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Abstract

In this paper, we first apply properties of the wedge product and continuous finite element methods to prove that the
linear, quadratic element methods are symplectic algorithms to the linear Hamiltonian systems, i.e., the symplectic condition
dpj41/\dqj41 = dp;j /A dqj is preserved exactly and the linear element method is an approximately symplectic integrator to
nonlinear Hamiltonian systems, i.e., dpj11 /A dqj41 = dp; A dgj + O(h?), as well as energy conservative.
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1. Introduction

Hamiltonian system is a kind of important mechanical systems. It has a symplectic structure which
has strong geometric properties of a dynamical system and maintain the total energy H(q, p) which means
the phase-space points (q,p) are allowed on the constant energy hypersurface satisfying H(q,p) = E. It
is natural to look for those discretization systems which preserve as much as possible the characteristic
properties of the original continuous systems. Traditional algorithms, such as classical R-K method [4,5],
Adams method etc. except some occasions are nonsymplectic, eventually lead to greatly distortions. Sym-
plectic geometry is the mathematical foundation of Hamiltonian systems. Authors in [4-15] constructed
the symplectic methods to solve the Hamiltonian system and got good results.

Consider the autonomous Hamiltonian systems:

dp™  dH dq¥  oH

dt g’ dt  ap’

i=12,...,m, (1.1)
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where p = (pM,p®@,...,pMT, q = (¢, q?,...,q™)T, "T" is matrix transpose. In applications to
mechanics, q represents the space coordinates, p the momenta, and H is the energy of systems.

Letz=(p,q)7, % = H, € R?™. Then (1.1) can be written as
dz _,0H 0 In
dz _ o O0H , 12
dtlazl[_lno} (1.2)
I,, is the n x n identity matrix, JT =]~ = —J.

Let ¥ be a diffeomorphism of R2M,

vy (z)

Z:<P>_>\y(z): . :[g(p,q)]
q . a(p, q)
y(2n) (z)
Definition 1.1. A smooth map ¥ on the phase space R?" is called a symplectic map or canonical map if

its Jacobi ¥, (z) satisfies:
W (2)]TJY.(2z) =]

for all z in the domain of definition of ¥ [4].

Equation (1.1) or (1.2) be defined in phase space R>™ with a standard symplectic structure given by
the non-singular anti-symmetric closed differential 2-form

n n
w=Y dzWAdz™ =3 dp™ AdqV =dpAdg.

i=1 i=1
Y is called a symplectic transformation if ¥ preserves the 2-form w
n n
Z dﬁ(i) /\dq(i) _ Z dpm A dq(i).
i=1 i=1
This is equivalent to the condition that [4]

ﬂ
0z

oy

(505 =T,

Thus conservation of symplecticness, under a transformation p = ®!(p,q), § = ®?(p, q) reduces to the
statement
dpAdg=dp/dgq,

where dp = @, (p, q)dp + @ (p,q)dq, dg = @3 (p, q)dp + @3 (p, q)dq.

Definition 1.2. A numerical method is symplectic integrator if the symplecticness condition dpj1 /A
dqj+1 = dp; /\ dgj is preserved exactly [11].

Wedge product is a differential 2-form, with the following properties:

1. skew-symmetry:
da/Adb=—dbAda; (1.3)
2. bilinearity:

for o, € R, da/\(axdb+ Bdc) = ada/Adb+ Bdadc;
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3. rule of matrix multiplication (as a consequence of Property 2 and the definition)

daA(Adb) = (ATda) Adb, for any n xn matrix A; (1.4)

if A is a symmetric matrix, then da/\ (Ada) =0, (1.5)

where da, db, and dc are n-vectors of differential one-forms on R™.

