F_{m}-contractive and F_{m}-expanding mappings in M -metric spaces

Nabil Mlaiki
Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.

Abstract

Inspired by the work of Górnicki in his recent article [J. Górnicki, Fixed Point Theory Appl., 2017 (2017), 10 pages], where he introduced a new class of self mappings called F-expanding mappings, in this paper we introduce the concept of F_{m}-contractive and F_{m}-expanding mappings in M-metric spaces. Also, we prove the existence and uniqueness of fixed point for such mappings.

Keywords: M-metric spaces, $\mathrm{F}_{\mathfrak{m}}$-contractive, $\mathrm{F}_{\mathfrak{m}}$-expanding mappings.
2010 MSC: $54 \mathrm{H} 25,47 \mathrm{H} 10$.
(c)2018 All rights reserved.

1. Introduction

In [2], M-metric space was introduced, which is an extension of partial metric spaces, and it has many applications. In this paper, we introduce the notion of F_{m}-contractive and F_{m}-expanding mappings in M metric space, where we prove that self mappings on a complete M-metric spaces that are F_{m}-contractive have a unique fixed point. Also, we show that surjective self mappings on a complete M-metric spaces that are F_{m}-expanding mappings in M-metric spaces have a unique fixed point.

This article is organized as follows. In this section we recall the concept of M-metric spaces. In Section 2, we present the concept of F_{m}-contraction along with a fixed point theorem which we are going to support it by an example. In the Section 3, we introduce the concept of F_{m}-expanding mappings. In Section 4 we show that the results of [7] and [3], are direct consequences of our results. In the last section, we present some open questions.

Notation 1.1 ([2]).

1. $\mathfrak{m}_{x, y}:=\min \{\mathfrak{m}(x, x), \mathfrak{m}(y, y)\} ;$
2. $M_{x, y}:=\max \{m(x, x), m(y, y)\}$.

Definition 1.2 ([2]). Let X be a nonempty set, if the function $m: X^{2} \rightarrow R^{+}$, for all $x, y, z \in X$, satisfies the following conditions:
(1) $\mathfrak{m}(x, x)=\mathfrak{m}(y, y)=\mathfrak{m}(x, y)$ if and only if $x=y$;

[^0](2) $m_{x, y} \leqslant m(x, y)$;
(3) $m(x, y)=m(y, x)$;
(4) $\left(m(x, y)-m_{x, y}\right) \leqslant\left(m(x, z)-m_{x, z}\right)+\left(m(z, y)-m_{z, y}\right)$,
then the pair (X, m) is called an M-metric space.
Examle 1.3. Let $X:=[0, \infty)$. Then
$$
m(x, y)=\frac{x+y}{2} \text { on } x
$$
is an M-metric space.
Examle 1.4. Let $X=\{1,2,3\}$ and define
\[

$$
\begin{array}{ll}
\mathfrak{m}(1,1)=1, \mathfrak{m}(2,2)=9, \mathfrak{m}(3,3)=5, & \mathfrak{m}(1,2)=\mathfrak{m}(2,1)=10, \\
\mathfrak{m}(1,3)=\mathfrak{m}(3,1)=7, & \mathfrak{m}(3,2)=\mathfrak{m}(2,3)=7 .
\end{array}
$$
\]

Note that (X, m) is an M-metric space that is not a partial metric space.
Notice that, we can construct a metric space from M-metric space.
Examle 1.5 ([2]). If m be an M-metric space, then the following functions

1. $\mathfrak{m}^{w}(x, y)=\mathfrak{m}(x, y)-2 m_{x, y}+M_{x, y}$,
2. $\mathfrak{m}^{s}(x, y)=m(x, y)-m_{x, y}$ when $x \neq y$ and $m^{s}(x, y)=0$ if $x=y$ are ordinary metrics.

As mentioned in [2], each M-metric on set X generates a T_{0} topology τ_{m} on X. The set

$$
\left\{B_{\mathfrak{m}}(x, \epsilon): x \in X, \epsilon>0\right\} \text { where } B_{\mathfrak{m}}(x, \epsilon)=\left\{y \in X \mid m(x, y)<\mathfrak{m}_{x, y}+\epsilon\right\} \text { for all } x \in X \text { and } \epsilon>0,
$$

forms a base of τ_{m}.
Definition 1.6. Let (X, m) be an M-metric space. Then

1) a sequence $\left\{x_{n}\right\}$ in X converges to a point x if and only if

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x\right)-m_{x_{n}, x}\right)=0 ;
$$

2) a sequence $\left\{x_{n}\right\}$ in X is said to be m-Cauchy sequence if and only if

$$
\lim _{n, m \rightarrow \infty}\left(m\left(x_{n}, x_{m}\right)-m_{x_{n}, x_{m}}\right) \text { and } \lim _{n \rightarrow \infty}\left(M_{x_{n}, x_{m}}-m_{x_{n}, x_{m}}\right)
$$

exist and finite;
3) an M-metric space is said to be complete if every m-Cauchy sequence $\left\{x_{n}\right\}$ converges to a point x such that

