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Abstract 
We introduce an iterative method for finding a common fixed point of a semigroup of infinite family of 

nonexpansive mappings in Hilbert space, with respect to a sequence of left regular means defined on an 

appropriate space of bounded real valued functions of the semigroup. we prove the strong convergence of 

the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality 

condition for a minimization problem. 
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1. Introduction 

Let H be a real Hilbert space. Assume A is strongly positive, that is there is a constant   with the 

property:  

                                                          
2,Ax x x   ‖ ‖ . 

 

mailto:Dianati.math@gmail.com
mailto:f-golkar@phdstu.scu.ac.ir


A. Dianatifar, F. Golkar, A.M. Forouzanfar / J. Math. Computer Sci.    11 (2014), 319-329 
 

320 
 

Let 
1{ }i iT 


be a sequence of nonexpansive mappings of H into itself, we shall assume that             

  
1

: i

i

F FixT




  , and let 1{ }i i 

 be a sequence of nonnegative real numbers in[0,1] . for 1n  , 

define a mapping nW of  H into itself as follows: 

 

, 1n nU I   

, , 1 (1 )n n n n n n nU T U I     

         . 

         . 

         . 

,2 2 2 ,3 2(1 )n nU T U I     

,1 1 1 ,2 1: (1 )n n nW U T U I                           (1.1) 

 

Y.Yao in [12] introduced an iterative algorithm to appropriate the common fixed points of an 

infinite family of nonexpansive  self mapping in a real Hilbert space as follows: 

Let 0x H is arbitrarily chosen and 

 

 1 ( ) ((1 ) )n n n n n n n n nx f x x I A W x         
 

 

Where nW is a sequence defined by (1.1), f be a contraction on H with 

coeffecient  0   such that 0





   

Under the assumption that sequences{ },  { }n n   satisfy the following conditions: 

 

1( ) : lim 0,n
n

C 


  

2

1

( ) : ,n

n

C 




   

 

3( ) : 0 inf sul pim 1,limn nC    
 

 

Yao proved that the sequence{ }nx converges strongly to the unique solution of the variational 

inequality 

                                         
* *( ) , 0 .A f x x x x F                              (1.2) 

 

In this paper motivated and inspired by Yao, we introduce a composite iteration schem as 

follows: 

                               1 ( ) ((1 ) )
nn n n n n n n n nx f x x I A T W x                (1.3) 
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Let S be a semigroup, { : }tT t S   is a nonexpansive semigroup on H such that 

t

t S

Fix FixT


  , X is a left invariant subspace of the space of all bounded real valued 

functions defined on S such that 1 ,X  the mapping  ( ),tt T x y  is an element of X for each 

,x y H  and { }n is a sequence of means on X. Our purpose here is to introduce the general 

iterative algorithm for approximating the common fixed points of left amenable semigroup of 

nonexpansive mapping and infinite family of nonexpansive mappings which also solve some 

variational inequalities. 

2. PRELIMINARIES 

 

Let S be a semigroup and let B(S) be the space of all bounded real valued functions defined on S 

with the supremum  norm. For s S  and ( )f B S  we write sl and sr  on B(S) by 

( )( ) ( )sl f t f st  and ( )( ) ( )sr f t f ts  for each t S  and  ( )f B S .  Let X be a subspace of 

B(S) containing 1 and *X  be its topological dual. An element   of *X  is said to be a mean on 

X if (1) 1.  ‖ ‖  We often write ( ( ))t f t  instead of ( )f  for 
*X and .f X  Let X be 

left invariant ( resp. right invariant),  i.e ( )sl X X  (resp. ( )sr X X ) for each s S . A mean 

 on X is said to be left invariant (resp. right invariant) if ( ) ( )sl f f  (res ( ) ( )sr f f   for 

each s S  and f X . X is said to be left (resp. right) amenable if X has a left (resp. right) 

invariant mean. X is amenable if  X is both left and right amenable. 

As is well known, B(S) is amenable when S is a commutative semigroup or a solvable group. 

