
Journal of mathematics and computer science        14 (2015), 211-221 

 

Asymptotically Polynomial Type Solutions for Some 2-Dimensional Coupled 

Nonlinear ODEs 

B. V. K. Bharadwaj1,*, Pallav Kumar Baruah1,+ 

 
1Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning 

Prasanthinilayam – 515134, INDIA. 

*bvkbharadwaj@sssihl.edu.in 

+pkbaruah@sssihl.edu.in  

Article history: 

Received    November 2014 

Accepted    December 2014 

Available online December 2014 

Abstract 
In this paper we have considered the following coupled system of nonlinear ordinary differential 

equations.  

 x
n

1

1
(t)=f

1
(t,x

2
(t))  

 x
n

2

2
(t)=f

2
(t,x

1
(t))    (1) 

where f
1
,f

2
 are real valued functions on [t

0
,∞)×R, t≥t

0
>0. We have given sufficient conditions on the 

nonlinear functions f
1
,f

2
, such that the solutions pair x

1
,x

2
 asymptotically behaves like a pair of real 

polynomials.  

Keywords: Nonlinear Coupled Ordinary Differential Equations, Fixed-point Theorem, Assymptotically 

Polynomial like solutions 

1. Introduction 

There are many physical phenomena where systems of differential equations arise, in fact the fact that any 

two variables of the physical world are mutually dependent, makes us realize the importance and need for 

the study of these systems of differential equations. Some such studies can be found in [9]. The authors 

have worked on the existential analysis of certian generalized systems in [Error! Reference source not 

found., Error! Reference source not found., 6], in the recent past. Equally important is to find out the 
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qualitative nature of solutions to these systems. In literature we find lot of work done on the qualitative 

behavior of solutions for ordinary differential equations. we can find a lot of work done in [3, 8] on the 

second order nonlinear differential equations. The same problem for higher order nonlinear differential 

equations was treated in [7]. We specifically mention [2], in which sufficient conditions for every solution 

of a n
th

 order nonlinear differential equation to be asymptotic to a real polynomial of at most degree n−1 

at ∞. In this paper we have extended these type of results to 2-dimensional systems of nonlinear coupled 

ordinary differential equations. This kind of work would be helpful in analyzing the systems where the 

coefficient matrices are anti-diagonal.  

In this paper we investigated the solutions of the coupled system (1), which behave asymptotically at ∞ 

like real polynomials in t. We have given sufficient conditions for the solution pair x
1
,x

2
 to behave like 

real polynomial pair of at most degree m
1
,m

2
 respectively, where 1≤m

1
≤n

1
−1,  1≤m

2
≤n

2
−1 . We 

mention here that the nonlinear terms in the system are explicitly dependent on only one variable, this 

gives a scope for further findings where these nonlinear terms could be dependent on both the vaiables. 

2. Main Result 

We investigate the solutions of (1) which are defined for large t i.e on the interval [T,∞), where T≥t
0
 may 

depend on the solution.  

Before we prove our main result, we give some preliminaries which we use in the proof. 

Schauder’s Fixed Point Theorem 

Let E be a Banach Space and X any nonempty convex and closed subset of E. If S is a Continuous 

mapping into itself and SX is relatively compact, then the mapping S has at least one  fixed point.  

Definition 

A set of real-valued functions H defined on [T,∞) is called equiconvergent at ∞ if all functions in H are 

convergent in R at the point ∞ and for every ε>0, there exists T
‘
≥T such that for all h∈H 

| |h(t)−lim
s→∞

h(s) <ε 

for all t≥T
0
  

Compactness Criterion 

Let H be a equicontinuous and uniformly bounded subset of the Banach space B([T,∞))(Banach space of 

all continuous and bounded real valued functions on [T,∞)). If H is equiconvergent at ∞, then it is also 

relatively compact. 

Note: The Banach space B([T,∞)) is endowed with the sup-norm ║.║ 

║f║ = supt ≥ T │f(t)│ for h ϵ B([T,∞)) 
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This compactness criterion is a corollary of the Ascoli-Arzella Theorem and is an adaptation of a lemma 

due to Avramescu [1]. 