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x\right)-m_{x_{n}, x}\right)=0 \text { and } \lim _{n \rightarrow \infty}\left(M_{x_{n}, x}-m_{x_{n}, x}\right)=0 .
$$

Next, we state the following lemmas.
Lemma 1.7 ([2]). Assume that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$ in an M-metric space (X, m). Then

$$
\lim _{n \rightarrow \infty}\left(\mathfrak{m}\left(x_{n}, y_{n}\right)-m_{x_{n}, y_{n}}\right)=\mathfrak{m}(x, y)-m_{x, y} .
$$

Lemma 1.8 ([2]). Assume that $x_{n} \rightarrow x$ in an M-metric space (X, m). Then

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, y\right)-m_{x_{n}, y}\right)=m(x, y)-m_{x, y}
$$

2. F_{m}-contraction in M -metric spaces

First, we give the definition of the following family of functions.
Definition 2.1. Let \mathbb{F} be the family of all functions $F ;(0, \infty) \rightarrow \mathbb{R}$ such that:
(F_{1}) F is strictly increasing;
(F_{2}) for each sequence $\left\{\alpha_{n}\right\}$ in $(0, \infty)$ the following holds,

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0 \text { if and only if } \lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty ;
$$

$\left(F_{3}\right)$ there exists $k \in(0,1)$ such that $\lim _{\alpha \rightarrow 0^{+}} \alpha^{k} F(\alpha)=0$.
The following is an example of some functions that satisfy the conditions $\left(\mathrm{F}_{1}\right),\left(\mathrm{F}_{2}\right)$, and $\left(\mathrm{F}_{3}\right)$ of Definition 2.1.

Examle 2.2.

1. $F:(0, \infty) \rightarrow \mathbb{R}$ defined by $F(x)=\ln (x)$;
2. $F:(0, \infty) \rightarrow \mathbb{R}$ defined by $F(x)=\ln (x)+x$;
3. $F:(0, \infty) \rightarrow \mathbb{R}$ defined by $F(x)=-\frac{1}{\sqrt{x}}$;
4. $F:(0, \infty) \rightarrow \mathbb{R}$ defined by $F(x)=\ln \left(x^{2}+x\right)$.

It is not difficult to see that these three functions satisfy the conditions $\left(\mathrm{F}_{1}\right),\left(\mathrm{F}_{2}\right)$, and $\left(\mathrm{F}_{3}\right)$ of Definition 2.1.
Now, we give the definition of an F_{m}-contraction.
Definition 2.3. Let (X, m) be a complete M-metric space. A self mapping T on X is said to be an $F_{m^{-}}$ contraction on X if there exist $F \in \mathbb{F}$ and $t>0$ such that for all $x, y \in X$ the following holds:

$$
\mathfrak{m}(T x, T y)>0 \Rightarrow t+F(m(T x, T y)) \leqslant F(m(x, y)) .
$$

We start by proving the following lemma about $\mathrm{F}_{\mathfrak{m}}$-contractive self mapping on M-metric spaces.
Lemma 2.4. Let (X, m) be an M -metric space, and T be an F_{m}-contractive self mapping on X . Consider the sequence $\left\{x_{n}\right\}_{n} \geqslant 0$ defined by $x_{n+1}=T x_{n}$. If $x_{n} \rightarrow u$ as $n \rightarrow \infty$, then $T x_{n} \rightarrow T u$ as $n \rightarrow \infty$.
Proof. First, note that if $m\left(T x_{n}, T u\right)=0$, then $m_{T x_{n}, T u}=0$ and that is due to the fact that $m_{T x_{n}, T u} \leqslant$ $m\left(T x_{n}, T u\right)$, which implies that

$$
\mathfrak{m}\left(T x_{n}, T u\right)-\mathfrak{m}_{T x_{n}, T u} \rightarrow 0 \text { as } n \rightarrow \infty \text { and hence } T x_{n} \rightarrow T u \text { as } n \rightarrow \infty .
$$

So we may assume that $\mathfrak{m}\left(T x_{n}, T u\right)>0$, by the F_{m}-contractive property of T we deduce that $m\left(T x_{n}, T u\right)<$ $\mathfrak{m}\left(x_{n}, u\right)$. Now, if $\mathfrak{m}(u, u) \leqslant \mathfrak{m}\left(x_{n}, x_{n}\right)$ and by the F_{m}-contractive property it is easy see that $\mathfrak{m}\left(x_{n}, x_{n}\right) \rightarrow$ 0 , which implies that $\mathfrak{m}(u, u)=0$ and since $\mathfrak{m}(T u, T u)<\mathfrak{m}(u, u)=0$ we deduce that $\mathfrak{m}(T u, T u)=$ $\mathfrak{m}(u, u)=0$, and $\mathfrak{m}\left(x_{n}, u\right) \rightarrow 0$, on the other we have $\mathfrak{m}\left(T x_{n}, T u\right) \leqslant m\left(x_{n}, u\right) \rightarrow 0$. Hence, $\mathfrak{m}\left(T x_{n}, T u\right)-$ $\mathrm{m}_{\mathrm{Tu}, \mathrm{T} x_{n}} \rightarrow 0$ and thus $\mathrm{T} x_{n} \rightarrow \mathrm{Tu}$.

