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Abstract 
 The purpose of this paper is to determine the location of facilities and routes of vehicles, in which 

the facilities and routes are available within probability interval (0, 1). Hence, this study is coherent the 

stochastic aspects of the location problem and the vehicle routing problem (VRP). The location 

problem is solved by optimization software. Because of the computational complexity of the stochastic 

vehicle routing problem (SVRP), it is solved by a meta-heuristic algorithm based on simulated 

annealing (SA). This hybrid algorithm uses genetic operators in order to improve the quality of the 

obtained solutions. Our proposed hybrid SA is more efficient than the original SA algorithm. The 

associated results are compared with the results obtained by SA and optimization software. 
 

Keywords: Location; Vehicle routing problem; Stochastic; simulated annealing; Genetic operators. 

 

1. Introduction 
The location routing problem (LRP) can be divided to the facility location problem (FLP) and the 

vehicle routing problem (VRP). In the first problem, all customers are directly linked to a depot. In the 

second problem, it can be supposed that the locations of depots are predetermined.  Min et al. [1] and 

Nagy and Salhi [2], classified the LRP based on a number of aspects, such as facility layers, 

hierarchical levels, number of facilities, size of vehicle fleets, vehicle capacity, facility capacity, nature 

of demand/supply, number of objective functions, types of model data, planning horizon, time 

windows, solution space and solving procedure. In most previous studies in LRP, facilities are 

completely closed or opened to serve customers. In addition, routes are completely available to transit 

the vehicles. However, Lee and Chang [3] assumed that the facilities would not provide services for 
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some reasons, such as breakdown or shutdown of unknown causes. Hwang [4, 5] considered that 

facilities are available in a known probability. Hassan-Pour et al. [6] developed two new aspects of the 

LRP considering stochastic availability of facilities and routes. Wu et al. [7] divided a multi-depot 

location-routing problem into a LRP and a VRP. Doerner et al. [8] solved a multi-criteria tour 

planning. Hwang [4] presented a supply-chain logistics system with a service level. He divided the 

main problem into a stochastic set covering problem (SSCP) and a VRP. Hwang [5] presented a model 

for a stochastic set covering problem. Zhou et al. [9] designed a bi-criteria allocation problem and 

proposed a genetic algorithm to solve the given problem. Chu et al. [10] extended insertion and two-

phase heuristics for a periodic capacitated arc routing problem (ARP). Alumur and Kara [11] 

considered a location-routing problem minimizing the transportation risk and cost. Erkut and Alp [12] 

presented a hazardous material shipment problem to minimize the total transportation risk. Caballero 

et al. [13] developed a tabu search (TS) method for a multi-objective LRP. Erdogan and Esin [14] 

explained a routing table updating by the use of the self cloning ant colony that is based on one of the 

meta-heuristics. Liu and Chung [15] proposed a heuristic method, called variable neighborhood tabu 

search, adopting six neighborhood searching approaches, such as insertion and 2-opt. This method 

finds the optimal solution for the VRP with backhauls and inventory.  

In this paper, we assume that facilities may be partially destroyed because of crisis conditions or 

unknown reasons. Also, in catastrophic conditions, the routes are not completely available. Hence, 

facilities and routes are in the available state with the known probability between (0, 1). Then, we 

solve the location problem by an SSCP approach and the multi-objective multi-depot stochastic 

vehicle routing problem (MO-MDSVRP) by a hybrid meta-heuristic method based on SA.    
 

2. The model of the SSCP  
According to the literature survey, we solve the location problem using an SSCP approach. The main 

assumptions are as follows: 

 Facilities are uncapacitated. 

 The establishment cost of facilities is determined. 

 Every customer can be covered by multi depots simultaneously. 

 The facilities are available within the probability interval (0, 1). 

Hassan-Pour et al. [6, 16] presented the mathematical model of the SSCP that minimizes the 

establishment cost of facilities, subject to the coverage minimum of customers by some of the 

facilities. This model is solved by the optimization software. The illustrative results are provided and 

discussed in this paper. 
 

