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Abstract 

Artificial Bee Colony (ABC) algorithm is based on natural behavior of honey bees and has earned 

good success in optimization area. In this paper a new quantum inspired algorithm that is called Quantum 

Artificial Bee Colony (QABC) is presented. QABC is a general method and in this work it is adapted to 

be applied on Knapsack 0-1 problem. In the experiments QABC is compared with classic ABC and the 

results present robustness of QABC. 
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1. Introduction 

Natural inspired algorithms that have been created for optimizing (minimizing or maximizing) 

problems, obtain their idea from theory of Darvean: “Existence of the stronger and better animals in the 

nature and so, extinction of weakers”. 
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Evolutionary Algorithms (EAs) are a set of algorithms that use such a biological evolution theory. The 

Genetic Algorithm (GA) [1-3], Evolutionary Programming (EP) [4], Evolution strategy (ES) [5], and 

Genetic programming (GP) [6] are well known and useful methods of EAs. 

Later, some populated behavior of animals were concentrated by researchers and caused introducing a 

new set of optimization algorithms that are known as Swarm Intelligence methods. Ant Colony 

Optimization [7], Particle Swarm Optimization [8], Differential Evolution [9], Artificial Bee Colony [10-

12], and Harmony Search [13] are the most renowned Swarm Intelligence algorithms. These algorithms 

are based on population of solutions and by means of some techniques like stochastic and mathematic 

formulas, produce new solutions and maybe based on some conditions (or may not) can be replaced in 

place of a current solution in population. Because these algorithms are robust, easy to use, and effective in 

producing good results, they have been used a lot in optimizing various real problems. 

Quantum algorithms are known as those that must be implemented on real quantum computers and 

because of its difficulties, little quantum algorithms have been introduced. 

Shor’s quantum factoring algorithm [14], and Grover’s database search algorithm [15], are famous 

quantum algorithms. But ordinary evolutionary and swarm intelligence algorithms can be inspired by 

quantum computing concepts and some merging and hybrid approaches have been proposed during last 

decades [16-19]. 

In this work, an Artificial Bee Colony (ABC) algorithm that is affected by some principles of 

quantum concepts, like qubits and superposition of states is presented that is called QABC. For presenting 

the affectivity, an adapted QABC for knapsack problem is suggested too, and some experiments is done 

on the knapsack problem. In the following, a brief description of Artificial Bee Colony algorithm, and 

quantum concepts is come in sections 1.1 and 1.2, respectively. Section 2 presents new Quantum 

Artificial Bee Colony algorithm and introduce knapsack problem and QABC algorithm for knapsack. 

Finally the results of various experiments are shown in sections 3.  

 

1.1. Artificial Bee Colony 

Artificial Bee Colony (ABC) algorithm was proposed by Karaboga for optimizing numerical problems 

in 2005 [10]. The algorithm simulates the intelligent foraging behavior of honeybee swarms. It is a very 

simple, robust and population-based stochastic optimization algorithm. Karaboga and Basturk have 

compared the performance of the ABC algorithm with those of other well-known modern heuristic 

algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization 

(PSO) on unconstrained problems [11,12]. 

Following is the detailed pseudo-code of the ABC algorithm: 

1: Initialize the population of solutions ,  1..ix i SN  

2: Evaluate the population 

3: cycle = 1 

4: repeat 

5: Produce new solutions iv
 
for the employed bees by using (2) and evaluate them 

6: Apply the greedy selection process 
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7: Calculate the probability values iP  for the solutions ix
 
by (1) 

8:          Produce the new solutions iv
 
for the onlookers from the solutions ix

 
selected depending on iP

 
and evaluate them 

9: Apply the greedy selection process 

10: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly 

produced solution ix
 
by (3) 

11: Memorize the best solution achieved so far 

12: cycle = cycle+1 

13: until cycle = MCN 

In ABC algorithm, the position of a food source represents a possible solution to the optimization 

problem and the nectar amount of a food source corresponds to the quality (fitness) of the associated 

solution. The number of the employed bees or the onlooker bees is equal to the number of solutions in the 

population. At the first step, the ABC generates a randomly distributed initial population ( 0)P G of 

