≤ 𝑗 ≤ 𝑁                                                         (15) 

 

If y(𝑥) ∈ P2N+1(0, t), the set of all polynomials of degree at most 2N + 1 in interval (0, 𝑡), then    

  

∫ 𝑦(𝑥)𝑤𝑡(𝑥)𝑑𝑥 =
𝑡

2
∫ 𝑦 (

𝑡

2
(𝑥 + 1))𝑤(𝑥)𝑑𝑥

1

−1

𝑡

0

=
𝑡

2
∑𝑤𝑁,𝑗𝑦 (

𝑡

2
(𝑥𝑁,𝑗 + 1))

𝑁

𝑗=0

=∑𝑤𝑡,𝑁,𝑗𝑦(𝑥𝑡,𝑁,𝑗).                                                                                                  (16)

𝑁

𝑗=0

 

According to the Legendre–Gauss–Lobatto quadrature, 𝑥𝑁,𝑗 are the zero of (1 − 𝑥2)𝜕𝑥𝐿𝑁, and 

𝑤𝑁,𝑗 =
2

𝑁(𝑁 + 1)

1

(𝐿𝑁(𝑥𝑁,𝑗))
2 ,     0 ≤ 𝑗 ≤ 𝑁.                                                                      (17) 

 

We define the discrete inner product and norm as follows: 

(𝑢, 𝑣)𝑤𝑡,𝑁 =∑𝑢(𝑥𝑡,𝑁,𝑗)𝑣(𝑥𝑡,𝑁,𝑗)𝑤𝑡,𝑁,𝑗,        ‖𝑢‖𝑤𝑡,𝑁 = √(𝑢, 𝑢)𝑤𝑡,𝑁 .                         (18)

𝑁

𝑗=0

 

Obviously, 

(𝑢, 𝑣)𝑤𝑡,𝑁 = (𝑢, 𝑣)𝑤𝑡 ,         ∀ 𝑢, 𝑣 ∈ 𝑃2𝑁+1.                                                                            (19) 

Associating with this quadrature rule, we denote by 𝐼𝑁
𝑠𝐿 the shifted Legendre–Gauss–Lobatto 

interpolation, 

𝐼𝑁
𝑠𝐿𝑦(𝑥𝑡,𝑁,𝑗) = 𝑦(𝑥𝑡,𝑁,𝑗),     0 ≤ 𝑗 ≤ 𝑁.                                                                                   (20) 

 

Theorem 3.1. [22] Given 𝑦 ∈ 𝑃𝑁 and its values at a set of Legendre-Gauss-Lobatto points {𝑥𝑁,𝑗}𝑗=0
𝑁

, then 

we have 

𝒚(𝑙) = 𝐷𝑙𝒚, 

where  

𝐷 = (𝑑𝑘𝑗)0≤𝑗,𝑘≤𝑁,    𝒚
(𝑙) = (𝑦(𝑙)(𝑥𝑁,0), … , 𝑦

(𝑙)(𝑥𝑁,𝑁))
𝑇
,   𝒚 = 𝒚(0),                           (21) 
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𝑑𝑘𝑗 =

{
 
 
 

 
 
 −

𝑁(𝑁 + 1)

4
,                                        𝑘 = 𝑗 = 0,

𝐿𝑁(𝑥𝑁,𝑘)

𝐿𝑁(𝑥𝑁,𝑗)

1

𝑥𝑁,𝑘 − 𝑥𝑁,𝑗
,          𝑘 ≠ 𝑗, 0 ≤ 𝑘, 𝑗 ≤ 𝑁,

𝑁(𝑁 + 1)

4
,                                            𝑘 = 𝑗 = 𝑁,

0                                        1 ≤ 𝑘 = 𝑗 ≤ 𝑁 − 1.

 

Remark. In the case of 𝛼 = 𝑛 ∈ ℕ, theorem 2.2 gives the same result as theorem 3.1. 

The Q-SLT method for the FIDEs, (1)-(2), is to find 𝑦𝑁(𝑥) ∈ 𝑃𝑁 , such that 

 (𝐿𝐷(𝑦𝑁)(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡
= (𝑓(𝑥), 𝐿𝑡,𝑘(𝑥))

𝑤𝑡
+

(∫ 𝑘(𝑥, 𝑠)𝐷𝑞𝑦(𝑠)𝑑𝑠,
𝑡

0
𝐿𝑡,𝑘(𝑥))

𝑤𝑡

  

𝑘 = 0,1,… ,𝑁 − 𝑛,                                                                                                        (22) 

𝑦𝑁
(𝑖)(0) = 𝛽𝑖,        𝑖 = 0,… , 𝑛 − 1.                                                                              (23)  

By using Eq. (18), we employ a truncated series of shifted Legendre polynomials to approximate the 

unknown function, and the fractional-differential operator of this truncated series is expanded by shifted 

Legendre polynomials themselves (see, Theorem 2.2), and then the coefficients of this series are taken to 

be equal to the coefficients of the right-hand side expansion. 