The definition ¥,(z) "J¥,(z) = J is not always the most convenient approach to check the symplectic-
ness of a given map V. The wedge product notation can be combined with implicit differentiation, which
makes it a powerful tool to verify symplecticness of an implicitly given transformation V. Leimkuhler and
Reich in [11] utilized the wedge product and composition method proving that Euler-A, Euler-B, implicit
midpoint method for the general Hamiltonian and the second-order Stormer-Verlet methods for the spe-
cial case of a separable Hamiltonian are canonically symplectic. Sanz-Serna [14], Sanz-Serna and Calvo
[15], Lasagni [10], and Suris [17] utilized the wedge product and tensor product to prove the conditions of
the parameters a;; and b; are biaij + bjaj; —bib; =0,1,j =1,..., s for a s-stage symplectic Runge-Kutta
method. So the wedge product is also an important method to study symplectic geometry algorithm of
Hamiltonian system.

Symplectic algorithm is a difference method that preserves the structure of the system. However, most
numerical methods can’t maintain the two properties: symplectic and energy conservation simultaneously
in general according to Ge-Marsde theorem [6]. Symplectic algorithm can preserves symplectic properties,
but only obtain approximate energy conservation for nonlinear Hamiltonian system.

Many scholars pointed out that the energy conservation is more important at certain times, see [8, 16].
So we turn to the finite element method (FEM). It is founded that the continuous FEM always preserves the
energy [18], thus we need only to discuss symplectic properties. In this paper, we apply continuous FEM
and properties of the wedge product to prove that the linear, quadratic element methods are symplectic
algorithms to the linear Hamiltonian systems, i.e.the symplectic condition dp;;1 /A dqj1 = dp; /A dg;j is
preserved exactly and the linear element method is an approximately symplectic integrator to nonlinear
Hamiltonian systems, i.e., dpj+1 /A dqj41 = dp; A dg; + O(h?).

2. Continuous FEM for Hamiltonian system

Consider the first-order ordinary differential equation with initial value in the interval I = [0, T]

—:u/:ft,u,uO = Uy.
. (t,1),u(0) = ug
Set A" :tg=0<t<thy<---<ty=Tas partition of I, with interval I = (tj, tj41), hj = tj41 —tj.
Define the m-th degree continuous finite element space [2, 3]

S"={w|we C(I),wl;E Pm},

where P, is a m-th degree polynomial. Each m-degree polynomial in interval I; has m + 1 parameters,
but only m freedoms, as its starting value at point t;j is given. Define m-th degree continuous finite
element U € S™ satisfying

J (U —f(t, W)vdt =0, v € Py_1, U(0) = uyo,
L

i.e., it is orthogonal to arbitrary P, in I;. Taking v € ST, its derivate v/ € Py_1. In practical computa-
tion, takev = (t—t;),1=0,1,2,...,m—1.

Lemma 2.1 ([3]). The m-th degree continuous finite element of ordinary differential equation has superconvergence
in nodes t;
(u—W(t;) = O(M*™) |t llmr1,00 -
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In (1.2), the m-th degree continuous finite element Z = [ g } of z satisfies orthogonal relation:
J (2 TH Y dt = 0, Z(0) = 2. @1)
I

Taking v = { (]3 ], we obtain:

|, (P Hq(P, QA = 0,P(O) =po, | Q' Hy (P, QUIPet =0,Q(0) -

It follows from the above two equations that:

d
J (HpP’+HqQ’)dt:J H(P,Q)d
I I dt

Hence, in each nodes t;, we prove that:
H(P(t;), Q(t;)) = H(P(tj—1), Q(tj—1)) = - -- = H(P(0), Q(0)) = H(po, qo)-
So we can prove that
Lemma 2.2 ([18]). Applying arbitrary degree continuous finite element to solve Hamilton equation, it maintains
energy conservation, i.e., H(P(t;), Q(t;)) = H(po, qo).
3. The wedge product notation applied in the linear element methods