A net { }  of means on X is said to be strongly left regular if *lim 0sl  


  ‖ ‖  for each 

s S  where *

sl  is the adjoint operator of .sl  

Let C be a nonempty closed and convex subset of a reflexive Banach space E. A family  

{ : }tT t S    is called a nonexpansive semigroup on C if for each t S  the mapping 

:tT C C  is nonexpansive and st s tT T oT  for each ,  s t S . We denote by ( )Fix   the set of 

common fixed points of  . 

 

Lemma 2.1. [1, 4] Let f be a function of semigroup S into a reflexive Banach space E such that 

the weak closure of { ( ) : }f t t S  is weakly compact and let X be a subspace of B(S) containing 

all functions 
*( ),t f t x    with

* *.x E  Then, for any
*,X  there exists a unique element 

f   in E such that * *, ( ), ,tf x f t x      for all 
* *.x E  Moreover, if   is a mean on X, 

then 

 

                                                  ( ) ( ) { ( ) : }.f t d t co f t t S    
 

We can write f   by  ( ) ( )f t d t . 

 

Lemma 2.2. [1, 4] Let C be a nonempty closed convex subset of a Hilbert space 
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H, { : }tT t S    be semigroup from C into C such that ( )F    and the mapping 

( ),tt T x y   be an element of X for each x C  and ,y H  and   be a mean on X.  If we 

write ( )T x , instead of ( ) ( )tT x d t , then the followings hold: 

 (i) T   is nonexpansive mapping from C into C. 

(ii) ( )T x x  , for each ( )x Fix  . 

(iii) ( ) { ( ) : }tT x co T x t S   , for each x C . 

 (iv) If   is left invariant, then  T   is a nonexpansive retraction from C onto ( )Fix  . 

 

Lemma 2.3. [3] Let C be a  nonempty  closed convex subset of  H and :T C C a 

nonexpansive mapping with ( )F T  . If { }nx is a sequence in C weakly converging to x and if 

{( ) }nI T x converges strongly to y, then ( )I T x y  . 

 

Recall the metric (nearest point) projection CP  from a Hilbert space H to a closed convex subset 

C of H is defined as follows: give ,x H ( )CP x  is the only point in C with the property: 

                                     ) inf{ (  : }Cx P x x y y C   ‖ ‖ ‖ ‖  

 

It is well-known that CP is a nonexpansive mapping of H onto C. 

 

Lemma 2.4. [3] Let C be a nonempty convex subset of a Hilbert space H and CP be the metric 

projection mapping from H onto C. Let x H and y C then, the followings are equivalent: 

i) ( )Cy P x  

ii) , 0x y y z        .z C   

Lemma 2.5. [9] Let { }nx and { }ny be bounded sequences in a Banach space E and let{ }n  be a 

sequence in [0, 1] with 0 inf slim ulim p 1n n
n n

 
 

   . Suppose 1 (1 )n n n n nx x y     , for all 

integers 0n  , and 1 1sup(m 0.l )i n n n n
n

y y x x 


   ‖ ‖ ‖ ‖  

Then, lim 0.n n
n

y x


 ‖ ‖  

 

The following lemma is an immediate consequence of the inner product on H. 

Lemma 2.6.  For all ,x y H , there holds the inequality 

                                            
2 2 2 , .x y x y x y     ‖ ‖ ‖ ‖     

Lemma 2.7. [5] Let C be a nonempty closed convex subset of a Hilbert space H, { : }iT C C be 

an infinite family of nonexpansive mappings with 
1

( )i

i

Fix T




 ,{ }i be a real sequence such 

that 0 1, 1i b i     .Considering nW  which is defined by (1.1) we have: 

(1) nW  is nonexpansive and 
1

( ) ( )
n

n i

i

Fix W Fix T


  for each 1n    
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(2) for each x C and for each positive integer j, 
,lim n j

n
U x


exists. 