If $\mathfrak{m}(u, u) \geqslant \mathfrak{m}\left(x_{n}, x_{n}\right)$ and once again by the $F_{\mathfrak{m}}$-contractive property it is easy to see that $\mathfrak{m}\left(x_{n}, x_{n}\right) \rightarrow$ 0 , which implies that $m_{x_{n}, u} \rightarrow 0$. Hence, $m\left(x_{n}, u\right) \rightarrow 0$ and since $m\left(T x_{n}, T u\right)<m\left(x_{n}, u\right) \rightarrow 0$ we deduce that $\mathfrak{m}\left(T x_{n}, T u\right)-\mathfrak{m}_{T u, T x_{n}} \rightarrow 0$ and thus $T x_{n} \rightarrow T u$ as desired.

Theorem 2.5. Let (X, m) be a complete M -metric space and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an F_{m}-contraction. Then T has a unique fixed point u in X , and for every $\mathrm{x}_{0} \in \mathrm{X}$ the sequence $\left\{\mathrm{T}^{\mathrm{n}} \mathrm{x}_{0}\right\}_{\mathfrak{n} \in \mathbb{N}}$ is convergent to u.

Proof. First of all, we claim that if T has a fixed point then it is unique. To see this, assume that there exist $u, v \in X$ such that $T u=u \neq v=T v$. If $\mathfrak{m}(T u, T v)=0$, and without loss of generality suppose that
$m_{u, v}=m(u, u)$, then

$$
\mathfrak{m}(\mathrm{Tu}, \mathrm{Tv})=0=\mathfrak{m}(u, u) .
$$

Now, if $\mathfrak{m}(v, v)=0$, then $\mathfrak{u}=v$. So, assume that $\mathfrak{m}(v, v)>0$, this implies that

$$
F(\mathfrak{m}(v, v))=F(\mathfrak{m}(T v, T v)) \leqslant F(\mathfrak{m}(v, v))-t<F(m(v, v)),
$$

which leads to a contradiction. Therefore, $\mathfrak{m}(v, v)=0$ and thus $u=v$. So, now we may assume that $\mathfrak{m}(u, v)>0$. Hence, by using the fact that T is an F_{m}-contraction, we deduce that

$$
0<t \leqslant F(m(u, v))-F(m(T u, T v))=0,
$$

which leads to a contradiction. Therefore, if T has a fixed point then it is unique.
Next, we show that T has a fixed point. So, let $x_{0} \in X$ and define a sequence $\left\{x_{n}\right\}$ as follows

$$
x_{1}=T x_{0}, \quad x_{2}=T x_{1}=T^{2} x_{0}, \ldots, x_{n+1}=T x_{n}, \ldots .
$$

If there exists a natural number i such that $x_{i+1}=x_{i}$, then we are done and x_{i} is the fixed point of T in X.
Secondly, assume that $\mathfrak{m}\left(x_{n}, x_{n}\right)=0$ for some n, we want to show that in this case

$$
\mathfrak{m}\left(x_{\mathfrak{m}}, x_{\mathfrak{m}}\right)=0 \text { for all } \mathfrak{m}>\mathfrak{n} .
$$

So, assume that $\mathfrak{m}\left(x_{n}, x_{n}\right)=0$ and $m\left(x_{n+1}, x_{n+1}\right) \neq 0$ by the F_{m}-contractive property of T we obtain

$$
F\left(m\left(x_{n+1}, x_{n+1}\right)\right)=F\left(m\left(T x_{n}, T x_{n}\right)\right) \leqslant F\left(m\left(x_{n}, x_{n}\right)\right)-t \leqslant F\left(m\left(x_{n}, x_{n}\right)\right),
$$

but F is an increasing function. Therefore,

$$
0=\mathfrak{m}\left(x_{n}, x_{n}\right) \geqslant \mathfrak{m}\left(x_{n+1}, x_{n+1}\right) .
$$

Hence, by induction on n, we get

$$
\text { if } \mathfrak{m}\left(x_{n}, x_{\mathfrak{n}}\right)=0 \text { then } \mathfrak{m}\left(x_{\mathfrak{m}}, x_{\mathfrak{m}}\right)=0 \text { for all } \mathfrak{m}>\mathfrak{n} .
$$

