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Abstract 
 In this paper we introduces the new generalized difference sequences spaces  
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 (where 𝐸 is any Banach space) which arise from the notion of generalized de la Vallée-

Poussin means and the concept of modulus function. We also give some inclusion relations between these 

spaces. 
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1. Introduction 

Let ω be that set of all sequences real or complex numbers and 𝑙∞, c and 𝑐0 be respectively the Banach 

spaces of bounded, convergent and null sequences  x = ( 𝑥𝑘  ) with the usual norm
k

k

xx sup , where 

k ϵ N = 1.2.., the set of positive integers.   Let  n   be a non-decreasing sequence of positive 

numbers tending to infinity such that      𝜆 𝑛+1 ≤  𝜆 𝑛 +  1, 𝜆 1 = 1.  

The generalized de la Vall𝑒 ′e-Poussin means of a sequence x is defined by 
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    ,     where 𝐼𝑛 =  [ 𝑛 − 𝜆𝑛 +  1, 𝑛] for n = 1,2, . . .

         

                                                                 

A sequence 𝑥 = (𝑥𝑘) is said to be (𝑉, 𝜆)-summable  to a number  l  [  8 ] if   lxt n  as .n  If 

𝜆𝑛= n , then (𝑉, 𝜆)—summability and  strong (𝑉, 𝜆)—summability are reduced to (𝐶 ,1) − summability 

and [𝐶 ,1] –summability 

 
Kizmaz [  7  ] defined the difference sequence spaces  

𝑋 (  ∆  )  =  { 𝑥 =  ( 𝑥𝑘) ∶  ∆ 𝑥 ∈  𝑋} 

for  𝑋 =  𝑙∞  , 𝑐 𝑎𝑛𝑑 𝑐0  where ∆ 𝑥 =    ( 𝑥𝑘 −  𝑥𝑘+1). Then Et and Colak [  3  ] generalized the above 

sequence spaces as: 

              𝑋 ( 𝛥𝑟) =  { 𝑥 =  (𝑥𝑘)  ∶  ∆𝑟 𝑥 ∈ 𝑋},  

for  𝑋 =  𝑙∞  , 𝑐 𝑎𝑛𝑑 𝑐0 where 𝑟 ∈ 𝑁, ∆0𝑥 =  (𝑥𝑘) , ∆ 𝑥 =  ( 𝑥𝑘−𝑥𝑘+1 ), ∆𝑟𝑥 = (∆𝑟𝑥𝑘 − ∆𝑟𝑥𝑘+1) and so   

∆𝑟 𝑥𝑘 = ∑  (𝑟
𝑣
) 𝑘

𝑣=0 𝑥𝑘+𝑣.  

 Later on the difference sequence spaces have  been studied by Malkowsky  and Parashar [12], Et and 

Basarir [  2 ]  and others. 

The concept of  paranorm  is closely  related to linear metric spaces. It is a generalization of that of 

absolute value. Let  X be  a linear space. A function 𝑝 ∶ 𝑋 → 𝑅 is called a paranorm, if 

 (𝑃. 1)    𝑝(0) ≥ 0 

 ( 𝑃. 2 )   𝑝( 𝑥 ) ≥ 0 for all 𝑥 𝜖 𝑋 

(𝑃. 3 )  𝑝 (−𝑥 ) =  𝑝( 𝑥 )  for all 𝑥 𝜖 𝑋 

(𝑃. 4 ) 𝑝 ( 𝑥 + 𝑦 ) =  𝑝 ( 𝑥 ) + 𝑝 ( 𝑦 ) for all𝑥 , 𝑦  𝜖  𝑋  ( triangle inequality ) 

(𝑃. 5 ) If ( 𝜆 n ) is a senquence of scalers with 𝜆 n → 𝜆 (𝑛 → ∞ ) and (𝑥 n ) is a sequence of vectors with  

𝑝 (𝑥 n − 𝑥) → 0 (𝑛 → ∞ ), then with 𝑝 (𝜆 n 𝑥 n − 𝜆𝑥) → 0 (𝑛 → ∞ ) , (continuity of multiplication of 

vectors). 

A paranorm  𝑝 for which 𝑝 (𝑥) = 0 implies x = 0 is called total. It is well known that the metric of any 

linear metric space is given by some total paranorm (  16 ,Theorem 10.4.2 Page 183). 

Following Ruckle  14  and Maddox  11 , a modulus function 𝑓 is a function from [0 , ∞) to [0 , ∞) 

such that 
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( i )   0xf  if and only if 𝑥 = 0,      ( ii )      yfxfyxf   for all ,0, yx     

( iii ) f is increasing,                          ( iv ) f is continuous from right at 𝑥 = 0. 

The following inequality will be used throughout this paper. Let  kpp  be a sequence of positive real 

numbers with Hpp kkk  sup0 and let  12,1max  HD .  For  Cba kk , the set of complex 

numbers and for all  Nk  , we have ( see  10 ) 

                         
 .kkk p

k

p

k

p

kk baDba 
                                                               ( 1 )     

 

2. Some New Sequence Spaces Defined By Modulus Function 

In this section we prove some results involving the sequence spaces  EpfV r

u ,,,,
0






 

 ,          

 EpfV r

u ,,,,
1






 

    and   EpfV r

u ,,,, 










 .    

 Definition 2.1 :  Let E be a Banach space. We define  E to be the vector space of all E-valued 

sequences that is     ExxxE kk  : . Let f be a modulus function and  kpp  be any 

sequence of strictly positive real numbers. We define the following sequence sets     
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 and l will be 

called differenceE  limit of
 
x with respect  to the modulus .f
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Throughout the paper Z will denote any of the notation 0 , 1,  . In case   1,  kpxxf for all Nk
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Theorem 2.2. Let the sequence  kp  be bounded. Then the sequence spaces 
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,n  uniformly in m . This proves that
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Theorem 2.3. Let f  be a modulus function, then   
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Proof:  The first inclusion is obvious. We establish the second inclusion.
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There exists a positive integer  𝐾𝑙 such that ‖𝑙‖   ≤   𝐾𝑙  .  Hence we have     

         .1
1

n

H

l

n

p

Ik

mk

r

u

n

p

mk

r

u

Ikn

fK
D

lxf
D

xf
k

n

k

n




 






 

Since  EpfVx r

u ,,,,
0











  we have  EpfVx r

u ,,,, 











  and this completes the 

proof.  

Theorem 2.4.   EpfV r
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is a paranormed  (need not be total paranormed ) space with  
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Hence  xg  is sub additive. Finally, to check the continuity of multiplication, let us take any complex 

number  . By definition of f we have 

       xgKxfxg M
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where  K   is  a positive integer such that ..  K Now,  let  0  for any fixed  x  with  

  .0 xg By definition of f for ,1 we have                                                                   
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The proof of the following result is a routine work. 
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Fridy  ,6 Kolk ],8[ Mursaleen ,]13[  Et and Nurry ,]4[  Savas ,]15[  Arani et al. ]1[ and many others. 
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We establish a relation between the sets  ES r
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