(3) The mapping  :W C C , defined by 

                                            
,1: lim lim , .n n

n n
Wx W x U x x C

 
     

is a nonexpansive mapping satisfying 
1

( ) ( )i

i

Fix W Fix T




  and is called the W-mapping 

generated by 1 2, ,...T T and 1 2, ,...  . 

 

Lemma 2.8. [8] Let C be a nonempty closed convex subset of a Hilbert space H, { : }iT C C be 

a countable family of nonexpansive mappings with 
1

( )i

i

Fix T




 ,{ }i  be a real sequence such 

that 0 1, 1i b i     . If D is any bounded subset of C, then  

 limsup 0.n
n x D

Wx W x
 

 ‖ ‖  

 

Lemma 2.9. [3] Let { }na be a sequence of nonnegative real numbers such that                     

                                      1 (1 ) ,      0n n n n na b a b c n        

where{ }nb and{ }nc are sequences of real numbers satisfying the following  conditions 

(i) 
0

{ } [0,1],n n

n

b b




    

 (ii) either 0imsupl n
n

c


  or 
0

| |n n

n

b c




   

Then lim 0.n
n

a


  

Lemma 2.10. [2] Assume that A is a strongly positive bounded operator on a Hilbert space H 

with the coefficient 0   and
10  A   ‖ ‖ . 

Then, 1 0.I A    ‖ ‖  

 

3. Main results  

  

Theorem 3.1.  Let f be a contraction on H with coefficient 0 1  . Let A be a strongly 

positive operator on H with coefficient 0  . Let{ }n be a left regular sequence of means on X 

such that 1lim 0n n
n

 


 ‖ ‖ . Let 1{ }i iT 

  be a sequence of nonexpansive selfmapping of H 

such that
1

: ( )i

i

F FixT Fix 




    and ( ) ( )iT Fix Fix  , for all .i N  Let 0x H ,

0





   and let{ }nx be generated by the iterative algorithm (1.3), where nW is a sequence 

defined by (1.1), and{ },{ }n n  are sequences in [0, 1] satisfying conditions (C1), (C2), 

(C3).Then { }nx converges strongly 
* ,x F  which also uniquely solves the variational inequality 

(1.2). 
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Proof. We shall divide the proof into several steps. 

Step1. The sequence { }nx is bounded. 

Since A is strongly positive operator on H, then 

sup{| , |: , 1}.A Ax x x H x    ‖ ‖ ‖ ‖  

(1 ) ) sup{1 , : , 1} 1n n n n n nI A Ax x x H x                 ‖ ‖ ‖ ‖ . 

Let p F , by lemma 2.2 in [1], [10], we have 

1nx p ‖ ‖  = ( ( ) ) ( ) ((1 ) )( )
nn n n n n n n nf x Ap x p I A T W x p          ‖ ‖  

                     ( ) ( ) ( )n n n n nf x f p f p Ap x p         ‖ ‖ ‖ ‖ ‖ ‖  

                    + (1 ) (1 ( ) ) | ( )
nn n n n n n nT W x p x p f p Ap               ‖ ‖ ‖ ‖ ‖  

 

It follows from induction that  

                               0

( )
max{ , }n

f p Ap
x p x p M



 


   



‖ ‖
‖ ‖ ‖ ‖  

Step 2. lim 0
nn n n

n
x T w x


 ‖ ‖ . 

1 1 
n nn n n n n n n nx T w x x x x T w x      ‖ ‖ ‖ ‖ ‖ ‖ we have: 

1 ( )
n n nn n n n n n n n n n nx T w x f x AT w x x T w x         ‖ ‖ ‖ ‖ ‖ ‖ so we have  

1

1
[ ( ) ]

1n nn n n n n n n n n

n

x T w x f x AT w x x x  


    


‖ ‖ ‖ ‖ ‖ ‖  

Since  nW , 
n

T  are nonexpansive, we have 

0( ) (( ) ( ) )
nn n n n nf x AT w x A M f p Ap        ‖ ‖ ‖ ‖ ‖ ‖  take 

0 0( ) ( ) )L A M f p Ap    ‖ ‖ ‖ ‖  since lim 0n
n




 , there exists 0K N such that 
0

n
L


  , 

for all 0n K therefore we have 

  1 0

1
[ ]      