SN  solutions (food source positions), where SN  denotes the size of the population. Each solution

( 1,2,..., )ix i SN is a D-dimensional vector. Here, D  is the number of optimization parameters. After 

initialization, the population of the positions (solutions) is subjected to repeated cycles,

1,2,...,C MCN , of the search processes of the employed bees, the onlooker bees and scout bees. An 

employed bee produces a modification on the position (solution) in her memory depending on the local 

information (visual information) and tests the nectar amount (fitness value) of the new source (new 

solution). Providing the nectar amount of the new one is higher than that of the previous one, the bee 

memorizes the new position and forgets the old one. Otherwise, she keeps the position of the previous one 

in her memory. When all employed bees complete the search process, they share the nectar information of 

the food sources and their position information with the onlooker bees on the dance area. An onlooker bee 

evaluates the nectar information taken from all employed bees and chooses a food source with a 

probability related to its nectar amount. As in the case of the employed bee, she produces a modification 

on the position in her memory and examines the nectar amount of the candidate source. Providing that its 

nectar is more than the previous one, the bee memorizes the new position and forgets the old one.  

An artificial onlooker bee chooses a food source depending on the probability value associated with that 

food source, iP , calculated by the following expression (1):  

1

i
i SN

n

n

fit
P

fit





                                                        (1) 

where ifit
 
is the fitness value of the solution i  which is proportional to the nectar amount of the food 

source in the position i , and SN is the number of food sources which is equal to the number of 

employed bees. 

In order to produce a candidate food position from the old one in memory, the ABC uses the following 

expression (2): 
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  (2)ij ij ij ij kjv x x x                                                         

where  1,2,...,k SN
 
and  1,2,...,j D

 
are randomly chosen indices. Although k is determined 

randomly, it has to be different from i . ij
 
is a random number between [-1, 1]. It controls the 

production of neighbor food sources around ijx  and represents the visual comparison of two food 

positions by a bee. As can be seen from (2), as the difference between the parameters ijx and kjx

decreases, the perturbation on the position ijx decreases, too. Thus, as the search approaches to the 

optimum solution in the search space, the step length is reduced adaptively. 

The food source of which the nectar is abandoned by the bees is replaced with a new food source by the 

scouts. In ABC, this is simulated by random production of a position and replacing it with the abandoned 

one. In ABC, providing that a position can`t be improved further through a predetermined number of 

cycles, then that food source is assumed to be abandoned. The value of predetermined number of cycles is 

an important control parameter of the ABC algorithm, which is called "limit" for abandonment. Assume 

that the abandoned source is ix
 
and  1,2,...,j D , then the scout discovers a new food source to be 

replaced with ix . This operation can be defined as (3): 

  min max min0,1j j j j

ix x rand x x                                                (3) 

When each candidate source position ijv
 
is produced and evaluated by the artificial bee, its performance 

is compared with that of its old one. If the new food source has equal or better nectar than the old source, 

it is replaced with the old one in the memory. Otherwise, the old one is retained in the memory. In other 

words, a greedy selection mechanism is employed as the selection operation between the old and the 

candidate one. There are three control parameters in the ABC: The number of food sources which equals 

to the number of employed or onlooker bees (SN), the value of limit, and the maximum cycle number 

(MCN). 

In a robust search process, exploration and exploitation processes must be carried out together. In the 

ABC algorithm, while onlookers and employed bees carry out the exploitation process in the search 

space, the scouts control the exploration process.  

 

1.2. Quantum Computers 

The lack of abilities of classic computers for dealing with quantum concepts in physics, caused some 

extensions in presenting quantum concepts and so, subsequent activities in quantum world. Here some 

important notions about quantum computers that are important for our work are explained briefly. 

The smallest data unit in quantum computer is called quantum bit or qubit. Against classical bit that 

only can possess either ‘0’or ‘1’, any qubit can be in ‘0’, ‘1’, or any superposition of the two. 
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The state of a qubit can be represented as  

0 1                                                  (4) 

Where and are complex numbers that specify the probability amplitudes of the corresponding 

states. 
2

 Gives the probability that the qubit will be found in ‘0’ state and 
2

 gives the probability 

that qubit will be found in the ‘1’ state. Normalization of the state to unity guarantees  

2 2
1                                                       (5) 

One qubit is defined with a pair of complex numbers, , , as 

, 

 

Which is characterized by (4) and (5). 