Theorem 1 

Let m
1
,m

2
 be integers with 1≤m

1
≤n

1
−1, 1≤m

2
≤n

2
 and assume that  

 | |f
1
(t,z) ≤p

1
(t)g 









 
 | |z

t
m

1
+q

1
(t)  

 | |f
2
(t,z) ≤p

2
(t)g 









 
 | |z

t
m

2
+q

2
(t)    (2) 

for all (t,z)∈[t
0
,∞)×R ,  

where p and q are nonnegative continuous real-valued functions on [t
0
,∞) such that  

 

t
0

∞

 t
n

1
−1

p
1
(t)dt<∞ 

 

t
0

∞

 t
n

1
−1

q
1
(t)dt<∞ 

 

t
0

∞

 t
n

2
−1

p
2
(t)dt<∞ 

 

t
0

∞

 t
n

2
−1

q
2
(t)dt<∞   (3) 

and g is a nonnegative continuous real-valued function on [0,∞) which is not identically zero. 

Let c
10

,c
11

,...,c
1m

1

 and c
20

,c
21

,...,c
2n

1

 be real numbers and T be a point with T≥t
0
, and suppose that 

there exists positive constants K
1
,K

2
 such that  

 














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  m

i
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T

c

T

K
zzgdssp
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0
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1

22

1

0:)(sup)(
)!1(
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T

∞

  
(s−T)

n
1
−1

(n
1
−1)!

q
1
(s)ds≤K

1
 (4) 
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and  
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




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



  m

i
im

i

m

T

n

T

c

T

K
zzgdssp

n

Ts

0

11
2

2

1

11

2

0:)(sup)(
)!1(

)(
 

 + 

T

∞

  
(s−T)

n
2
−1

(n
2
−1)!

q
2
(s)ds≤K

2
 (5) 

Then the system (1) has a solution pair {x1, x2} on the interval [T,∞] such that  

 x
1
=c

10
+c

11
t+...+c

1m
1

t
m

1 

 x
2
=c

20
+c

21
t+...+c

2m
2

t
m

2   (6) 

Proof: By substituting  

 y
1
(t)=x

1
(t)− 







c

10
+c

11
t+...+c

1m
1

t
m

1  

 y
2
(t)=x

2
(t)− 







c

20
+c

21
t+...+c

2m
2

t
m

2  

the system (1) gets transformed in to  

 y
n

1

1
(t)=f

1
 









t,y
2
(t)+ 

i=0

m
2

 c
2i

t
i

 

 y
n

2

2
(t)=f

2
 









t,y
1
(t)+ 

i=0

m
1

 c
1i

t
i

   (7) 

Therefore we can clearly see that it is sufficient to prove that the system (7) has a solution pair y
1
,y

2
 on 

the interval [T,∞] with  

 lim
t→∞

y
ϱ

1

1
(t)=0 

 lim
t→∞

y
ϱ

2

2
(t)=0   (8) 

where ϱ
1
=0,1,...,n

1
−1  and ϱ

2
=0,1,...,n

2
−1   

Now consider the Banach Space E=B ( ) [ ]T,∞  with the sup-norm | |. , and define  
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  1111 : KyEyY   

  2222 : KyEyY   

ClearlyY
1
, Y

2
 are non-empty closed convex subsets of E. Let y

1
 and y

2
 be arbitrary functions in Y

1
 

and Y
2
 respectively. Then for every t≥T  

 

 









y
1
(t)+ 
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1
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t
i

t
m

1
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 | |y
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
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t
m
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 | |y
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 | |c
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K
2

T
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2
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m
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 | |c
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T
m

2
−i 

So  

 

 g 

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







 

 







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y
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i=0

m
1
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1i

t
i

t
m

1
≤τ

1
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

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
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
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where τ
1
,τ

2
 are defined as  
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From (2) we get  
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






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

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

t,y
2
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i=0
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t
i

≤τ
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p

1
(t)+q

1
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

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1
p

2
(t)+q

2
(t)    (9) 

for every t≥T 

Thus, from (3) we can conclude that  

 
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exist in R. 

Now, by using (9) for every t≥T we get that  
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From (4) and (5) we get  
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





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

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s,y
1
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i=0

m
1

 c
1i

s
i

ds ≤K
2

   (10) 

for every t≥T. As this is true for any pair y
1
,y

2
, we now define mappings S

1
 and S

2
 on Y

1
 and Y

2
 

respectively as  

 ( )S
1
y

1
(t)=(−1)

n
1 

t

∞

  
(s−T)

n
1
−1

(n
1
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f
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

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

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i=0
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
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 c
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
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i=0

m
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 c
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r
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dr  

for every t≥T.  

Clearly we can see that S
1
 maps Y

1
 into itself and are valid. Now we shall show that these mappings have 

fixed points using the Schauder’s fixed point theorem. We will do this for S
1
 and similar proof follows for 

S
2
 also, which we exclude. 