Also, note that it is not difficult to see that if $\mathfrak{m}>n$, then we have $m_{x_{n}, x_{m}}=\mathfrak{m}\left(x_{m}, x_{m}\right)$, to see this, assume that $\mathfrak{m}_{x_{n}, x_{m}}=\mathfrak{m}\left(x_{n}, x_{n}\right)$. Hence, if $\mathfrak{m}\left(x_{n}, x_{n}\right)=0$, then by the above claim we obtain $\mathfrak{m}\left(x_{m}, x_{m}\right)=0$, and if $\mathfrak{m}\left(x_{n}, x_{n}\right)>0$, then $\mathfrak{m}\left(x_{m}, x_{m}\right)>0$, thus

$$
\begin{aligned}
F\left(m\left(x_{\mathfrak{m}}, x_{\mathfrak{m}}\right)\right) & =F\left(\mathfrak{m}\left(T x_{m-1}, T x_{m-1}\right)\right) \\
& \leqslant F\left(m\left(x_{m-1}, x_{m-1}\right)\right)-t \\
& \vdots \\
& \leqslant F\left(m\left(x_{n}, x_{n}\right)\right)-(m-n) t \\
& <F\left(m\left(x_{n}, x_{n}\right)\right)
\end{aligned}
$$

but F is an increasing function. Therefore, if $m>n$, we have $m_{x_{n}, x_{m}}=m\left(x_{m}, x_{m}\right)$.
Now, suppose that $\mathfrak{m}\left(x_{n+1}, x_{n}\right)=0$ for some n, this implies that $m_{x_{n}, x_{n+1}}=0$. We know that $\mathfrak{m}_{x_{n}, x_{n+1}}=\mathfrak{m}\left(x_{n+1}, x_{n+1}\right)=0$. Thus, by the above argument we have $\mathfrak{m}\left(x_{n+2}, x_{n+2}\right)=0$. Thus, now we have two cases, either $\mathfrak{m}\left(x_{n+1}, x_{n+2}\right)=0$ and in this case it is easy to see that $x_{n+1}=x_{n+2}$ and that is x_{n+1} is the fixed point, or $m\left(x_{n+1}, x_{n+2}\right)>0$, again by the F_{m}-contractive property of T we have

$$
F\left(m\left(x_{n+1}, x_{n+2}\right)\right)=F\left(m\left(T x_{n}, T x_{n+1}\right)\right) \leqslant F\left(m\left(x_{n}, x_{n+1}\right)\right)-t<F\left(m\left(x_{n}, x_{n+1}\right)\right)=F(0),
$$

but the fact that F is an increasing function leads us to a contradiction.

Hence, now we can assume that $m\left(x_{n}, x_{n+1}\right)>0$ for all n. Let $B_{n}=m\left(x_{n}, x_{n+1}\right)$, hence

$$
F\left(B_{n}\right) \leqslant F\left(B_{n-1}\right)-t \leqslant F\left(B_{n-2}\right)-2 t \leqslant \cdots \leqslant F\left(B_{0}\right)-n t
$$

Thus, $\mathrm{F}\left(\mathrm{B}_{\mathrm{n}}\right) \rightarrow-\infty$ as $\mathrm{n} \rightarrow \infty$. Hence, by $\left(\mathrm{F}_{2}\right)$ we get

$$
\lim _{n \rightarrow \infty} B_{n}=0
$$

and by $\left(F_{3}\right)$ there exists $k \in(0,1)$ such that

$$
\lim _{n \rightarrow \infty} B_{n}^{k} F\left(B_{n}\right)=0
$$

Thereby,

$$
B_{n}^{k} F\left(B_{n}\right)-B_{n}^{k} F\left(B_{0}\right) \leqslant B_{n}^{k}\left[F\left(B_{0}\right)-n t\right]-B_{n}^{k} F\left(B_{0}\right)=-B_{n}^{k} n t \leqslant 0
$$

Hence,

$$
\lim _{n \rightarrow \infty} n B_{n}^{k}=0
$$

Therefore, there exists a natural number n_{0} such that $n B_{n}^{k} \leqslant 1$ for all $n>n_{0}$. Thus, we deduce that

$$
\mathrm{B}_{\mathrm{n}} \leqslant \frac{1}{\mathrm{n}^{\frac{1}{\mathrm{k}}}} \text { for all } \mathrm{n}>\mathrm{n}_{0}
$$

Now, let n, m be integers such that $m>n>n_{0}$. First, notice the following fact about the triangle inequality of the M-metric spaces,

$$
\left(m(x, y)-m_{x, y}\right) \leqslant\left(m(x, z)-m_{x, z}\right)+\left(m(z, y)-m_{z, y}\right) \leqslant m(x, z)+m(z, y)
$$

Thus, it is not difficult to see that

$$
m\left(x_{n}, x_{m}\right)-m_{x_{n}, x_{m}} \leqslant B_{n}+B_{n+1}+B_{n+2}+\cdots+B_{m}<\sum_{i=n}^{\infty} B_{i} \leqslant \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}
$$

Since the series $\sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}$ is a convergent series, we deduce that $m\left(x_{n}, x_{m}\right)-m_{x_{n}, x_{m}}$ converges as $n, m \rightarrow$ ∞. Now, if $M_{x_{n}, x_{m}}=0$, then $m_{x_{n}, x_{m}}=0$, which implies that $M_{x_{n}, x_{m}}-m_{x_{n}, x_{m}}=0$. So, we may assume that $M_{x_{n}, x_{m}}>0$, this implies that $m\left(x_{n}, x_{n}\right)>0$.