Consider the linear Hamiltonian system,

d
=)z Z(0) = 20,

1 T T A. C . . .
where H(z) = 5z Lz, L' =L = cT B ) and A, B are n x n symmetric matrices. Thus the canonical
equation as follows

dp dq
-+ = _C"p—Bq, =A Cq.
Utilizing linear FEM in the interval I = [t;, tj 1]
P
J P 1at = — J (CTP+BQ) = 1dt, J aQ « 1dt :J (AP +CQ) 1dt, (3.1)
I dat I p; dt I

j j

t—t t—t; t—t;
j+1 . j+1
t—tj1 Pj+¢ Hr— t Pjrrand qis Q = ¢ S —tje1 Qj+ tJH tJ Qj+1-

where the linear element of p is P =
Integral (3.1)

h.
Pjy1—Pj = _?](CT(Pj + Pj+1) + B(Qj + Qj+1)),

h (3.2)
Qj+1— Q5= ?)(A(Pj +Pj11) + C(Qj + Qj41)),i =0,1,...,N-1.
By taking differential of (3.2) we can write
h;
dPj,1 —dPj = —g(CT(de +dPj11) + B(dQ; +dQj11)), .
3.3

dQj41 —dQ5 = ?)( (dP; + dPj;1) + C(dQj + dQj11)).
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From (3.3), we can obtain

h;CT h;B h;CT h;B
( ] )dPj 1 + 7)2 dQj41 = (I— ) )dP; — 7) dQj, (3.4)
h; A h;C h; A
——dP]H (I— ]T)de“ ——dP; + (1+ dQ,, (3.5)

by taking wedge products with dQ;1 and dP;j, respectlvely. With symmetrlc properties of A and B and

according to (1.5)

h;B hA
— 4Qj+1 A dQj1 =0, ———dPj1 AdPj11 =0,

thus

h;B
)dP; A dQj41 — ]7de A dQj1,

;CT h;CT
2 )dP]+1 A dQ]+l ( )

2
h;C h A h;C
(1= =57)dQjs1 A dPyyy = —=dPy AdPyy + (T4 —)dQj A dPy.

(

By subtracting the above equations we have

hCT h;B
2dPj 11 A dQj41 = (I— —=5—)dPj AdQjy1 — ——dQ; A dQj 4

hA hy C

(3.6)

Similarly, If we take the wedge product of (3.4) with dQ; and (3.5) w1th dP;, then subtract

h; CT h;B
)dP)+1 A dQ) dQ]+1 A dQ]

A h; C
—5- APy APy — (I— —=)dQj41 A dP;.

2dP; A dQ; = (I +
Ny

(3.7)

Based on (1.3), (1.4), (3.6), and (3.7), we prove the following equatlon
dPj 11 AdQj1 = dP; A dQ;.

Theorem 3.1. The linear finite element method for the linear Hamiltonian systems is a symplectic algorithm, i.e.,
the symplectic condition dp;,1 /\ dqj11 = dp; /\ dq; is preserved exactly.

4. The wedge product notation applied in the quadratic element methods

Utilizing quadratic element methods in the interval I; = [t;, tj 1]

P
J d*ldt_—J (CTP+BQ) = 1dt,
, dt I

j j
J i?*ldt:‘[ (AP + CQ) = 1dt,
" . . 4.1)
J & (t—tj)dt:—J (CTP+BQ) * (t—t;)dt,
I I
J (jQ*(t—tj)dtZJ (AP+CQ)*(t—tj)dt,
I I
where the quadratic element of p is
(t—ti)t—t5,4) (t—ti ) (t— ) (t—t,