3. Computational results of SSCP  
To solve the SSCP, we use data generated at random, as shown in Table 1. 

 
Table 1 Data generated to solve the SSCP 

Value/ Data  Parameter Entity 

50,75 and 100  No. of customers  Customer 

10 and 20  No. of depots  

Depot 

U(0, 1) 
Covering coefficient of customer i  

by facility j  

U(0, 1)  Availability of facility j  

U(0.9, 1) 

Covering probability of customer 

i  

by some of the available facilities  
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By considering these data generated, six problems are solved by the optimization software. This 

software is used to find the optimal solution in the case where the average CPU time for the SSCP is 

always less than one second. Computational results of facilities location are shown in Table 2. 

 

 
 

Table 2 Computational results of SSCP 

No. of 

depots 

used 

OFV 
No. of 

depots 

No. of 

customer 

Problem 

name 

8 93061 10 50 P1 

14 146968 20 50 P2 

9 104509 10 75 P3 

14 161625 20 75 P4 

10 115415 10 100 P5 

16 175189 20 100 P6 

 

4. Mathematical formulation of the MO-MDSVRP 
In the MO-MDSVRP module, we consider a VRP with two objective functions and multiple depots. 

Also, the decision variables should be found under a stochastic environment, namely, facilities and 

routes are available within the probability interval (0, 1). We develop the MO-MDSVRP model under 

assumptions as follows: 

 The vehicle fleet is homogeneous. 

 The depots are multiple. 

 The capacity of each vehicle is limited. 

 The total demand served by each vehicle cannot exceed its capacity. 

 The working time of each vehicle is limited. 

 The service time in each node is given. 

 Each node is visited only once by a single vehicle. 

 The availability of each route is probabilistic.  

  We formulate the MO-MDSVRP as follows: 
Minimize 

1

1,..., 1,.... 1,...,

Z = ij ijv

i N j N v NV

C X
  

                                    (1) 

Maximize 
2

1,..., 1,..., 1,...,

Z = ( )ij ijv

v NV i N j N

P X
  

                                    (2) 

s.t. 

1,..., 1,...,

1 , 1,...,ijv

i N v NV

X j M N
 

                          (3) 

1,..., 1,...,

1 , 2,...,ijv

j N v NV

X i N
 

                         (4) 

1,..., 1,...,

0 , 1,...,   ;   1,...,ipv pjv

i N j N

X X v NV p M N
 

       (5) 

1,..., 1,...,

( ) , 1,...,i ijv v

i N j N

d X C v NV
 

                  (6) 

1,..., 1,..., 1,..., 1,...,

, 1,...,iv ijv ijv ijv v

i N j N i N j N

t X t X T v NV
   

         (7) 

1,.... 1,...,

1 , 1,...,ijv

i M j M N

X v NV
  

                                    (8) 
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1,...,

( ) , {1}  ,   ijv

v NV i S j S

X S r S S A S
  

               (9) 

 0,1 , , ,ijvX i j v                                                       (10) 

Notations: 

M  Number of facilities.  

N  Number of demand nodes or facilities (depot is at the node i = 1). 

NV  Number of available vehicles. 

i, j Index of demand nodes or facilities (1≤  i, j ≤ N). 

V  Node set in graph G(V,A) that is equal to {1,…,i ,…,N). 

A  Arc set in graph G(V,A) that is equal to {(i, j): i,jV, ij}. 

S  Arbitrary subset of set v. 

r(S)  Minimum number of vehicles needed to serve set S. 

Cv Capacity of vehicles. 

di  Demand at node i. 

tiv  Service time (time for rendering service) to node i by vehicle v. 

tijv  Travel time between arc (i, j) by vehicle v. 

Tv  Maximum service time and travel time for the vehicle v. 

Cij  Travel cost between arc (i, j). 

Pij  Availability of path between arc (i, j). 

