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Abstract
Inspired by the work of Górnicki in his recent article [J. Górnicki, Fixed Point Theory Appl., 2017 (2017), 10 pages],

where he introduced a new class of self mappings called F-expanding mappings, in this paper we introduce the concept of
Fm-contractive and Fm-expanding mappings in M-metric spaces. Also, we prove the existence and uniqueness of fixed point for
such mappings.
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1. Introduction

In [2], M-metric space was introduced, which is an extension of partial metric spaces, and it has many
applications. In this paper, we introduce the notion of Fm-contractive and Fm-expanding mappings in M-
metric space, where we prove that self mappings on a complete M-metric spaces that are Fm-contractive
have a unique fixed point. Also, we show that surjective self mappings on a complete M-metric spaces
that are Fm-expanding mappings in M-metric spaces have a unique fixed point.

This article is organized as follows. In this section we recall the concept of M-metric spaces. In Section
2, we present the concept of Fm-contraction along with a fixed point theorem which we are going to
support it by an example. In the Section 3, we introduce the concept of Fm-expanding mappings. In
Section 4 we show that the results of [7] and [3], are direct consequences of our results. In the last section,
we present some open questions.

Notation 1.1 ([2]).

1. mx,y := min{m(x, x),m(y,y)};
2. Mx,y := max{m(x, x),m(y,y)}.

Definition 1.2 ([2]). Let X be a nonempty set, if the function m : X2 → R+, for all x,y, z ∈ X, satisfies the
following conditions:

(1) m(x, x) = m(y,y) = m(x,y) if and only if x = y;
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(2) mx,y 6 m(x,y);
(3) m(x,y) = m(y, x);
(4) (m(x,y) −mx,y) 6 (m(x, z) −mx,z) + (m(z,y) −mz,y),

then the pair (X,m) is called an M-metric space.

Examle 1.3. Let X := [0,∞). Then

m(x,y) =
x+ y

2
on X

is an M-metric space.

Examle 1.4. Let X = {1, 2, 3} and define

m(1, 1) = 1, m(2, 2) = 9, m(3, 3) = 5, m(1, 2) = m(2, 1) = 10,
m(1, 3) = m(3, 1) = 7, m(3, 2) = m(2, 3) = 7.

Note that (X,m) is an M-metric space that is not a partial metric space.

Notice that, we can construct a metric space from M-metric space.

Examle 1.5 ([2]). If m be an M-metric space, then the following functions

1. mw(x,y) = m(x,y) − 2mx,y +Mx,y,
2. ms(x,y) = m(x,y) −mx,y when x 6= y and ms(x,y) = 0 if x = y

are ordinary metrics.

As mentioned in [2], each M-metric on set X generates a T0 topology τm on X. The set

{Bm(x, ε) : x ∈ X, ε > 0} where Bm(x, ε) = {y ∈ X | m(x,y) < mx,y + ε} for all x ∈ X and ε > 0,

forms a base of τm.

Definition 1.6. Let (X,m) be an M-metric space. Then

1) a sequence {xn} in X converges to a point x if and only if

lim
n→∞(m(xn, x) −mxn,x) = 0;

2) a sequence {xn} in X is said to be m-Cauchy sequence if and only if

lim
n,m→∞(m(xn, xm) −mxn,xm) and lim

n→∞(Mxn,xm −mxn,xm)

exist and finite;
3) an M-metric space is said to be complete if every m-Cauchy sequence {xn} converges to a point x such

that
lim
n→∞(m(xn, x) −mxn,x) = 0 and lim

n→∞(Mxn,x −mxn,x) = 0.

Next, we state the following lemmas.

Lemma 1.7 ([2]). Assume that xn → x and yn → y as n→∞ in an M-metric space (X,m). Then

lim
n→∞(m(xn,yn) −mxn,yn) = m(x,y) −mx,y.