P = P; + P.. .1+
(=t —t,0) 7 (G — )l —t) T

and q is
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(t—tj+1)(t—tj+1) (t—tj+1)(t—t;) (t— t L)t —1)
Q= —Qj+ Qi1+ i Qj+1
(5 —t40) (5 — 5,1 (1 =)ty =) 2 (t]+1—t 1) (G — )
in Ij.
Integral (4.1)
hj P;  4Pji10 P Q; . 4Qj112  Qji1
P: —P: = _J CT o) )+ )+ B ) ) )+ ,
j+1—Pj 5 ( (3+ 3 +3)+(3+ 3 +3))
hj Py 4P P Q) 4Qj112 Qi1
. — (A2 C ,
Qj+1—Qj = 2((3+ 5t ) tCgt—5 T+ —5))
5Pj11 Py 2P h 1.4Pj112  2Pj 4Qi112  2Qj41
—_—— —— — = — C B 4
6 6 3 4( ( 3 + 3 )+ Bl 3 + 3 )
5Qi41 Qj 2Qji12 h, . 4Pjiip 2Py 4Qj11/2 | 2Qj41
_ N — YA C .
6 6 3 4( ( 3 + 3 )+ Cl 3 + 3 )
By taking differential of (4.2) we have
2h;CT h;CT 2h;B th h;CT h;B
dPj 10+ (1+ )dPj 1+ dQ;+1/2 + dQjq =(I— 3 )dP; — Tde’
Zh A A Zh C h; C h; A h;C
3 —4dPjr10— 6 ——dPj 1 — dQ]+1/2 +(I— 7)dQ)+1 ]6 dP; + (I+ ]T)de’
21 hCT 51 h;CT h;B h;B dp;
(=3 + =3 )Pt o+ )T)deJrl + ]TdeJrl/Z + JideJrl = ?J
A A 21 h;C 51 h;C d
—po)ﬂ/z — Pt 5 = 57)dQjp + (F — —-)dQju = (62
By taking wedge product of (4.3) with deH/ and (4.4) with deH, then subtract
2 CT 2h B 2hA
2dPj11 A dQj41 = 5 Py ANdQj1 — —5—dQj11/2NdQj41 — — 4P A dPj1
Zh C C h:B
——dQj412/ANdPj 1+ ( )dP; A dQj1 — JTde AN dQj11
h; A h;C

— po AN dP)—l—l —(I+ T)dQ) /\ de+1.

Similarly, we take the wedge product of (4.3) with dQ; and (4.4) with dP;, then subtract

2h;CT 2h;B 2hA
2dP; N dQ; = =3 dPj 12N dQ; + ’ dQj 1,2/ dQ; + 3 =2 dPj 1,0 A\ dP;
2h;C ;CT hiB
+—dQ]+1/2AdP + )dP; 1 A dQ; +’7de+Mde
LA h;C
—o P41 APy — (I— ==)dQj 1 A\ dP;.

By subtracting (4.8) from (4.7) we have

h;CT h;B
3 ——dPj 1,2, ANdQj + J dQj41/2 /A dQ;

h A
3

h;B h A

+ ]TdeJrl/Z/\ de+1 + poj+l/2 /\ de+1

h;C
+ ]Tde+1/2 A dPji1.

dP; AdQj — dPj 11 AdQj 41 =

h h; cTt
dP] +1/2 AN dP + — dQ]+1/2 AN dP + — 3 dP]+1/2 AN dQ)—H

(4.2)

(4.3)
(4.4)
(4.5)

(4.6)

(4.7)

(4.8)

(4.9)