An m-qubit representation is defined as  

1 2

1 2

m

m
                                                (6) 

Where 
2 2

1 ,  1,2,...,i i i m  .This representation has the advantage that it is able to 

represent any superposition of states. If there is, for instance, a three-qubits system with three pairs of 

amplitudes such as  

1 11
22 2

      
1 13

22 2
                                          (7) 

Then the states of the system can be represented as 

3 3 3 31 1 1 1000 001 010 011 100 101 110 111
4 4 4 4 4 4 4 4

                  (8) 

This result means that the probabilities to represent the states 

000 , 001 , 010 , 011 , 100 , 101 , 110 , 111  are 3 3 3 31 1 1 1, , , , , , ,
16 16 16 16 16 16 16 16

 

respectively. By consequence, the three qubits system of (7) contains the information of eight states.  

Swarm intelligence and evolutionary computing with qubit representation has a better characteristic 

of population diversity than classical approaches, since it can represent superposition of states. Only one 

qubit system such as (7) is enough to represent eight states, but in binary representation at least eight 

string, (000), (001), (010), (011), (100), (101), (110), (111) are needed. 

 

2. Quantum Artificial Bee Colony (QABC) Algorithm 
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2.1. General QABC Algorithm 

The QABC algorithm is a general method that can be appropriated for various continuous and discrete 

problems. In the next subsection, we will show the proper QABC for knapsack problem. The pseudo code 

of the general QABC algorithm is shown below: 

 

begin 

0t  

Initialize  

produce Foods t  by observing Q t  states 

evaluate Foods t  

store the Best solution among Foods t  

while (not termination-condition) do 

begin 

1t t  

For each solution in Foods  

begin 

Produce a new solution by observing Foods t and 1Q t states by Employed bees 

Evaluate the new solution 

if new solution is better than the current solution in Foods
  

then replace new solution  

end 

Calculate probability for each solution`s fitness 

For each Onlooker bee in QABC 

begin 

Choose a solution based on its fitness probability 

Produce a new solution by observing Foods t and 1Q t states by Onlooker bees 

Evaluate the new solution 

if new solution is better than the current solution in Foods
  

then replace new solution  

end 

update Q t  using quantum gates U t  

Store the Best solution among Foods t  

end 

Until (t<maxcycle) 

end 

 

In initialize step, the problem to be optimized, and also some control parameters of QABC is defined 

and initiated. The most important part of this step is defining and launching a new structure, we call Q  in 

this algorithm. 

At iteration t, we have Q t like as below: 
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1,1 1,1 1,2 1,2 1, 1,

2,1 2,1 2,2 2,2 2, 2,

,1 ,1 ,2 ,2 , ,

t t t t t t

D D

t t t t t t

D D

t t t t t t

n n n n n D n D

Q t                                     (9) 

 

Each pair of 
, ,
t t
i j i j

; 1 i n , 1 j D  and 1 t maxcycle, are characterized by (4) 

and (5). We suppose that the target problem is D -dimensional and the value of n  is equal to the number 

of solutions. All of ,i j s and ,i j s are initialized with 1
2

. This means that each pair of ,i j  and 

,i j  have a same probability to be chosen. 

In the next step, produce, we create a new solution based on the characteristic of optimization 

problem. To make Foods, we use Q, and fill it with legal values depending on defined optimization 

problem. After evaluating solutions, the best one is memorized. 

Then in a loop, same as ABC, each of employed and onlooker bees is responsible to produce a new 

solution for a corresponding solution in Foods. The way of producing a new solution depends on the 

target problem and in this work, details of producing a new solution for Knapsack will be explained in 

2.3. After producing a new solution, it should be evaluated. If the new solution is better than the current 

corresponding solution, the new solution will be replaced with the current solution.  

In order to create various new solutions in each iteration that are affected by the values of s and 

s in Q, we make some modifications in Q. This is done in update step by means of quantum gates, 

G(T) in each repetition. More details of different steps in QABC will be shown in the next subsection. 