Qij  Unavailability of path between arc (i, j), where Qij = 1- Pij. 

Xijv 1, if arc i, j is traversed by vehicle v; 0, otherwise. 

 

This model determines vehicle routings and transportation schedules for the facilities, which are 

determined by the SSCP model. The objective function (1) minimizes the transportation cost, and the 

objective function (2) maximizes the probability of delivery to customers. Constraints (3) and (4) 

cause each customer is served by one vehicle. Constraint (5) defined for equivalence in input and 

output of each node. Constraint (6) indicates the maximum capacity of vehicles. Constraint (7) shows 

the maximum working time for each vehicle. Constraint (8) causes that each vehicle travels only from 

one depot to customers. Constraint (9) ensures that sub-tours do not establish. Constraint (10) defines 

the type of decision variables. 

We interpret how the objective function (2) can be changed from multiplication to summation, and so 

from the minimum to the maximum (Hassan-Pour et al. [6]). The objective function Z2 is in the 

multiplication form. To prevent that the value of Z2 become zero, a fixed value added to it. Then, to 

convert it to a linear function, the logarithm of the obtained function is maximized. Finally, in order to 

change it to maximization, the objective function is multiplied by -1. According to this interpretation, 

the objective function (2) is changed by: 

 

2

1,..., 1,..., 1,...,

Z =Min׳
ij ijv

i N j N v NV

Q X
  

                                (11) 

 

A multi-objective solution technique should be adopted for the MO-MDSVRP. Rahimi-Vahed et al. 

[17] classified five methods for multi-objective optimization problems, such as scalar methods, 

interactive methods, fuzzy methods, meta-heuristic methods, and decision-aided methods. We employ 

a linear composition objective function for the ease of applications as good as Alumur and Kara [11], 

Erkut and Alp [12], and Caballero et al. [13].  

 

Based on a convex combination of transportation cost (Z1) and unavailability of routes (Z2), the 

combined objective function obtained as follows (Hassan-Pour et al. 2009): 
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1 2

max max
1 2

( ) (1 )( )
׳

opt ׳

Z Z
Min Z

Z Z
                     (12) 

 

In this equation, Z1
max and Z2

 ,max are the maximum cost and the maximum unavailability of routes ׳

respectively. 

 

5. SA methodology 
The SA methodology is a meta-heuristic method that uses a stochastic approach to direct the search. 

To crystallize a solid in the annealing operation, it is heated to a high temperature and gradually cooled 

to low. This heating process allows the atoms to move randomly in order to reach a minimum energy 

state. This analogy can be used in solving any combinatorial optimization. It makes the search to 

proceed to a neighboring state even if the move causes the value of the objective function to become 

worse (Tavakkoli-Mogaddam et al. [18]). 

 

5.1. Hybrid SA algorithm 
We generate an initial solution by a heuristic method and improve the quality of the solution by the 

genetic operators. Hence, we hybridize the SA algorithm with the genetic operators. The flowchart for 

our hybrid SA algorithm is shown in Fig 1. 



H.A. Hassan-Pour, M. Mosadegh-Khah, M. Zareei / J. Math. Computer Sci.    12 (2014) 27 - 38 
 

 

32 

 
 

Start 
 

Define the initial temperature (T0) and Set Tk= T0.  

Define the rate of temperature decrease (). 

Define the maximum number of consecutive 

temperature trails (Kn) and the number of accepted 

solutions in each temperature (Ln). 
Generate an initial solution (Z0) and Set ZBest= Z0. 

 

Set K= 0 and L=0. 

Select 1-opt or 2-opt operators randomly, and 

generate the neighbor solution (Zl) and set ZNew=Zl. 

ΔF = F(ZNew) - F(ZBest). 

 Is ΔF < 0? 

Accept the new solution as 

the best solution (ZBest= ZNew) 

and so the solution of stage L 

(ZL= ZNew). 

