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Abstract 
In this paper, we apply a modification of variational iteration method using He's polynomials for a class 
of nonlinear optimal control problems which are converted to the Hamilton-Jacobi-Bellman equations 
(HJB) and present a convergence theorem of the method. The proposed modification is made by 
introducing He's polynomials in the correction functional. The suggested algorithm is quite efficient and 
is practically well suited for using in these problems. Some examples are given to demonstrate the 
simplicity and efficiency of the proposed method.  
 
 AMS Subject Classification: 34B99 

 Keywords: Optimal control problem; Homotopy perturbation method; Variational iteration method; 
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1 . Introduction 

 Theory and application of optimal control have been widely used in different fields 
such as biomedicine [1], aircraft systems [2], robotic [3], etc. However, optimal control of 
nonlinear systems is a challenging task which has been studied extensively for decades. 
Methods of solving nonlinear optimal control problems (OCP’s) can be divided into two 
categories. The first category, which contains direct methods, converts the problem into a 
nonlinear programming by using the discretization or parameterization techniques [4, 5]. The 
second category contains indirect methods and leads to the Hamilton-Jacobi-Bellman (HJB) 
equation, based on dynamic programming [6], or nonlinear two-point boundary value problem 
(TPBVP), based on the Pontryagin’s maximum principle [7]. In general, the HJB equation is a 
nonlinear partial differential equation that is hard to solve in most cases. An excellent literature 
review on the methods for approximating the solution of HJB equation is provided in [8]. 
Besides, nonlinear TPBVP has no analytical solution except for a few simple cases. Thus, many 
researches have been devoted to find an approximate solution for the nonlinear TPBVP’s. 
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Recently, successive approximation approach (SAA) and sensitivity approach have been 
introduced in [9] and [10], respectively. In those, a sequence of nonhomogeneous linear 
time-varying TPBVP’s is solved instead of directly solving the nonlinear TPBVP derived from the 
maximum principle. However, solving time-varying equations is much more difficult than 
solving time-invariant ones.  

He[15, 16] developed the variational iteration and homotopy perturbation methods for solving 
linear, nonlinear, initial and boundary value problems. The homotopy perturbation method was 
developed by merging two techniques: the standard homotopy and the perturbation. The basic 
motivation of this paper is to dicsuss convergence the variational iteration method coupled 
with He's polynomials (MVIM) [13, 14, 18] and applying it for finding the solution of a class of 
nonlinear optimal control problems. In this algorithm, the correct functional is developed [11, 
16, 19, 20, 21] and the Lagrange multipliers are calculated optimally via variational theory. The 
use of Lagrange multipliers reduces the successive application of the integral operator and the 
cumbersome of huge computational work while still maintaining a very high level of accuracy. 
Finally, the He's polynomials are introduced in the correct functional and the comparison of like 
powers of p  gives solutions of various orders. This paper is organized as follows. In Section 2, 

we introduce the nonlinear time-variant HJB equation. In Section 3, we explain the modified 
variational method (MVIM) and convergence analysis of this method is discussed. In Section 4, 
numerical examples are simulated to show the reasonableness of our theory and demonstrate 
the high performance of proposed method. Finally, Some conclusions are summarized in the 
last section.  

2 . Nonlinear time-variant HJB equation  

 

In this section, we Consider a nonlinear control system described by  

 ),),(),((=)( ttutxatx  (1) 

 where )(tx  is a state vector; )(tu  is a control signal. The objective is to find the optimal 

control law )(* tu , which minimizes the following cost function:  

 .)),(),(()),((=
0

 duxgttxhJ
f

t

ff   (2) 

 In this cost function, h  and g  are arbitrary convex functions and ft  is final time of system 

operation. Using dynamic programming approach, we introduce a new variable as  

 ,)),(),(()),((=))(,),((
0

 duxgttxhuttxj
f

t

ff   

 .,                        0 ff ttttt   (3) 
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 According to the principle of optimality, we have  
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 Therefore, using Taylor series we have  
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 If we suppose that t  is small enough then t  and we have  