Q. Tang, Y. Liu, Y. Zheng, H. Cao, J. Math. Computer Sci., 18 (2018), 314-327 320
By taking wedge product of (4.5) with dQ;, (4.6) with dPj, then subtract:
1 21 hCT 51 hCT
§dP5/\in —§+ 3 )dPj11/2 A dQ; + (6 +— c )dP; 1 A dQ;
h B h;B A hiA
dQ]+1 2N dQ; + ’ dQj+1 A dQ; + JTdeH 2 /\dP; + ’TdeH Adp;  (4.10)
21 h;C 51 hC
+(3 )dQ;+1/2/\dP'—(g— )dQj+1 /A dP;y.
By subtracting (4.8) from (4.10) we have
5 21 hCT h;B
3dP NdQj = (+ 3 + )3 )dP; 11,2 A dQ; + dPJHAdQ) ]3 de+1/2/\de @i
h A 21 h C '
3 —~—dPj41/2 /\ dP; +(—§+ )dQj41/2 N\ dP; — de+1/\de-
By taking wedge product of (4.5) with dQj1, (4.6) with dPj 1, then subtract, we have
5 21 hCT 21 hC
—3dPi+1 AN Q 1 = (=5 + —3—)dPj 1 2 A dQj 1 + (5 + —5-)dQj 112 A APy
h;B hiA
+ )TdQJ’“ 2 /NdQj 41+ JTde 72 /NP1 (4.12)
I I
By adding the above two equations (4.11) and (4.12):
5 5
gdP NdQj— dP]H AN dQj41
21 hy CT hiB
= (§+ 3 )dP; 1,2 AN dQj + é dQj11,2 /N dQj
A 21 hC 21 hCT
3 ——dPj 1,0 A dP; + (—§ + — )dQ]H/z A\ dPj + (—5 +—3 )dP; 11/, AN dQj41
21  hC h hA
+ (5 + —= )dQ]+1/2 VAN dP]+1 + — 3 dQ]'+1/2 VAN de+1 -+ )poj—l—l/Z AN de+1.
Utilizing (4.9), we can prove that:
dP; A dQj — dPj1 AdQjy1 = dPi+% A dQj — dQH% A dPj — dPH% ANdQjy1+ dQH% AdPj1.  (4.13)
By taking wedge product of (4.3) with dQ;; o, (4.4) with dP; 4, then subtract.
—dPj 1,0 ANdQ; + dQH% A\ dP; + dPH% AN dQjy1— dQH% AN dPj11 =
h;CT h;B hA h;C
—— APy A dQj + QA dQur + == dPy y AdPy i+ —=dQy A dPy
h;CT h;B hA h;C
—o—dP;y AdQ; + ]?dQH% A dQj + ]TdPH% A dP; + ’TdQH% A dP;. (4.14)

—dPj1/2 A dQ; +dQ; ; AdPy +dP; 3 AdQya1 —dQ;, 1 AdPyy

_hy cT
6 6
h;CT hiB hjA h;C

+— 5 dP 1/\de+TdQ]~+%/\dQ]‘+poj+%/\dpj+Tde+%/\de.

h;B hA h;C
——dP;, 1 AdQji + ’TdQH% AdQji1+ ——dPj, 1 AdPji1+ JTdQH% A dPj 1
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Combining (4.9) and (4.13), we obtain:

dP; A dQ; _ dPj 11 A dQj 41
2 2 !

ie., dPj;1/AdQjs1 = dP; A dQj. We can prove the following theorem.

—dP; AdQj + dPj 1 AdQj 1 =

Theorem 4.1. The quadratic finite element method for the linear Hamiltonian systems is a symplectic algorithm,
i.e., the symplectic condition dpj1 /\ dq;j41 = dp; /\ dqj is preserved exactly.

5. The wedge product notation applied in the nonlinear Hamiltonian system

Consider the general canonical system H(q,p)

dp_ oHdg_on
dt  9q’dt op’
In interval Ij = [t;, tj41]:

dp oH d oM
J *1dt:—J 97 14, J Q*ldt:J S x1dt,j=0,1,...,N—1. (5.1)
i dt 1, 904 p dt i Op

i

Integral (5.1)

hj (1 OH

Pra-p=-3 ] 3q PP a0 0y B -
o hy [t oM 4 62

Qr—Q = 2, %'P:“TXPJ‘+”TXP1+1rq:1%ij+”TXQj+1 X

By taking differentials of the equations (5.2),
hy (1 1—x 1+x 1—x 14+x

de—|—1 — de = —2)J 1(qu(Tde + Tde...l) + qu(TdQ]' + TdQ)'_H))dX, (53)

hi (1 1—x 1+x 1—x 1+x
dQ]‘+1 — dQ)' = ZJJ 1(pr( 5 de + 5 deJrl) + Hpq(TdQ)’ + Tde+1))dX, (5.4)

where ng = Hpp, ng =Hgqq, H}

pq = Hgp. By taking the wedge product of (5.3) with dQj41 and (5.4)
with dPj 1, we have

hi (1 1—x 1+x
dPj11 A dQjy1 —dP; AdQjg = — J (Hgp(—5—dP; AdQj11 + ——dPj+1 /A dQj41)
2 Ja 2 2 (5.5)