Let us denote 

𝑦𝑁(𝑥) ≅∑𝑐𝑗𝐿𝑡,𝑗(𝑥)

𝑁

𝑗=0

,    𝑪 = (𝑐0, 𝑐1, … , 𝑐𝑁)
𝑇                                                                       (24) 

𝑘(𝑥, 𝑠) ≅∑∑𝑘𝑖𝑗𝐿𝑡,𝑗(𝑠)𝐿𝑡,𝑖(𝑥)

𝑁

𝑗=0

𝑁

𝑖=0

,                                                                                          (25) 

such that 

                          𝑘𝑖𝑗 = ((𝑘(𝑥, 𝑠), 𝐿𝑡,𝑗(𝑠)) , 𝐿𝑡,𝑖(𝑥))
𝑤𝑡

.  

then Eq. (22) can be written as 

∑𝑐𝑗

𝑁

𝑗=0

{(𝐿𝐷(𝐿𝑡,𝑗(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡,𝑁

− (∫ 𝑘(𝑥, 𝑠)𝐷𝑞𝐿𝑡,𝑗(𝑠)𝑑𝑠, 𝐿𝑡,𝑘(𝑥)
𝑡

0

)
𝑤𝑡,𝑁

}   

= (𝑓(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡,𝑁

.                                                                                   (26) 

By using Theorem 2.2, we obtain 
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∑ 𝑐𝑗 (𝐿𝐷(𝐿𝑡,𝑗(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡,𝑁

𝑚−1

𝑗=0

+ ∑ 𝑐𝑗

𝑁

𝑗=𝑚

{(𝐿𝐷(𝐿𝑡,𝑗(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡,𝑁

−∑𝑍𝑞(𝑗, 𝑖)

∞

𝑖=0

(∫ 𝑘(𝑥, 𝑠)𝐿𝑡,𝑖(𝑠)𝑑𝑠, 𝐿𝑡,𝑘(𝑥)
𝑡

0  

)

𝑤𝑡,𝑁

}

= (𝑓(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡,𝑁

.                                                                                                                     (27) 

Let us denote 𝜙(𝑥) = (𝐿𝑡,0(𝑥), 𝐿𝑡,1(𝑥), … , 𝐿𝑡,𝑁(𝑥))
𝑇
, then we can rewrite Eq. (26) as  

𝐶𝑇  (𝐿𝐷(𝜙)(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡
− 𝐶𝑇 ((∫ 𝐷𝑞𝜙(𝑠)𝜙𝑇(𝑠)𝑑𝑠) 𝑲𝑇𝜙(𝑥)

𝑡

0

, 𝐿𝑡,𝑘(𝑥))

𝑤𝑡

≅ 𝑭𝑇 (𝜙(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡
.                                                                                                                        (28) 

where 

 𝑲 = (𝑘𝑖𝑗)0≤𝑖,𝑗≤𝑁
,   𝑭 = (𝑓0, 𝑓1, … , 𝑓𝑁)

𝑇 . 

As in typical method, we generate 𝑁 − 𝑛 + 1 linear equation by applying 

(𝑅𝑁(𝑥), 𝐿𝑡,𝑘(𝑥))
𝑤𝑡
= 0,     𝑘 = 0,1, … ,𝑁 − 𝑛,                                                                      (29) 

where  

𝑅𝑁(𝑥) = (𝐶
𝑇 (𝐿𝐷(. ) − (∫ 𝐷𝑞𝜙(𝑠)𝜙𝑇(𝑠)𝑑𝑠

𝑡

0

)𝑲𝑇) − 𝑭)𝜙(𝑥).                                    (30) 

Also, by substituting Eq. (24) and  Eq. (21) into Eq. (23), we get 

𝑦𝑁
(𝑘)(0) = 𝐶𝑇𝐷𝑘𝜙(0) = 𝛽𝑘 ,         𝑘 = 0,1, … , 𝑛 − 1.                                                            (31) 

Eq. (29) and Eq. (31) generate (𝑁 − 𝑛 + 1) and 𝑛 sets of linear equations, respectively. These linear 

equations can be solved for unknown coefficients of the vector 𝐶. Consequently, 𝑦𝑁(𝑥) given in Eq. (24) 

can be calculated, which gives the solution of the FIDEs problem in Eq. (1) and Eq. (2). 

If we set 𝛼 = 𝑞 in Theorem 2.2, and we consider the only the first (𝑁 + 1) −terms of shifted Legendre 

polynomials in Eq. (14), then we obtain 

∫ 𝐷𝑞𝜙(𝑠)𝜙𝑇(𝑠)𝑑𝑠 = ((𝐷𝑞𝐿𝑡,𝑗, 𝐿𝑡,𝑘)𝑤𝑡
)
0≤𝑘,𝑗≤𝑁

,
𝑡

0

 

such that 

(𝐷𝑞𝐿𝑡,𝑗 , 𝐿𝑡,𝑘) = ∫ 𝐷𝑞𝐿𝑡,𝑗(𝑠)𝐿𝑡,𝑘(𝑠)𝑑𝑠 ≅ ∫ ∑𝑍𝑞(𝑗, 𝑙)𝐿𝑡,𝑙(𝑠)𝐿𝑡,𝑘(𝑠)𝑑𝑠

𝑁

𝑙=0

𝑡

0

𝑡

0

= ℎ𝑡,𝑘𝑍𝑞(𝑗, 𝑘),                   𝑘 = 0,1,… ,𝑁 −𝑚,   𝑗 = 𝑚,𝑚 + 1,… ,𝑁.                (32) 
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where  𝑍𝑞(𝑗, 𝑘) is given in Eq. (14). 