 )}.(),,(),({min=)),((
)(

tOttuxa
x

V
t

t

V
txVtgttxV

u














 (8) 

 By dividing both sides of Equation (8) by t , we have  
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 This nonlinear time-variant differential equation called HJB equation. We have the following 
boundary condition  

 ),),((=)),((=)),((*

ffffff ttxhttxVttxJ  (10) 

 by introducing the Hamiltonian function  

 ),,,()),(),((=),,,( tuxa
x

V
ttutxgtVuxH x




  (11) 

 we have  

 ).,,,(min=),,,(
)(

* tVuxHtVuxH x
u

x
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 (12) 

 Therefore, by substituting of Hamiltonian function (12) in Equation (9), we have  

 ).,),,,(,(= * tVtVxuxH
t

V
xx




  (13) 

  

3 . New analytic method 
  

3.1  Description of method 

   The variational iteration method, which provides an analytical approximate solution, is 
applied to various nonlinear problems [20, 21]. In this section, we present an alternative 
approach of VIM. This approach can be implemented, in a reliable and efficient way, to handle 
the nonlinear differential equation,  

 0,>     ),(=)]([)]([ ttgtuNtuL   (14) 

 where Nm
dt

d
L

m

m

 ,= , is a linear operator as, N  a nonlinear operator and )(tg  is the 

source inhomogeneous term, subject to the initial conditions,  

 1.,0,1,2,=  ,=(0))( mkcu k

k   (15) 

 Where kc  is a real number. According to the He's variational iteration method, we can 
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construct a correction functional for (14) as follows  

   0,,)()(~)()()(=)(
0

1   ndguNLututu nn

t

nn   

 where   is a general Lagrangian multiplier [17], which can be identified optimally via 
variational theory. Here, we apply restricted variations to nonlinear term Nu , in this case we 
can easily determine the Lagrange multiplier. Making the above functional stationary, noticing 

that 0=~
nu ,  
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 yields the following Lagrange multipliers,  

 1,=          1= mfor  

 2,=      ,= mfort  

 and in general,  
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 Now we assume that the solution of (14) can be expressed as a series of the power of p  
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 Substituting 1=p  in (16), yields the approximate solution of (14) as follows  
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 The method considers the nonlinear term ][vN  as  
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 where nH 's are the so-called He's polynomials [13], which can be calculated by using the 

formula  
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 Now, we apply a series of the power of p  and then using He's polynomials we have  
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 which is the modified variational iteration method using He's polynomials. Now, equating 
coefficients of like powers of p , we have  
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       
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 The zeroth (initial) approximation 00 = uv  can be freely chosen if it satisfies the initial and 

boundary conditions of the problem. The success of the method depends on the proper 

selection of the initial approximation 0v . However, using the initial values 

1,0,1,2,= ,=(0))( mkcu k

k   are preferably used for the selective zeroth approximation 0v  

as will be seen later. In our alternative approach we select the initial approximation 0v  as  
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3.2  Convergence of method 

  

Theorem 3.1 If the series solution )(=)(
0=

tvtu nn


, defined in(17),converges, then it is an exact 

solution of the nonlinear problem (14).  
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k
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c
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 in (18), suppose that the series solution (17) 
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 Applying the operator Nm
dt

d
L

m

m

 ,= , to both sides of Eq.(21) and then using Leibnitz rule 

we obtain  

  .)())((=)]([ tgtNtL    

 Consequently, we have  

   0.=)())(()]([ tgtNtL    

 Therefore, we can observe that )(=)(
0=

tvt nn


  is an exact solution of problem (14). This 

completes the proof of Theorem (3.2). 
 

4 . Application 

 In order to assess the advantages and the accuracy of MVIM for solving nonlinear 
optimal control problems, we will consider the following examples.  