Accept the new solution as the 

solution of stage L (ZL= ZNew).  
Is R (0, 1) <  

Exp (-ΔF/ Tk)? 

Set L=L+1. 

 

Is L < Ln? 

Set K=K+1. 

 

Is K< Kn , Tk>0? Yes 

No 

=  kTSet  

.1-kT  -1 -kT 

No 

No 

No 

The best solution is obtained and stops. 

 

Yes 

Yes 

Yes 

Fig. 1 Flowchart for the hybrid SA algorithm 

 

Notations: 

Ln  Epoch length, the number of 

accepted solutions in each temperature.  

Kn  Maximum number of 

consecutive temperature trails. 

T0  Initial temperature. 

α  Rate of the current temperature 

decrease (i.e., cooling schedule). 

Z  Feasible solution. 

F(z)  Objective function value for z. 

L  Counter for the number of 

accepted solutions in each temperature; 

K  Counter for the number of 

consecutive temperature trails, where Tk is 

equal to temperature in iteration k 
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5.2. Initial solutions 
An initial solution is generated by a heuristic method based on the capacitated VRP model. In this 

model, each vehicle serves to one node. The homogeneous fleet is used. First, an un-served node is 

selected at random for each route, and then a vehicle is allocated to that. Until the capacity of the 

vehicle is violated, another un-served node is searched at random continually. Also, the capacity of the 

allocated vehicle is updated at each route. 
 

5.3.Neighborhood solution 
To obtain a neighborhood solution, the genetic operators, namely mutation (i.e., 1-opt) and crossover 

(i.e., 2-opt), are embedded in the SA algorithm. Hence, these operators are selected randomly in order 

to improve the solution in each iteration of the algorithm. Tables 3 and 4 show the representation of 

some of the solutions in the genetic operators. In mutation operator, two routes of two vehicles are 

randomly chosen out of the existing feasible solutions, and then a customer is deleted from a route and 

added to the other route (e. g. customer C3 in table 3). In crossover operator, two routes belonging to 

two vehicles are randomly chosen from the existing feasible solutions, and then two nodes out of two 

routes are exchanged with each other (e. g. customer C2 and customer C3 in table 4). 

 
Table 3 The representation of solution in the mutation operator. 

Tout planning C5 C4 C3 C2 C1 Customers  

C1- C3- C4 0 1 1 0 1 Route 1, Vehicle 1 Previous 

solution C2- C5 1 0 0 1 0 Route 2, Vehicle 2 

        

C1- C4 0 1 0 0 1 Route 1, Vehicle 1 Next 

solution C2- C3- C5 1 0 1 1 0 Route 2, Vehicle 2 

 

Table 4 The representation of solution in the crossover operator. 

Tout planning C5 C4 C3 C2 C1 Customers  

C1- C3- C4 0 1 1 0 1 Route 1, Vehicle 1 Previous 

solution C2- C5 1 0 0 1 0 Route 2, Vehicle 2 

        

C1- C2- C4 0 1 0 1 1 Route 1, Vehicle 1 Next 

solution C3- C5 1 0 1 0 0 Route 2, Vehicle 2 

 

5.4. Assessment of the hybrid SA efficiency 

 
The illustrative results are provided to the model verification and large-sized problems. Our proposed 

hybrid SA is programmed in the Microsoft Visual Basic 6.0 and executed on a Pentium 4 CPU 2.4GHz 

with 256MB RAM. 
 