Lemma 1.8 ([2]). Assume that xn → x in an M-metric space (X,m). Then

lim
n→∞(m(xn,y) −mxn,y) = m(x,y) −mx,y.
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2. Fm-contraction in M-metric spaces

First, we give the definition of the following family of functions.

Definition 2.1. Let F be the family of all functions F; (0,∞)→ R such that:

(F1) F is strictly increasing;
(F2) for each sequence {αn} in (0,∞) the following holds,

lim
n→∞αn = 0 if and only if lim

n→∞ F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF(α) = 0.

The following is an example of some functions that satisfy the conditions (F1), (F2), and (F3) of Defini-
tion 2.1.

Examle 2.2.

1. F : (0,∞)→ R defined by F(x) = ln(x);
2. F : (0,∞)→ R defined by F(x) = ln(x) + x;

3. F : (0,∞)→ R defined by F(x) = −
1√
x

;

4. F : (0,∞)→ R defined by F(x) = ln(x2 + x).

It is not difficult to see that these three functions satisfy the conditions (F1), (F2), and (F3) of Definition 2.1.

Now, we give the definition of an Fm-contraction.

Definition 2.3. Let (X,m) be a complete M-metric space. A self mapping T on X is said to be an Fm-
contraction on X if there exist F ∈ F and t > 0 such that for all x,y ∈ X the following holds:

m(Tx, Ty) > 0⇒ t+ F(m(Tx, Ty)) 6 F(m(x,y)).

We start by proving the following lemma about Fm-contractive self mapping on M-metric spaces.

Lemma 2.4. Let (X,m) be anM-metric space, and T be an Fm-contractive self mapping on X. Consider the sequence
{xn}n>0 defined by xn+1 = Txn. If xn → u as n→∞, then Txn → Tu as n→∞.

Proof. First, note that if m(Txn, Tu) = 0, then mTxn,Tu = 0 and that is due to the fact that mTxn,Tu 6
m(Txn, Tu), which implies that

m(Txn, Tu) −mTxn,Tu → 0 as n→∞ and hence Txn → Tu as n→∞.

So we may assume thatm(Txn, Tu) > 0, by the Fm-contractive property of T we deduce thatm(Txn, Tu) <
m(xn,u). Now, if m(u,u) 6 m(xn, xn) and by the Fm-contractive property it is easy see that m(xn, xn)→
0, which implies that m(u,u) = 0 and since m(Tu, Tu) < m(u,u) = 0 we deduce that m(Tu, Tu) =
m(u,u) = 0, and m(xn,u) → 0, on the other we have m(Txn, Tu) 6 m(xn,u) → 0. Hence, m(Txn, Tu) −
mTu,Txn → 0 and thus Txn → Tu.

Ifm(u,u) > m(xn, xn) and once again by the Fm-contractive property it is easy to see thatm(xn, xn)→
0, which implies that mxn,u → 0. Hence, m(xn,u)→ 0 and since m(Txn, Tu) < m(xn,u)→ 0 we deduce
that m(Txn, Tu) −mTu,Txn → 0 and thus Txn → Tu as desired.

Theorem 2.5. Let (X,m) be a complete M-metric space and let T : X → X be an Fm-contraction. Then T has a
unique fixed point u in X, and for every x0 ∈ X the sequence {Tnx0}n∈N is convergent to u.

Proof. First of all, we claim that if T has a fixed point then it is unique. To see this, assume that there
exist u, v ∈ X such that Tu = u 6= v = Tv. If m(Tu, Tv) = 0, and without loss of generality suppose that
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mu,v = m(u,u), then
m(Tu, Tv) = 0 = m(u,u).