1—x

h; (! 1—x

dQj41 A dPj41 —dQj AdPjq = 7] J (Hpp——dPy A dPj 4

) 11 (5.6)
—X +x
+ Hpq (TdQ) A\ de—|—1 + TdQ)’_H VAN dP)'_H))dX.
By subtracting (5.5) from (5.6):

h]' 1 1—x

2dPj 1 AdQj4q = dPj AdQj41 —dQ; A dPjyq — 03 ,1(quTde N dQj41 57

I—x 1—x 1—x
+ qu TdQ]' AN de+1 + prTde A\ de+1 + Hpq Tde A\ de+1)dx.
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Similarly, by taking wedge product of (5.3) with dQj;, (5.4) with dP;, then subtract

h (! 1
2dP; A dQ; = dPy41 A dQ; — dQyi1 APy + = J (pr¥dpj+1 A dP;
-1 (5.8)
1+x 1+x 14+x
+ Hpq Tde+1 A\ de + quTde+1 YA\ dQ)' + quTde+1 A\ dQ]')dX.
By subtracting (5.8) from (5.7) we have
h; (!
24P A dQ; —2dPji1 AdQji1 = J x(HppdP; 1 A dP; 59)
-1 .

+ Hpq de+1 A\ de + Hq‘pdpj+l A\ dQ)’ + qu dQ)'+1 A\ de )dX.
Utilizing (5.3) and properties of wedge product, we obtain

hy (1
7]J 1prdej+1/\dP5dx
hi 1 hi 1 1—x 14x
) )
= Hypp (dP; — =+ Hgp(——dP; + ——dP;
21[717‘ pp (dP; 2Ll( apl 5 it j+1)

1—x 1+x
+qu(TdQ]‘+TdQ]‘+1))dX)Adedx
h? (1 1 1—x 1
Z—J(J XprdXJ' qu—ddejAdPﬁJ
4 )4 1 2

1
1
Xy de Hap %dxdpjﬂ A dP;

! ! 1—x ! ! 1+x
+J prpde Hqq——dxdQ; A dP; +J prpde Haq = dxdQj1 A dPy)
-1 -1 -1 -1
= O(h?).
Similarly, based on (5.9), utilizing (5.3), (5.4), and properties of wedge product, We can prove the following
equation
dPj1 A dQj11 = dP; AdQj + O(h?).
We can prove the following theorem.

Theorem 5.1. The linear finite element method of the nonlinear Hamiltonian systems is an approximately symplectic
method which have accurate of second to their symplectic condition, i.e., dpj11 /A dqgj41 = dp; A dq; + O(h?).

In particular, to linear Hamiltonian systems H(z) = %ZTLZ, Hpp = A, Hpq = C, Hgqq = B, then

1 1
J Xpr de+1 AN de dx = J
—1

xAdPj 1 A dPjdx = 0.
1

Based on (5.9), we can prove dP; A dQj = dPjy1 /A dQj41, ie., the linear finite element methods for the
linear Hamiltonian systems is a symplectic algorithm.