Now, let $\eta_{n}=m\left(x_{n}, x_{n}\right)$, hence

$$
F\left(\eta_{n}\right) \leqslant F\left(\eta_{n-1}\right)-t \leqslant F\left(\eta_{n-2}\right)-2 t \leqslant \cdots \leqslant F\left(\eta_{0}\right)-n t
$$

Thus, $\mathrm{F}\left(\eta_{\mathrm{n}}\right) \rightarrow-\infty$ as $\mathrm{n} \rightarrow \infty$. Hence, by $\left(\mathrm{F}_{2}\right)$ we get

$$
\lim _{n \rightarrow \infty} \eta_{n}=0
$$

and by $\left(F_{3}\right)$ there exists $k \in(0,1)$ such that

$$
\lim _{n \rightarrow \infty} \eta_{n}^{k} F\left(\eta_{n}\right)=0
$$

Thereby,

$$
\eta_{n}^{k} F\left(\eta_{n}\right)-\eta_{n}^{k} F\left(\eta_{0}\right) \leqslant \eta_{n}^{k}\left[F\left(\eta_{0}\right)-n t\right]-\eta_{n}^{k} F\left(\eta_{0}\right)=-\eta_{n}^{k} n t \leqslant 0
$$

Hence,

$$
\lim _{n \rightarrow \infty} n \eta_{n}^{k}=0
$$

Therefore, there exists a natural number n_{0} such that $n \eta_{n}^{k} \leqslant 1$ for all $n>n_{0}$. Thus, we deduce that

$$
\eta_{n} \leqslant \frac{1}{n^{\frac{1}{k}}} \text { for all } n>n_{0} .
$$

Therefore, we obtain

$$
\mathfrak{m}\left(x_{n}, x_{n}\right)-\mathfrak{m}\left(x_{m}, x_{m}\right) \leqslant \eta_{n}+\eta_{n+1}+\eta_{n+2}+\cdots+\eta_{m}<\sum_{i=n}^{\infty} \eta_{i} \leqslant \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}} .
$$

Since the series $\sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}$ is a convergent series, we deduce that $\mathfrak{m}\left(x_{n}, x_{n}\right)-\mathfrak{m}\left(x_{m}, x_{m}\right)$ converges as $n, m \rightarrow \infty$ and that is

$$
M_{x_{n}, x_{m}}-m_{x_{n}, x_{m}} \text { converges as desired. }
$$

Therefore, $\left\{x_{n}\right\}$ is an m-Cauchy sequence, and using the fact that (X, m) is an m-complete M-metric space, we deduce that $\left\{x_{n}\right\}$ converges to some $u \in X$.

Since $\mathfrak{m}\left(x_{n}, x_{n+1}\right)>0$ and by F_{m}-contractive property of T, one can easily deduce that $\mathfrak{m}\left(x_{n}, T x_{n}\right) \rightarrow 0$ and $\mathfrak{m}(\mathrm{Tu}, \mathrm{Tu})<\mathfrak{m}(u, u)$. Now, using the fact that $\mathfrak{m}_{x_{n}, T x_{n}} \rightarrow 0$ and by Lemmas 1.7 and 1.8 , we deduce that $\mathfrak{m}(\mathfrak{u}, \mathrm{Tu})=\mathfrak{m}_{\mathfrak{u}, \mathrm{Tu}}=\mathfrak{m}(T u, T u)$. Now, by Lemmas 1.7, 1.8, 2.4, and $x_{n}=T x_{n-1} \rightarrow \mathfrak{u}$, we deduce that

$$
0=\lim _{n \rightarrow \infty}\left(m\left(x_{n}, T x_{n}\right)-m_{x_{n}, T x_{n}}\right)=\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x_{n-1}\right)-m_{x_{n}, T x_{n}}\right)=m(u, u)-m_{u}, T u .
$$