Example 4.1 Consider a single-input scalar system as follows [22]:  

  

 ),()(= tutxx   (22) 

 ,))()((
2

1
= 22

1

0
dttutxJ   (23) 
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 The corresponding Hamiltonian function will be  
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 For finding *u , we have  
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
, *u  is a minimum and acceptable. Now, by substituting *u  in HJB 

equation, we have the following equation:  
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 0.=(1),1)(xV  (30) 

 For this problem, we have the exact solution of state )(tx  and the control )(tu  as follows  
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 To solve Eq. (29) by means of MVIM, as a mention in section (3.1) we construct a correction 
functional  
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 By applying the MVIM we have  
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 Now by comparison of like powers and equating the coefficients of the terms with the 
identical powers of p  we have  
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 In figure (1) and table (1) we compare the results of MVIM with the exact solution of )(tk . 

This confirm that the proposed method yields excellent results. 
 
 
 

  Table 1: Comparison between the exact and MVIM solution of ),(tk  for n =15. 

 

t  MVIM Solution Analytic Solution Absolute Error 

0.0 3.8010e-001 3.8582e-001 5.7169e-003 

0.2 3.6438e-001 3.6460e-001 2.1416e-004 

0.4 3.2801e-001 3.2801e-001 2.8398e-006 

0.6 2.6588e-001 2.6588e-001 5.6802e-009 

0.8 1.6306e-001 1.6306e-001 1.1410e-013 
1.0 -1.7396e-015 1.3634e-015 3.1030e-015 
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Fig. 1. The exact and MVIM approximate solution of ).(tk   

  

Example 4.2 Consider the following purely mathematical optimal control problem:  

  

 ),()(= tutxx   (31) 

 .)()(= 2

0

2 dttutxJ
f

t

f   (32) 

 The corresponding Hamiltonian function will be  

 ].)[,()(=),,,( 2 uxtxVtutVuxH xx   (33) 

 For finding *u , we have  

 0.=),()(2= txVtu
u

H
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 Therefore, we obtain  

 ).,(
2

1
=)(* txVtu x  (35) 

 Because 0>2=
2

2

u

H




, *u  is a minimum and acceptable. Now, by substituting *u  in HJB 

equation, we have the following equation:  

 ,
4

1
= 2

xxt xVVV   (36) 
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fff txttxV  

 In Chapter 19 of [12], authors obtained the solution of the above HJB equation in form:  
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 To solve Eq. (36) by means of MVIM when 1=ft , as a mention in section (3.1) we construct a 

correction functional  
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 By applying the MVIM we have  

 ,

)),((

4

1
),(=),( 0=

0=
1

0

0=





d
x

xwp

xHpptxVtxwp
i

i

i
i

i

i

t

i

i

i
































 

 where  

 ,

)),((

!

1
=

2

0=

0=

p

k

k
i

k

i

i

i
x

txwp

pi
H




























 

 Now by comparison of like powers and equating the coefficients of the terms with the 
identical powers of p  we have  
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 In figure (2) and table (2) we compare the results of MVIM with the exact solution of )(tk . 

This confirm that the proposed method yields excellent results. 
 
 

  Table 2: Comparison between the exact and MVIM solution of ),(tk  for n =20. 

 

t  MVIM Solution Analytic Solution Absolute Error 

0.0 -1.7615 -1.7616 6.8965e-005 

0.2 -1.6640 -1.6640 7.0978e-007 

0.4 -1.5370 -1.5370 1.8553e-009 

0.6 -1.3799 -1.3799 4.0035e-013 

0.8 -1.1974 -1.1974 0 

1.0 -1.0000 -1.0000 3.3307e-016 
  

 
 

  

Fig. 1. The exact and MVIM approximate solution of ).(tk   
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5 . Conclusion 

 In this paper, we present a reliable algorithm based on the MVIM to solve nonlinear 
optimal control problem. The obtained solution is compared with the exact solution. The 
examples show that the MVIM is clearly very efficient and powerful technique in finding the 
solutions of the nonlinear optimal control problems.The computations associated with the 
example in this paper were performed using Matlab 7.  
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