Now, if m(v, v) = 0, then u = v. So, assume that m(v, v) > 0, this implies that

F(m(v, v)) = F(m(Tv, Tv)) 6 F(m(v, v)) − t < F(m(v, v)),

which leads to a contradiction. Therefore, m(v, v) = 0 and thus u = v. So, now we may assume that
m(u, v) > 0. Hence, by using the fact that T is an Fm-contraction, we deduce that

0 < t 6 F(m(u, v)) − F(m(Tu, Tv)) = 0,

which leads to a contradiction. Therefore, if T has a fixed point then it is unique.
Next, we show that T has a fixed point. So, let x0 ∈ X and define a sequence {xn} as follows

x1 = Tx0, x2 = Tx1 = T 2x0, . . . , xn+1 = Txn, . . . .

If there exists a natural number i such that xi+1 = xi, then we are done and xi is the fixed point of T in X.
Secondly, assume that m(xn, xn) = 0 for some n, we want to show that in this case

m(xm, xm) = 0 for all m > n.

So, assume that m(xn, xn) = 0 and m(xn+1, xn+1) 6= 0 by the Fm-contractive property of T we obtain

F(m(xn+1, xn+1)) = F(m(Txn, Txn)) 6 F(m(xn, xn)) − t 6 F(m(xn, xn)),

but F is an increasing function. Therefore,

0 = m(xn, xn) > m(xn+1, xn+1).

Hence, by induction on n, we get

if m(xn, xn) = 0 then m(xm, xm) = 0 for all m > n.

Also, note that it is not difficult to see that ifm > n, then we havemxn,xm = m(xm, xm), to see this, assume
that mxn,xm = m(xn, xn). Hence, if m(xn, xn) = 0, then by the above claim we obtain m(xm, xm) = 0, and
if m(xn, xn) > 0, then m(xm, xm) > 0, thus

F(m(xm, xm)) = F(m(Txm−1, Txm−1))

6 F(m(xm−1, xm−1)) − t

...
6 F(m(xn, xn)) − (m−n)t

< F(m(xn, xn))

but F is an increasing function. Therefore, if m > n, we have mxn,xm = m(xm, xm).
Now, suppose that m(xn+1, xn) = 0 for some n, this implies that mxn,xn+1 = 0. We know that

mxn,xn+1 = m(xn+1, xn+1) = 0. Thus, by the above argument we have m(xn+2, xn+2) = 0. Thus, now
we have two cases, either m(xn+1, xn+2) = 0 and in this case it is easy to see that xn+1 = xn+2 and that is
xn+1 is the fixed point, or m(xn+1, xn+2) > 0, again by the Fm-contractive property of T we have

F(m(xn+1, xn+2)) = F(m(Txn, Txn+1)) 6 F(m(xn, xn+1)) − t < F(m(xn, xn+1)) = F(0),

but the fact that F is an increasing function leads us to a contradiction.
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Hence, now we can assume that m(xn, xn+1) > 0 for all n. Let Bn = m(xn, xn+1), hence

F(Bn) 6 F(Bn−1) − t 6 F(Bn−2) − 2t 6 · · · 6 F(B0) −nt.

Thus, F(Bn)→ −∞ as n→∞. Hence, by (F2) we get

lim
n→∞Bn = 0

and by (F3) there exists k ∈ (0, 1) such that

lim
n→∞BknF(Bn) = 0.

Thereby,
BknF(Bn) −B

k
nF(B0) 6 B

k
n[F(B0) −nt] −B

k
nF(B0) = −Bknnt 6 0.

Hence,
lim
n→∞nBkn = 0.

Therefore, there exists a natural number n0 such that nBkn 6 1 for all n > n0. Thus, we deduce that

Bn 6
1

n
1
k

for all n > n0.

Now, let n,m be integers such that m > n > n0. First, notice the following fact about the triangle
inequality of the M-metric spaces,

(m(x,y) −mx,y) 6 (m(x, z) −mx,z) + (m(z,y) −mz,y) 6 m(x, z) +m(z,y).

Thus, it is not difficult to see that

m(xn, xm) −mxn,xm 6 Bn +Bn+1 +Bn+2 + · · ·+Bm <

∞∑
i=n

Bi 6
∞∑
i=n

1

i
1
k

.