6. Numerical experiments

Consider nonlinear Hamiltonian system

H(q,p) = K(p) + V(q),

where K(p) = 2p? + p3 is the kinetic energy, V(q) is the potential energy,
V(q) =5m(D? — 5D +6.5) +4D ! +0.57%(| 42 | —1.5)%+ [ 42 [71, D = (¢} + g3)V/2
The classical Hamiltonian canonical equation is ([4]),
dpi_ OV dpy OV day_ K dp _ 3K
dt d9q;” dt  0qx’ dt  9py” dt  9py’
It is the motion of A;B triatomic molecules within the Cp, symmetry. We take the Cartesian coordinate
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system yOz, with origin at the center of mass O, and the z axis is the C; axis, the coordinates of the
two A atoms and B atom is A(y1,z1), A(y2,22), B(ys, z3). The generalized coordinates q1 = y1 — Yz, q2 =
z1 — 223 + 2, the generalized momentum p; = 0.25%,]32 = 0.5%. Construction of efficient schemes
suitable for molecular dynamics applications is an important task. Since very long integration times
are required for molecular dynamics simulations, many numerical methods have been developed but
the most effective for use in molecular dynamics simulations should have superior long-term stability
properties, energy conservation, and permit a large integration time step [1].
We consider the second order symplectic difference scheme (2SS) ([4])

Zx+1 + 2k

Zki1 =z + h] 7 H,( >

).
The 4-stage, 4th-order explicit symplectic difference scheme (4SS)

H(p,q) =T(p) + V(q),a = (2—23)"1,p =1—2q,

P1=p" —cih( a\g;q) Jqn, q1 =q" + dlh(aTag)))pl,

P2 =p™ —coh( a\;;q) Jair92 =q" + dzh(agi)p))pz,

p3=p" — C3h(a\g(qq))qz/ QB3=q"+ d3h(agg)))ps/
P ™ ey a\g;q) Jas Anst = q™ + d4h(aTaS)))pn+1,

where Cl=C = %,Cz =C3 = %ﬁ,dl = dz = O(,d3 = B,d4 =0.

Taking initial conditions q1(0) = 3, q2(0) = 3/2, p1(0) = 0, p2(0) = O, then energy H = 50.1951,
stepsize h = 0.01. Respectively we utilize the linear finite element method (1IFEM), 2SS, 4SS, and 4RK to
compute the classical trajectories of an A;B type molecule in phase spaces and energy error Hy, — H as
follows in Figs 1-7.

Figure 1: 1FEM, computing K = 108 step, integral interval T = [0, 10], the initial 1000 nodes classical trajectories in phase space
and energy error curve.
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Figure 2: 1FEM, computing K = 108 step, integral interval T = [0, 10°], the final 1000 nodes classical trajectories in phase space
and energy error curve.
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Figure 3: 2SS, computing K = 10° step, integral interval T = [0, 10], the initial 1000 nodes classical trajectories in phase space and
energy error curve.
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Figure 4: 2SS, computing K = 108 step, integral interval T = [0,10°], the final 1000 nodes classical trajectories in phase space and
energy error curve.
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Figure 5: 4SS, computing K = 10° step, integral interval T = [0, 10], the initial 1000 nodes classical trajectories in phase space and
energy error curve.
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Figure 6: 4SS, computing K = 108 step, integral interval T = [0, 10°], the final 1000 nodes classical trajectories in phase space and
energy error curve.
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Figure 7: 4RK, computing K = 2 x 10° step, integral interval T = [0,20000], the final 1000 nodes classical trajectories in phase
space and energy error curve.
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It is observed from Figs 1-7 that the numerical results computed by 1FEM are in good agreement with
the theoretical analysis, the atom B and two atoms A in A;B type molecule vibrate quasi-periodically
and the phase space are not squeezed together Figs 1 and 2, which indicates that 1IFEM can long-time
preserve the high accuracy approximation to symplectic structure which just as the symplectic difference
method Figs 3-6. However, the numerical results computed by the Runge-Kutta method are not symplectic
method, the vibrational range of A;B type molecule shrinks. The energy error computed by the linear
element methods is only 1071 when T = 1000000, but the energy deviation is comparatively larger by
symplectic difference scheme, energy error up to 1072(2SS) and 10~3(4SS). It can preserve these basic
properties of molecular dynamics.

7. Conclusion

The above analysis shows that combing with the wedge product we prove the finite element methods
is approximately preserves the symplectic structure to the general Hamiltonian system. It is a reliable
method for long time simulations the Hamiltonian system and also provide a better ideas to research the
Hamiltonian system.
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