Therefore, $\mathfrak{m}(u, u)=m_{u}, T u$. Hence, $m(u, u)=m_{u, T u}=m(T u, T u)$ and that is $T u=u$ as required.
Next, we present the following example.
Examle 2.6. Let $X:=[1, \infty)$ and

$$
\mathfrak{m}(x, y)=\frac{x+y}{2} \text { for all } x .
$$

First, note that (X, m) is a complete M-metric space. Now, consider the function

$$
F:(0, \infty) \rightarrow \mathbb{R} \text { defined by } F(x)=\ln (x)
$$

Notice that $F \in \mathbb{F}$.
Next, let $T: X \rightarrow X$ such that $T x=\frac{x+1}{2}$. Since $x \in[1, \infty)$, which implies that $x+y>2$ for all $x, y \in X$. Hence,

$$
m(x, y)-m(T x, T y)=\frac{x+y}{2}-\frac{x+y+2}{4}=\frac{x+y-2}{4}>0 .
$$

Also, we have $\mathfrak{m}(x, y)>0$ for all $x, y \in X$ and given the fact that F is an increasing function, we deduce that T is an F_{m}-contraction. Therefore, by Theorem $2.5, T$ has a unique fixed point in X, in this case the fixed point is 1 .

3. F_{m}-expanding in M-metric spaces

First, we give the definition of F_{m}-expanding self mapping on M-metric spaces.
Definition 3.1. Let (X, m) be an M-metric spaces. We say that a self mapping T on X is $F_{\mathfrak{m}}$-expanding if there exists $F \in \mathbb{F}$ and $t>0$ such that for all $x, y \in X$ the following holds:

$$
\mathfrak{m}(x, y)>0 \Rightarrow F(\mathfrak{m}(T x, T y) \geqslant F(\mathfrak{m}(x, y))+t
$$

Next, we present the following useful lemma.

Lemma 3.2 ([3]). If a self mapping T on X is surjective, then there exists a self mapping $\mathrm{T}^{*}: \mathrm{X} \rightarrow \mathrm{X}$, such that the map (T o T^{*}) is the identity map on X .

Theorem 3.3. Let (X, m) be a complete M -metric space and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a surjective F_{m}-expanding map. Then T has a unique fixed point in X .

Proof. Since T is surjective, by Lemma 3.2, we know that there exists a self mapping $T^{*}: X \rightarrow X$, such that the map $\left(T \circ T^{*}\right)$ is the identity map on X. Now, consider $x, y \in X$ such that $m\left(T^{*} x, T^{*} y\right)>0$ and let $z=\mathrm{T}^{*} x$ and $w=\mathrm{T}^{*} y$. Hence,

$$
\mathfrak{m}(z, w)>0 .
$$

First, notice the following fact,

$$
T z=T\left(T^{*} x\right)=x \text { and } T w=T\left(T^{*} y\right)=y .
$$

Now, by applying the F_{m}-expanding property of T we get

$$
F(\mathfrak{m}(T z, T w) \geqslant F(\mathfrak{m}(z, w))+t .
$$

Therefore,

$$
F\left(m(x, y) \geqslant F\left(m\left(T^{*} x, T^{*} y\right)\right)+t .\right.
$$

Hence, T^{*} is a an F_{m}-contraction self mapping on X. Thus, by Theorem 2.5, T^{*} has a unique fixed point say $u \in X$. Using the fact that $T u=T\left(T^{*} u\right)=u$ we deduce that $T u=u$, that is u is a fixed point of T. Now, assume that there exist $u \neq v \in X$ such that $T u=u$ and $T v=v$, where u is also the unique fixed point of T^{*}. Let $x \in X$ such that $v=\mathrm{T}^{*} x$. Thus,

$$
x=\mathrm{T}\left(\mathrm{~T}^{*} x\right)=\mathrm{T} v=v \text {, but } v=\mathrm{T}^{*} \chi \text { which implies that } v=\mathrm{T}^{*} v .
$$

Hence, v is a fixed point of T^{*}, and since T^{*} has a unique fixed point we deduce that $u=v$ as desired.
Remark 3.4. We want to bring to reader's attention that if T is not surjective, the result in Theorem 3.3 is false. For example, Let $X=(0, \infty)$ and $m: X^{2} \rightarrow \mathbb{R}^{+}$defined by $\mathfrak{m}(x, y)=\frac{x+y}{2}$, note that (X, m) is an M-metric space. Now, consider the map $T: X \rightarrow X$ defined by $T x=5 x+4$. Note that T satisfies the condition

$$
\mathfrak{m}(T x, T y) \geqslant 2 m(x, y) \text { for all } x, y \in X
$$

Therefore, it satisfies all the hypothesis of Theorem 3.3, except that T is not surjective in X, and T does not have a fixed point in X .