Since S
1
Y

1
⊆Y

1
 and Y

1
 is closed, convex, S

1
 is uniformly bounded. As t→∞, S

1
Y

1
→0. So S

1
Y

1
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convergent in R. Moreover for some t≥T
'
>T, we have  
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
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(s)ds   (11) 

So, by using (3) and suitably choosingT
'
, we can easily see that S

1
Y is equiconvergent at ∞. 

Now by using (9) for any y
1
∈Y

1
 and for every t

1
,t

2
 with T≤t

1
<t

2
, we get  
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
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By using condition (3) we can always have a bound on the right hand side of the inequality, so S
1
Y is 

equicontinuous. So by the given compactness criterion S
1
Y is relatively compact. 

Now we will show that the mapping S
1
 is continuous. Let y

1v
 be an arbitrary sequence in Y

1
, converging 

to y
1
 under the norm defined before. From (9) we have  
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for every t≥T and for all v 

Now, by applying the Lebesgue dominated convergence theorem we get  

lim
v→∞

 

t

∞

  
(s−t)

n
1
−1

(n
1
−1)!

f
1
 









s,y
1v

(s)+ 
i=0

m
1

 c
2i

s
i

ds  

= 

t

∞

  
(s−t)

n
1
−1

(n
1
−1)!

f
1
 









s,y
1
(s)+ 

i=0

m
1

 c
2i

s
i

ds  

So we have shown the pointwise convergence i.e  

 
lim

v→∞
 ( )S

1
y

1v
(t)= ( )S

1
y

1
(t) 

Now, consider an arbitrary subsequence u
μ
 of S

1
y
1v

. Since S
1
Y is relatively compact, there exists a 

subsequence v
λ
 of u

μ
 and a v in E such that v

λ
 converges uniformly to v. So  

 
lim

v→∞
 ( )S

1
y

1v
(t)= ( )S

1
y

1
(t)=v 

for all t≥T under the sup-norm. So S
1
 is continuous.  

Thus we have shown that S
1
 satisfies all the assumptions of Schauder’s theorem, So S

1
 has a fixed point 

y
1
∈Y such that S

1
y
1
=y

1
. That implies  
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 y
1
(t)=(−1)

n
1 

t

∞

  
(s−t)

n
1
−1

(n
1
−1)!

f
1
 









s,y
2
(s)+ 

i=0

m
1

 c
2i

s
i

ds  

So we can see that  

 y
n

1

1
(t)=f

1
 









t,y
2
(t)+ 

i=0

m
2

 c
2i

t
i

 

for all t≥T. 

similarly we can show for the other function y
2
 also. Consequently y

1
,y

2
 satisfy the transformed system 

(7). It is also easy to verify that y
1
,y

2
 satisfy the condition (8) This completes the proof of the theorem. □  

Example:Consider the following system of equations  

 x
n

1(t)=a(t) | |x
2
(t)

γ

sgn x
2
(t) 

 x
n

2(t)=b(t) | |x
1
(t)

γ

sgn x
1
(t)   (12) 

where a and b are continuous real valued functions on [0,∞] and γ is a positive real number. Let m be an 

integer with 1≤m≤n−1, and assume that  

 

0

∞

 t
n−1+mγ

 | |a(t) dt<∞ 

 

0

∞

 t
n−1+mγ

 | |b(t) dt<∞   (13) 

and let c
0
,c

1
,c

2
,.....,c

m
 and d

0
,d

1
,d

2
,......,d

m
 be real numbers and T be a point with T≥0 and 

suppose that there exist positive constants K
1
 and K

2
 such that  

[ 

T

∞

  
(s−T)

n−1

(n−1)!
s
mγ

 | |a(s) ds]( 

K
1

T
m+ 

i=0

m
  

 | |c
i

T
m−1)

γ
≤K

1
 

[ 

T

∞

  
(s−T)

n−1

(n−1)!
s
mγ

 | |b(s) ds]( 

K
2

T
m+ 

i=0

m
  

 | |d
i

T
m−1)

γ
≤K

2
   (14) 
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Then by invoking the main result that we have proved earlier (12) has a pair of solutions x
1
 and x

2
 which 

asymptotically behave like m
th

 degree polynomials. 

 Remark: We note here that these results are simple and hold true only for a special case of coupled 

systems. The nature of conditions (2) needs to be discussed and analyzed so that more general non-

linearities can be brought under the view of these results. The possibility of such an extension needs to be 

highlighted.  
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