5.5.Parameter settings 
To solve the MO-MDSVRP, we use data generated at random, as shown in Table 5. We solve this 

problem with the various values of   between 0 and 1 in increments of 0.1. As the decision maker is 

concerned about the cost and probability, based on trade-off curve, it is expected to select a solution 

generated by  between 0.4 and 0.6. Hence for to simplicity, the coefficient of the objective function is 

set to 0.5.  
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Table 5 Data required to solve the MO-MDSVRP 

Value/ Data  Parameter Entity 

Output of SSCP (Optimization software) No. of depots (M) 

Depot 

Output of SSCP (Optimization software) Covering coefficients  

U(500, 1000) cost unit Travel cost (Cij) 

U(0.3, 1.8) Hour Travel time (tijv)  

U(0, 1) Availability of arcs i and j (pij) 

6 to 10 Customers for small size and 20, 25, 35,  

50,75,100 Customers  for large size problems 
No. of  customers (N) 

Customer 

U( 0.1, 1.1) Ton Demand (di) 

U(500, 1000) cost unit Travel cost (Cij) 

U(0.3, 1.8) hours Travel time (tijv) 

U(0.3, 0.8) hour Service Time (tiv) 

U(0, 1) Availability of arcs i and j (pij) 

3,4 Vehicles for small size and 5 to 7, 30, 40 and 50 

vehicles  for large size problems  
No. of vehicles (NV) 

Vehicle 
2 Ton Vehicles capacity (Cv) 

8 Hours Work time (Tv) 

100 
No.  of  accepted 

 Solution in each temperature (Ln) 

Program  

control 

100 
Maximum no.  of  consecutive(Kn) 

temperature trials 

5 Initial temperature (T0) 

0 Final temperature (Tk) 

0.95 Rate of decreasing temp. (α) 

0.5 (0.1 to 0.9 in trade-off curve)       
Objective 

coefficient 

 

5.6.Model verification for small-sized problem 
Seven small-sized test problems are solved by the optimization software and the hybrid SA algorithm. 

Table 6 reports the results obtained of solving a number of problems with 3 and 4 vehicles and 6 to 10 

customers. For each solution method, this table presents the objective function value (OFV), the 

computation time expressed in seconds, and the gap (in percent) between the optimal solution values 

obtained from two methods. It also shows that our hybrid SA algorithm is as good as mathematical 

programming in term of the solution quality. This approach solves such a hard problem in the 

maximum gap of 1.3%. In addition, the average percentage gap of solutions obtained by the 

optimization software and the hybrid SA is 0.5% showing the verification of our hybrid SA.  
 

Table 6 Computational results for small-sized problems 

Gap 

(%) 

Hybrid SA  Exact algorithm No. of 

Depots/ 

Customers/ 

Vehicles 

Problem 

name Time 

(sec.) 
OFV  

Time 

(sec.) 
OFV 

0 1.12 5.5  32 5.5 1/ 6/ 4 P7 

0 0.98 5.32  58 5.32 1/ 7/ 3 P8 

0 1.25 5.88  305 5.88 1/ 7/ 4 P9 

0 1.39 6.34  2612 6.34 1/ 8/ 4 P10 

1.3 0.86 6.01  1496 5.93 1/ 9/ 3 P11 

1.2 1.31 6.62  7451 6.54 1/ 9/ 4 P12 

0.9 1.23 6.62  15751 6.56 1/ 10/ 3 P13 

0.5 Average gap 
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Fig. 2 indicates the average CPU time related to the hybrid SA and exact method solutions in respect 

to 3 and 4 vehicles and 6 to 10 customers given in Table 6. This figure shows the solution time for the 

mathematical approach rises drastically when the problem size increases. 

 
Fig. 2 CPU time for small-sized problems 

 

5.7. Model efficiency for large-sized problems 

 
Since the optimization software packages are unable to solve large-sized problems, we can simplify 

the mathematical model by relaxing some of the constraints and obtain the lower bound (LB) 

solutions. Then, the results of hybrid SA is compared with lower bound (LB) solutions in five test 

problems. Even by relaxation constraints, the optimization software cannot obtain the LB solution at 

reasonable time in more than one depot, seven vehicles, and thirty five customers, as shown in Table 7. 