Since the series
∑∞
i=n

1

i
1
k

is a convergent series, we deduce that m(xn, xm) −mxn,xm converges as n,m→∞. Now, if Mxn,xm = 0, then mxn,xm = 0, which implies that Mxn,xm −mxn,xm = 0. So, we may assume
that Mxn,xm > 0, this implies that m(xn, xn) > 0.

Now, let ηn = m(xn, xn), hence

F(ηn) 6 F(ηn−1) − t 6 F(ηn−2) − 2t 6 · · · 6 F(η0) −nt.

Thus, F(ηn)→ −∞ as n→∞. Hence, by (F2) we get

lim
n→∞ηn = 0

and by (F3) there exists k ∈ (0, 1) such that

lim
n→∞ηknF(ηn) = 0.

Thereby,
ηknF(ηn) − η

k
nF(η0) 6 η

k
n[F(η0) −nt] − η

k
nF(η0) = −ηknnt 6 0.

Hence,
lim
n→∞nηkn = 0.
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Therefore, there exists a natural number n0 such that nηkn 6 1 for all n > n0. Thus, we deduce that

ηn 6
1

n
1
k

for all n > n0.

Therefore, we obtain

m(xn, xn) −m(xm, xm) 6 ηn + ηn+1 + ηn+2 + · · ·+ ηm <

∞∑
i=n

ηi 6
∞∑
i=n

1

i
1
k

.

Since the series
∑∞
i=n

1

i
1
k

is a convergent series, we deduce that m(xn, xn) −m(xm, xm) converges as

n,m→∞ and that is
Mxn,xm −mxn,xm converges as desired.

Therefore, {xn} is an m-Cauchy sequence, and using the fact that (X,m) is an m-complete M-metric space,
we deduce that {xn} converges to some u ∈ X.

Sincem(xn, xn+1) > 0 and by Fm-contractive property of T , one can easily deduce thatm(xn, Txn)→ 0
and m(Tu, Tu) < m(u,u). Now, using the fact that mxn,Txn → 0 and by Lemmas 1.7 and 1.8, we deduce
that m(u, Tu) = mu,Tu = m(Tu, Tu). Now, by Lemmas 1.7, 1.8, 2.4, and xn = Txn−1 → u, we deduce that

0 = lim
n→∞(m(xn, Txn) −mxn,Txn) = lim

n→∞(m(xn, xn−1) −mxn,Txn) = m(u,u) −mu,Tu.

Therefore, m(u,u) = mu,Tu. Hence, m(u,u) = mu,Tu = m(Tu, Tu) and that is Tu = u as required.

Next, we present the following example.

Examle 2.6. Let X := [1,∞) and

m(x,y) =
x+ y

2
for all X.

First, note that (X,m) is a complete M-metric space. Now, consider the function

F : (0,∞)→ R defined by F(x) = ln(x).

Notice that F ∈ F.
Next, let T : X → X such that Tx = x+1

2 . Since x ∈ [1,∞), which implies that x+ y > 2 for all x,y ∈ X.
Hence,

m(x,y) −m(Tx, Ty) =
x+ y

2
−
x+ y+ 2

4
=
x+ y− 2

4
> 0.

Also, we have m(x,y) > 0 for all x,y ∈ X and given the fact that F is an increasing function, we deduce
that T is an Fm-contraction. Therefore, by Theorem 2.5, T has a unique fixed point in X, in this case the
fixed point is 1.

3. Fm-expanding in M-metric spaces

First, we give the definition of Fm-expanding self mapping on M-metric spaces.

Definition 3.1. Let (X,m) be an M-metric spaces. We say that a self mapping T on X is Fm-expanding if
there exists F ∈ F and t > 0 such that for all x,y ∈ X the following holds:

m(x,y) > 0⇒ F(m(Tx, Ty) > F(m(x,y)) + t.