We finish this section by an example of an $F_{\mathfrak{m}}$-expanding mapping in a complete M-metric space.
Examle 3.5. Let $X:=[1, \infty)$ and

$$
m(x, y)=\frac{x+y}{2} \text { for all } X .
$$

First, note that (X, m) is a complete M-metric space. Now, consider the function

$$
F:(0, \infty) \rightarrow \mathbb{R} \text { defined by } F(x)=\ln (x)
$$

Notice that $F \in \mathbb{F}$. Next, let $T: X \rightarrow X$ such that $T x=x^{3}+x-1$. Since $x \in[1, \infty)$, which implies that $x^{2}+y^{3}>2$ for all $x, y \in X$. Hence,

$$
\mathfrak{m}(T x, T y)-\mathfrak{m}(x, y)=\frac{x^{3}+x-1+y^{3}+y-1}{2}-\frac{x+y}{2}=\frac{x^{3}+y^{3}-2}{2}>0 .
$$

Since we have $\mathfrak{m}(x, y)>0$ for all $x, y \in X$ and F is an increasing function, we deduce that T is an $F_{\mathfrak{m}^{-}}$ expanding self mapping on X. It is not difficult to see that T is also a surjective map. Therefore, by Theorem 3.3, T has a unique fixed point in X , in this case the fixed point is 1 .

4. Consequences

First, we remind the definition of partial metric space which was introduced by Matthews in [5], and it is a very useful extension of metric spaces. However, Shahzad in [4], cleared some issues about partial metric spaces, which was a big misunderstanding for many authors.

Definition 4.1. Let X be a nonempty set and $p: X \times X \longrightarrow[0,+\infty)$. We say that (X, p) is a partial metric spaces if the following conditions are satisfied for all $x, y, z \in X$,

1. $x=y$ if and only if $p(x, y)=p(x, x)=p(y, y)$;
2. $p(x, x) \leqslant p(x, y)$;
3. $p(x, y)=p(y, x)$;
4. $p(x, z) \leqslant p(x, y)+p(y, z)-p(y, y)$.

Next, we give a brief description of the topology of partial metric spaces.

1. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of elements in X is called p-Cauchy if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and finite.
2. A partial metric space (X, p) is called complete if for each p-Cauchy sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ there exists $z \in X$ such that

$$
p(z, z)=\lim _{n \rightarrow \infty} p\left(z, x_{n}\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

3. A sequence x_{n} in a partial metric space (X, p) is called 0 -Cauchy if

$$
\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0
$$

4. We say that (X, p) is 0 -complete if every 0 -Cauchy in X converges to a point $x \in X$ such that $p(x, x)=$ 0.

Since M-metric spaces is a generalization of partial metric spaces, and that is every M-metric is a partial metric but the converse not always true, for instance the M-metric presented in Example 3.5 is not a partial metric space. More examples can be found in [1].

Definition 4.2. Let (X, p) be a complete partial metric space. A self mapping T on X is said to be an F_{p}-contraction on X if there exist $F \in \mathbb{F}$ and $t>0$ such that for all $x, y \in X$ the following holds:

$$
p(T x, T y)>0 \Rightarrow t+F(p(T x, T y)) \leqslant F(p(x, y))
$$

Definition 4.3. Let (X, p) be an partial metric space. We say that a self mapping T on X is F_{p}-expanding if there exists $F \in \mathbb{F}$ and $t>0$ such that for all $x, y \in X$ the following holds:

$$
p(x, y)>0 \Rightarrow F(p(T x, T y) \geqslant F(p(x, y))+t
$$

Remark 4.4. Notice that,
if a map T is F_{p}-contractive on X, then T is F_{m}-contractive on X.
Also,
if a map T is F_{p}-expanding on X, then T is F_{m}-expanding on X.
Therefore, the following are consequences of our results in the previous two sections.
Corollary 4.5. Let (X, p) be a complete partial metric space and let $T: X \rightarrow X$ be an F_{p}-contraction. Then T has a unique fixed point u in X, and for every $x_{0} \in X$ the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ is convergent to u.

Corollary 4.6. Let (X, m) be a complete partial metric space and let $T: X \rightarrow X$ be a surjective F_{p}-expanding map. Then T has a unique fixed point in X .

Similarly, it is not difficult to see most the results of [7] and [3] are direct consequences of our results.

5. Conclusion

In closing, we want to present some open questions.
Question 5.1. Let (X, m) be an M -metric space, $\mathrm{F} \in \mathbb{F}, \mathrm{t}>0$, and T be a self mapping on X , such that for every $x, y \in X$ we have

$$
\mathfrak{m}(T x, T y)>0 \Rightarrow t+F\left(\mathfrak{m}(T x, T y) \leqslant F\left(\max \left\{m(x, y), m(x, T x), m(y, T y), \frac{\mathfrak{m}(x, T y)+m(y, T x)}{2}\right\}\right)\right.
$$

Does T have a unique fixed point on X ?
In [6], M_{s}-metric spaces were introduced.

Notation 5.2.

1. $m_{s_{x, y, z}}:=\min \left\{m_{s}(x, x, x), m_{s}(y, y, y), m_{s}(z, z, z)\right\} ;$
2. $M_{s_{x, y, z}}:=\max \left\{m_{s}(x, x, x), m_{s}(y, y, y), m_{s}(z, z, z)\right\}$.