1nn n n n n

n

x T w x x x n K 


     


‖ ‖ ‖ ‖       (3.1) 

It sufficient to show that 1lim 0n n
n

x x 


 ‖ ‖  

Define 

                                  1 (1 ) ,             0n n n n nx y x n       

Observe that from the definition of ny , we obtain 

2 1 1 1
1

1

,
1 1

n n n n n n
n n

n n

x x x x
y y

 

 
   





 
  

 
 

                =
1

1
1 1 1

1

[ ( ) ] [ ( ) ]
1 1n n

n n
n n n n n n

n n

f x AT W x f x AT W x 

 
 

 


  



  
 

 

                   +
1 1 1n nn n n nT W x T W x      

This implies that  
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1n ny y ‖ ‖  

  
1

1
1 1 1

1

[ [ ( ) ] [ ( ) ]
1 1n n

n n
n n n n n n

n n

f x AT W x f x AT W x 

 
 

 


  



  
 

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ +

1 1 1n nn n n nT W x T W x    ‖ ‖                                                                                           (3.2) 

We have  

1 1 1n nn n n nT W x T W x    ‖ ‖  

   
1 1 11 1n n n nn n n n n n n nT W x T W x T W x T W x         ‖ ‖ ‖ ‖  

    
11 1 n nn n n n n n n nW x W x T W x T W x     ‖ ‖ ‖ ‖  

 
11 1 1 1 n nn n n n n n n n n n n nW x W x W x W x T W x T W x        ‖ ‖ ‖ ‖ ‖ ‖  

   
11 1 n nn n n n n n n n n nx x W x W x T W x T W x      ‖ ‖ ‖ ‖ ‖ ‖                       (3.3) 

Since iT  and ,n iU are nonexpansive, from (1.1), we have 

1n n n nW x W x ‖ ‖ =
1 1 1,2 1 1 ,2n n n nT U x T U x  ‖ ‖ 

1 1,2 ,2n n n nU x U x  ‖ ‖ ……. 1

1

n

i

i

M 



   

(3.4) 

Where 1 0M  is an appropriate constant such that 
1, 1 , 1 1n n n n n nU x U x M   ‖ ‖  using (2.3) and 

(2.4) we have
1 1 1n nn n n nT W x T W x    ‖ ‖   

                                 
11 1

1

 
n n

n

n n i n n n n

i

x x M T W x T W x 




    ‖ ‖ ‖ ‖       (3.5) 

  

Substituting (2.5) in (2.2), we have 

1 1n n n ny y x x   ‖ ‖ ‖ ‖ 

1

1
1 1 1

1

[ ( ) ] [ ( ) ]
1 1n n

n n
n n n n n n

n n

f x AT W x f x AT W x 

 
 

 


  



  
 

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ + 

11

1
n n

n

i n n n n

i

M T W x T W x 




  ‖ ‖  

Which implies that (noting that (C1) and 0 1,   1i b for i    ) 

                                        1 1sup 0lim n n n n
n

y y x x 


   ‖ ‖ ‖ ‖  

Hence by Lemma 2.5, we have lim 0n n
n

y x


 ‖ ‖  . Consequently 

1lim lim(1 ) 0n n n n n
n n

x x y x
 

    ‖ ‖ ‖ ‖ . This together with (2.1) implies that 

lim 0
nn n n

n
x T w x


 ‖ ‖ . 