Fig. 3 illustrates the average CPU time related to the hybrid SA and LB solutions in respect to 5 to 7 

vehicles and 20, 25 and 35 customers as given in Table 7. This figure indicates the solution time for 

the mathematical approach rises drastically when the problem size increases. In addition, as shown in 

Table 7, we solve large-sized problems by the SA algorithm with 8, 9, 10, 14, and 16 depots; 50, 75, 

and 100 customers; and 30, 40, and 50 vehicles that are located in the SSCP. Although, usually the 

solution of exact method are better than the hybrid SA, the average gap between the hybrid SA and LB 

solution is equal to 21%, which is an acceptable outcome for large dimensions. 

To demonstrate the efficiency of the hybrid SA, we solve large-sized problems by the SA algorithm 

without 1-opt and 2-opt operators. As shown in Table 7, for large sizes, the average gap between 

solutions obtained by the SA (without operators) and hybrid SA is equal to 16%, which demonstrates 

the hybrid SA algorithm is more efficient than the SA algorithm. However, the solution time for the 

hybrid SA is better than SA in most large-sized problems. Fig. 4 illustrates the average CPU time 

related to the SA and hybrid SA solutions in large-sized problem as given in Table 7.  

 

Table 7 Computational results for large-sized problems 

І & ІІ 

 

LB & І 

 Strategy ІІ: 

 SA (Without 

operators) 

 
Strategy І: 

 Hybrid SA 

 

LB 
No. of 

depots/ 

customers/  

vehicles 

Problem 

name 
Gap 

 (%) 

Gap 

 (%) 

Time 

(sec.) 

OFV  Time 

(sec.) 
OFV 

Time 

(sec.) 
OFV 

-  18  - -  7.17 9.52  178 8.05 1/ 20/ 5 P14 

-  16  - -  8.3 8.85  478 7.62 1/ 20/ 6 P15 

-  26  - -  19.2 16.35  3127 12.95 1/ 35/ 6 P16 

-  26  - -  14.4 15.93  4484 12.63 1/ 35/ 5 P17 

-  19  - -  13.7 11.90  6922 9.96 1/ 25/ 7 P18 

Fig. 2 CPU time in small-sized problem
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20  -  850 39.23  703 32.71  - - 8/ 50/ 30 P19 

8.3  -  1647 53.28  1282 49.19  - - 9/ 75/ 30 P20 

15.2  -  2126 61.11  1911 53.05  - - 9/ 75/ 40 P21 

25  -  1184 41.57  1134 33.22  - - 14/ 50/ 30 P23 

22.7  -  1535 41.98  1782 34.20  - - 14/ 50/ 40 P24 

12.8  -  2694 57.67  3204 51.14  - - 14/ 75/ 40 P25 

14.7 
 -  6315 70.69  

5881 61.63 
 

- - 
10/ 100/ 

40 

P22 

9.7 
 -  8230 75.60  

7509 68.93 
 

- - 
16/ 100/ 

50 

P26 

16  21  Average gap  

 

 
Fig. 3 CPU time for the lower bound 

 
Fig. 4 CPU time for large-sized problems 

 

 

 

6. Conclusions 
In this paper, we have developed an efficient hybrid meta-heuristic method for the special type of the 

location-routing problem (LRP) that serviceability of facilities and availability of routes are under 
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uncertainty. To solve this problem, we have used a hybrid SA-GA meta-heuristic. In this hybrid 

method, we have used two genetic operators, namely mutation and crossover that embedded in the SA 

algorithm. The SA algorithm allows the search to escape from local optimum, and GA operators are 

used to obtained the neighborhood solution and improve the quality of solutions. To show the 

performance of our hybrid SA algorithm, the average CPU times and the quality of solutions have 

been compared with the SA algorithm and optimization software. The hybrid SA works better than SA 

to obtain the solution. Also, the genetic operators makes the SA become more efficient in terms of the 

average CPU time in the most large-sized problems.  

We suggest some future studies, such as other meta-heuristics can be developed to solve the presented 

model. Also, Or-opt and λ-opt operators can be used to generate the various initial solutions. The 

model can be further enhanced by including pick-up and delivery distribution processes and 

considering parameters as fuzzy and probabilistic. 
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