Definition 5.3 ([6]). An M_{s}-metric space on a nonempty set X is a function $m_{s}: X^{3} \rightarrow R^{+}$if for all $x, y, z, t \in X$ we have

1. $\mathfrak{m}_{s}(x, x, x)=\mathfrak{m}_{s}(y, y, y)=m_{s}(z, z, z)=m_{s}(x, y, z)$ if and only if $x=y=z ;$
2. $\mathfrak{m}_{s_{x, y, z}} \leqslant m_{s}(x, y, z)$;
3. $m_{s}(x, x, y)=m_{s}(y, y, x)$;
4. $\left(m_{s}(x, y, z)-m_{s_{x, y, z}}\right) \leqslant\left(m_{s}(x, x, t)-m_{s_{x, x, t}}\right)+\left(m_{s}(y, y, t)-m_{s_{y, y, t}}\right)+\left(m_{s}(z, z, t)-m_{s_{z, z, t}}\right)$,
then the pair $\left(X, m_{s}\right)$ is called an M_{s}-metric space.
Examle 5.4. Let $X=\{1,2,3\}$ and define the M_{s}-metric space m_{s} on X by $m_{s}(1,2,3)=6, m_{s}(1,1,2)=$ $m_{s}(2,2,1)=m_{s}(1,1,1)=8, m_{s}(1,1,3)=m_{s}(3,3,1)=m_{s}(3,3,2)=m_{s}(2,2,3)=7, m_{s}(2,2,2)=$ 9 , and $m_{s}(3,3,3)=5$. It is not difficult to see that $\left(X, m_{s}\right)$ is an M_{s}-metric space.

Definition 5.5 ([6]). Let $\left(X, m_{s}\right)$ be a M_{s}-metric space. Then

1) a sequence $\left\{x_{n}\right\}$ in X converges to a point x if and only if

$$
\lim _{n \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x\right)-m_{s x_{n}, x_{n}, x}\right)=0 ;
$$

2) a sequence $\left\{x_{n}\right\}$ in X is said to be m_{s}-Cauchy sequence if and only if

$$
\lim _{n, m \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x_{m}\right)-m_{s x_{n}, x_{n}, x_{m}}\right) \text { and } \lim _{n \rightarrow \infty}\left(M_{s x_{n}, x_{n}, x_{m}}-m_{s x_{n}, x_{n}, x_{m}}\right)
$$ exist and finite;

3) an M_{s}-metric space is said to be complete if every m_{s}-Cauchy sequence $\left\{x_{n}\right\}$ converges to a point x such that

$$
\lim _{n \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x\right)-m_{s x_{n}, x_{n}, x}\right)=0 \text { and } \lim _{n \rightarrow \infty}\left(M_{s x_{n}, x_{n}, x}-m_{s x_{n}, x_{n}, x}\right)=0 .
$$

Question 5.6. Let (X, m) be an M_{s}-metric space, $\mathrm{k}>1$, and T be a surjective self mapping on X , such that for every $x, y, z \in X$ we have

$$
m_{s}(T x, T y, T z) \geqslant k m_{s}(x, y, z) .
$$

Does T have a unique fixed point on X ?
Question 5.7. Let (X, m) be an M_{s}-metric space, $F \in \mathbb{F}, \mathrm{t}>0$, and T be a self mapping on X , such that for every $x, y \in X$ we have

$$
m_{s}(x, T x, y)>0 \Rightarrow F\left(m_{s}\left(T x, T^{2} x, T y\right)\right) \geqslant F\left(m_{s}(x, T x, y)\right)+t
$$

Does T have a unique fixed point on X ?

Acknowledgment

The author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

References

[1] K. Abodayeh, N. Mlaiki, T. Abdeljawad, W. Shatanawi, Relations between partial metric spaces and M-metric spaces, Caristi Kirk's Theorem in M-metric type spaces, J. Math. Anal., 7 (2016), 1-12. 4
[2] M. Asadi, E. Karapınar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 9 pages. 1, 1.1, 1.2, 1.5, 1, 1.7, 1.8
[3] J. Górnicki, Fixed points theorems for F-expanding mappings, Fixed Point Theory Appl., 2017 (2017), 10 pages. 1, 3.2, 4
[4] R. H. Haghi, S. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, Topology Appl., 160 (2013), 450-454. 4
[5] S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183-197. 4
[6] N. Mlaiki, N. Souayah, K. Abodayeh, T. Abdeljawad, Contraction principles in M_{s}-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 575-582. 5, 5.3, 5.5
[7] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages. 1, 4

[^0]: Email address: nmlaiki@psu.edu.sa (Nabil Mlaiki)
 doi: 10.22436/jmcs.018.03.02
 Received: 2017-12-07 Revised: 2018-01-31 Accepted: 2018-02-03