Step 3. supsup 0,       lim
n nt

n y D

T y T T y t S 
 

   ‖ ‖  

Set  0{ :  }.D y H y p M   ‖ ‖ We point out that D is a bounded closed convex set, 

{ }nx D being invariant under  and  nW , for all n N  

Let 0  . By Theorem 1.2 in [6], there exists 0  such that 



A. Dianatifar, F. Golkar, A.M. Forouzanfar / J. Math. Computer Sci.    11 (2014), 319-329 
 

326 
 

                                       ( ; ) ( ; ),       .t tcoF T D B F T D t S                             (3.6) 

 

Also by Corollary 1.1 in [6], there exists a natural number N such that 

0 0

1 1
( ) , , ,  

1 1
i i

N N

tt s t s
i i

T y T T y t s S y D
N N


 

    
 
 ‖ ‖                                 (3.7) 

                                 

Let .t S  Since { }n is strongly left regular, there exists 0N  such that 

*

0*

0

,                    , 1,2,...,
( )

in nt
l n N i N

M x


     


‖ ‖

‖ ‖
. 

Then we have 

0

1
sup ( )

1
i

n

N

nt s
y D i

T y T yd s
N

 
 



‖ ‖ =

1 0

1
supsup | , ( ), |

1
i

n

N

nt s
y D z i

T y z T yd s z
N

 
  

    



‖ ‖

 

 

= 
1 0 0

1 1
supsup | ( ) ( ) , |

1 1
i

N N

n s n s t s
y D z i i

T y z
N N

 
   

  
 
 

‖ ‖

 

 *

10

1
supsup( ) , ( ) , |

1
i i

N

n s n s st s t
y D zi

T y z l T y z
N

 
 

    



‖ ‖

 

 *

1,2,..., 0 0max ( ) ,            .ii N n nt
l M p n N       ‖ ‖ ‖                                   (3.8) 

 

By Lemma 2.2, we have 

0 0

1 1
( ) { ( ) : }.

1 1
i i

N N

n st s t
i i

T yd s co T T y s S
N N


 

 
 
                                          (3.9) 

 

It follows from 2.6, 2.7, 2.8 and 2.9 that 

0

1
{ : }

1
i

n

N

t s
i

T y co T y s S B
N

 


  

 

0( ; ) ( ; )                 , .t tcoF T D B F T D y D n N     ò
 

Therefore, supsup .lim
n nt

n y D

T y T T y 
 

 ‖ ‖ ò  Since 0ò is arbitrary, we can proof step 3. 

Step 4. lim 0,n t n
n

x T x t S


   ‖ ‖ .  

We have shown in Step 2 that 

0 0

0

( ) (( ) ( ) )
nn n n n nf x AT w x A M f p Ap L

L



           ‖ ‖ ‖ ‖ ‖ ‖  for all 0n K

Using Step 2 we can assume, there exists 1K N such that for all 1n K ,   

                                                     
2

( )
nn n n nx T w x B     

From Lemma 2.7 we have 0n n n n n nW x p W x W p x p M     ‖ ‖ ‖ ‖ ‖ ‖ , from definition D we 

have n nW x D . Therefore by Step 3 we have  ( ; )
n n n tT W x F T D  , so we have 

1 [ ( ) ] [ ]
n n nn n n n n n n n n n nx f x AT W x x T W x T W x             

         
2 2

( ; ) ( ; ) ( ; )t t tB B F T D B F T D F T D         ò  
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For all 2n K in which 2 0 1{ , }K max K K , so we have: 

                                                          n t nx T x ‖ ‖ ò                                                

Step 5. There exists a unique *x F such that 

                                         
* * *sup , (li ) 0m n

n

x x f x Ax


      

( )FP I A f   is a contraction of  H into itself because

( ) ( )  ( ) ( )F FP I A f x P I A f y I A f x I A f y             ‖ ‖ ‖ ‖  

  (1 ( )) ,I A x y x y x y          ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

By Banach contraction principal, ( )FP I A f  has a unique fixed point *x F . Then by 

Lemma 2.4, we have 

 

                                  
* * *( ) , 0     f x Ax y x y F                             (3.10) 

We take a subsequence{ }
knx of{ }nx  such that 

* * * * * *sup , ( ) lli im , (m )
kn n

kn

x x f x Ax x x f x Ax 


                           (3.11) 