4. Illustrative examples 

To illustrate the effectiveness of the proposed algorithms, several illustrative examples are implemented 

by the method proposed in previous section. A comparison between the Q-SLT method and the method 

proposed by Al-Jamal et al. [12] is made. The results obtained by the proposed algorithms reveal that this 

algorithm is effective and convenient for approximating the IFDEs. 

Example 1. Consider the IFDEs 

𝑦′(𝑥) = 14 (1 −
𝑡

2.5Γ(1.5)
) + ∫ 𝑥𝑠𝐷∗

1
2𝑦(𝑠)𝑑𝑠,

1

0

    𝑦(0) = 0. 

The exact solution is 𝑦(𝑥) = 14𝑥.  

Now, we implement the Q-SLT technique with 𝑁 = 1, and then the approximate solution obtains as  

𝑦1(𝑥) = 𝑐0 + 𝑐1𝐿1,1(𝑥) = 𝑐0 + 𝑐1(2𝑥 − 1), 

By replacing the above relations in IFDEs, the following linear system yielded  

{
−10.840538332132564793 + 1.5486483331617949704 𝑐1 = 0

𝑐0 − 𝑐1 = 0
 

By solving the recent system, we obtain 𝑐0 = 𝑐1 = 7. Therefore  

𝑦1(𝑥) = 𝑦(𝑥) = 14.000000000000000000 𝑥. 

Example 2. Consider the equation 

𝑦′(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝐷∗

1
4𝑦(𝑠)𝑑𝑠,

1

0

 

with the initial condition 

𝑦(0) = 0, 

where 𝑘(𝑥, 𝑠) = 𝑥2𝑠2, 𝑓(𝑥) = 8𝑥3 −
3

2
𝑥
1

2 − (
48

6.75Γ(4.75)
−

Γ(2.75)

4.25Γ(2.25)
)𝑥2, and exact solution is given by 

𝑦(𝑥) = 2𝑥4 − 𝑥
3

2.  

We let 𝑁 = 6 and obtain 

𝑦(𝑥) = 0.50 ∗ 10−10 − 0.1258741266  𝑥 − 2.202797201  𝑥2  + 3.937048968  𝑥3

− 3.286713287  𝑥4  + 3.776223777  𝑥5 − 1.076923077  𝑥6. 
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Table 1: relative errors for Example 2 using the C.D.F-B.D.F and Q-SLT method at 𝑡 = 0.5 

N R. Error at 𝑡 = 0.5 by C.D.F-B.D.F R. Error at t = 0.5 by Q-SLT 

6 0.85140834 0.01228875 

12 0.03241737 0.01137419 

18 0.12476347 0.01150399 

24 0.00916074 0.00626470 

30 0.04651995 0.00588388 

 

Rawashdeh and Al-Jamal in [12] use the Backward and Central-Difference Formulas (B.D.F-C.D.F) to 

approximate 𝐷𝑦(𝑥) in Eq. (1) and approximate the solution 𝑦(𝑥) only at the mesh points. Table 1 and 2 

compare the accuracy of C.D.F-B.D.F method and Q-SLT with relative errors. 

 

Table 2: relative errors for Example 2 using the C.D.F-B.D.F and Q-SLT method at 𝑡 = 1 

N R. Error at 𝑡 = 1 by C.D.F-B.D.F R. Error at t = 1 by Q-SLT 

6 0.51768770 0.02096505 

12 0.15318017 0.02096351 

18 0.07240337 0.02096348 

24 0.04216677 0.02096125 

30 0.02762368 0.00209604 
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Figure 1: Comparison of the exact solution and our approximate solution for Example 2 with 𝑁 = 6 

 

5. Conclusion  

The presented method is based on computing the coefficients in the Legendre expansion of solution of a 

Fredholm integro-differential of fractional order. The Q-SLT method is useful both for finding the general 

solution and particular solution as demonstrated in examples. An interesting feature of this method is that 

when an integro-differential system has linearly independent polynomial solution of degree N or less than 

N, our method can be used for finding the analytical solution. Besides, we see that there exists a solution 

which is closer to the exact solution if the truncation limit N is increased. 

A considerable advantage of the method is that the Legendre coefficients the solution are found very 

easily by using the computer programs. Furthermore, the values of the solution at the collocation points 

are evaluated with the aid of the computer programs without any computational effort. 
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