 

2.2. Knapsack problem 

 

Suppose that we have m  items, each has its own weight and profit, wi  and pi , 1 i m , respectively, 

and there exists a knapsack with the capacity C . A selection of items can be shown with string

( , ,..., )
1 2

x x x xm , each xi
 is 1 or 0, that means item xi

 is selected or not, respectively. 

The aim of solving knapsack problem is to select some items from {item1,item2, …,itemm} so that:  

1

( )
m

i i

i

f x p x  

be maximized, subject to 

1

.
m

i i

i

w x C  

2.3. QABC for Knapsack 0-1 problem (KQABC) 
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As mentioned before, QABC algorithm can be adapted for various real continuous and discrete problems. 

In this work, for showing the potency of new proposed QABC algorithm, we have altered QABC a little 

for knapsack problem and introduce new KQABC algorithm.  

In this work, we want to realize the effect of quantizing each of employed and onlooker bees. Four states 

are supposed: 

1. Classic ABC (KCABC). 

2. Quantized Employed - Classic Onlooker Bees (KQABC#1). 

3. Classic Employed - Quantized Onlooker Bees (KQABC#2). 

4. Both Quantized Employed & Onlooker Bees (KQABC#3). 

In KCABC, for producing a new solution by employed or onlooker bees, a dimension is selected 

randomly and its value is changed without interferingQ t .  

In KQABC#1 for producing a new solution by employed bees, Q t  is used and onlooker bees produce 

new solutions classically. However, in KQABC#2 the story goes against the KQABC#1; employed and 

onlooker bees produce a new solution classically and by Q t , respectively. Also, in KQABC#3 both of 

employed and onlooker bees produce a new solution by using Q t . 

Quantized employed and onlooker bees produce a new solution in this manner: a dimension from current 

solution is selected randomly. Also, a random value in [0,1] is selected and its value is compared with the 

2
 portion of corresponding entry and dimension`s value from Q t . If the random value is smaller and 

the dimension`s value in current solution is equal to 1, or if the random value is bigger and the 

dimension`s value in current solution is equal to 0, the dimension`s value will be changed. Else, its value 

will be unchanged and this process should be repeated again for another random dimension. 

 

3. Experiments, Setting and Results 

Any item in knapsack problem should have two quantities: weight and profit, which are selected as 

below: 

Wi = random [1,10], 

Pi = Wi + 5. 

Also, the capacity of knapsack is set as: 

 

  

Experiments are implemented for 100, 250, and 500 items on 25 independent runs with different random 

seed. The results of KQABC are shown in Table1 for best (b), mean (m), and worst (w) among 25 results.  

1

1

2

m

i

i

C W


 
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Table 1. Results of KCABC and three KQABC algorithms 

  KCABC KQABC#1 KQABC#2 KQABC#3 

100 

b 604.0 612.6 609.1 616.6 

m 599.0 608.8 605.4 610.6 

w 594.0 602.6 604.0 606.6 

250 

b 1497.1 1514.0 1504.5 1517.2 

m 1482.7 1499.6 1492.1 1508.9 

w 1472.1 1489.0 1484.5 1502.3 

500 

b 2956.5 2983.9 2965.6 2970.3 

m 2934.6 2963.8 2947.9 2951.3 

w 2920.4 2954.3 2925.5 2938.2 

 

From Table1 it is obvious that all of three quantized ABC have better performance with respect to classic 

one. Also, KQABC#1, quantized just employed portion of ABC, has better results in comparison with 

KQABC#2, quantized just onlooker portion of ABC. Moreover, KQABC#3 produce the best results 

among three quantized ABC algorithms, except for number of items 500 that KQABC#1 produce the best 

results. 

 

4. Conclusion 

The new proposed optimization algorithm that is called QABC, was presented in this work. The 

quantum properties of QABC, makes it an effective approach for dealing with various discrete and 

continuous problems. QABC is a general algorithm. For showing the performance and abilities of QABC, 

an adapted version for knapsack problem was introduced. The results on this practical benchmark show 

the high performance of QABC with respect to classic ABC. 
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