We may also assume that 
knx z , using Step 4 and Lemma 2.3 we have ( )z Fix  . We will 

show that  ,z F  from Lemma 2.7 it follows  that  
1

( )i

i

FixT Fix W




 . So we must show that

( )z Fix W . Assume that  Wz z , since ( )z Fix  , and by assumption, iT Fix Fix   

We have     iT z Fix i N   , so nW z Fix . Hence 
n n nT W z W z  using  Opial property of 

Hilbert space,  since 
knx z , we have 

                                             inf inflim l   i  m
k kn n

k k
x x x z x z

 
    ‖ ‖ ‖ ‖  

Since Wz z by using Step 2 and Lemma2.8, we have 

liminf
kn

k
x z


‖ ‖ inflim

kn
k

x Wz


 ‖ ‖  

                              inf[lim
k n k k n k k n kk k k

n n n n n n
k

x T W x T W x T W z  


   ‖ ‖ ‖ ‖ ]
n kk

nT W z Wz ‖ ‖  

                             inf[lim ]
k n k k k kk

n n n n n
k

x T W x x z W z Wz


     ‖ ‖ ‖ ‖ ‖ ‖                             

                             inflim
kn

k
x z


 ‖ ‖                                 

This is a contradiction. Therefore .z F  Noticing 2.10, 2.11 and 
knx z we have: 

                      
* * * * * *sup , ( ) )l , ( 0.im n

n

x x f x Ax z x f x Ax 


           

Step6. The sequence{ }nx converges strongly to
*.x  By Lemma 2.6 we have 

* 2

1nx x ‖ ‖ * * * 2 ( ( ) ) ( ) ((1 ) )( )
nn n n n n n n nf x Ax x x I A T W x x           ‖ ‖  

                      * * 2 * *

1[ (1 ) ) ] 2 ( ) ,n n n n n n n nx x x x f x Ax x x                ‖ ‖ ‖ ‖  

                      2 * 2 * *

1(1 ) 2 ( ) ,n n n n nx x f x Ax x x           ‖ ‖                               (3.12) 

 

On the other hands, 
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 * * * *

1 1( ) ( ),n n n nf x f x x x x x x x         ‖ ‖ ‖ ‖  

* 2 * 2 * *

1(1 ) 2 ( ) ,n n n n n nx x x x f x Ax x x             ‖ ‖ ‖ ‖   

                                   * 2 * * *

1(1 ) 2 ( ) ,n n n n n nx x x x f x Ax x x             ‖ ‖ ‖ ‖   

Since{ }nx is bounded, we can take a constant 0 0G  such that 

                  * * *

1 02 ( ) , ,n n n nx x f x Ax x x G n N         ‖ ‖  

 

  So from the above and 2.12 we reach the following 

  * 2

1nx x ‖ ‖  

2 * 2 * * * * *

1 1(1 ) 2 ( ) ( ), 2 ( ) ,n n n n n n nx x f x f x x x f x Ax x x                   ‖ ‖  

 
2 * 2 * 2

0(1 ) 2 (1 ) 2n n n n n n nx x x x G             ‖ ‖ ‖ ‖
* * *

12 ( ) ,n nf x Ax x x        

* 2(1 (2( ) (2 )) ))n n nx x           ‖ ‖  * * *

0 12 2 ( ) ,n n n nG f x Ax x x           

  It then follows that 

                               * 2 * 2

1 (1 ) .n n n n nx x x x       ‖ ‖ ‖ ‖               (3.13) 

Where  

 

                                                 (2( ) (2 )) ,n n n            

                                                 * * *

0 12 2 ( ) ,n n nG f x Ax x x           

By Step 4, we get 0imsupl n
n




 . Since 0n  and 0    , we may assume, with no loss of 

generality, that 1 n A  ‖ ‖ and 

                                                     0 2( ) (2 ) 1n           

This together with applying Lemma 2.9 to 2.13 concludes that 

 *lim 0n
n

x x


 ‖ ‖ . 
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