Next, we present the following useful lemma.
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Lemma 3.2 ([3]). If a self mapping T on X is surjective, then there exists a self mapping T∗ : X→ X, such that the
map (T o T∗) is the identity map on X.

Theorem 3.3. Let (X,m) be a complete M-metric space and let T : X → X be a surjective Fm-expanding map.
Then T has a unique fixed point in X.

Proof. Since T is surjective, by Lemma 3.2, we know that there exists a self mapping T∗ : X → X, such
that the map (T o T∗) is the identity map on X. Now, consider x,y ∈ X such that m(T∗x, T∗y) > 0 and let
z = T∗x and w = T∗y. Hence,

m(z,w) > 0.

First, notice the following fact,

Tz = T(T∗x) = x and Tw = T(T∗y) = y.

Now, by applying the Fm-expanding property of T we get

F(m(Tz, Tw) > F(m(z,w)) + t.

Therefore,
F(m(x,y) > F(m(T∗x, T∗y)) + t.

Hence, T∗ is a an Fm-contraction self mapping on X. Thus, by Theorem 2.5, T∗ has a unique fixed point
say u ∈ X. Using the fact that Tu = T(T∗u) = u we deduce that Tu = u, that is u is a fixed point of T .
Now, assume that there exist u 6= v ∈ X such that Tu = u and Tv = v, where u is also the unique fixed
point of T∗. Let x ∈ X such that v = T∗x. Thus,

x = T(T∗x) = Tv = v, but v = T∗x which implies that v = T∗v.

Hence, v is a fixed point of T∗, and since T∗ has a unique fixed point we deduce that u = v as desired.

Remark 3.4. We want to bring to reader’s attention that if T is not surjective, the result in Theorem 3.3
is false. For example, Let X = (0,∞) and m : X2 → R+ defined by m(x,y) = x+y

2 , note that (X,m) is
an M-metric space. Now, consider the map T : X → X defined by Tx = 5x+ 4. Note that T satisfies the
condition

m(Tx, Ty) > 2m(x,y) for all x,y ∈ X.

Therefore, it satisfies all the hypothesis of Theorem 3.3, except that T is not surjective in X, and T does not
have a fixed point in X.

We finish this section by an example of an Fm-expanding mapping in a complete M-metric space.

Examle 3.5. Let X := [1,∞) and

m(x,y) =
x+ y

2
for all X.

First, note that (X,m) is a complete M-metric space. Now, consider the function

F : (0,∞)→ R defined by F(x) = ln(x).

Notice that F ∈ F. Next, let T : X → X such that Tx = x3 + x− 1. Since x ∈ [1,∞), which implies that
x2 + y3 > 2 for all x,y ∈ X. Hence,

m(Tx, Ty) −m(x,y) =
x3 + x− 1 + y3 + y− 1

2
−
x+ y

2
=
x3 + y3 − 2

2
> 0.

Since we have m(x,y) > 0 for all x,y ∈ X and F is an increasing function, we deduce that T is an Fm-
expanding self mapping on X. It is not difficult to see that T is also a surjective map. Therefore, by
Theorem 3.3, T has a unique fixed point in X, in this case the fixed point is 1.
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4. Consequences

First, we remind the definition of partial metric space which was introduced by Matthews in [5], and
it is a very useful extension of metric spaces. However, Shahzad in [4], cleared some issues about partial
metric spaces, which was a big misunderstanding for many authors.

Definition 4.1. Let X be a nonempty set and p : X× X −→ [0,+∞). We say that (X,p) is a partial metric
spaces if the following conditions are satisfied for all x,y, z ∈ X,

1. x = y if and only if p(x,y) = p(x, x) = p(y,y);
2. p(x, x) 6 p(x,y);
3. p(x,y) = p(y, x);
4. p(x, z) 6 p(x,y) + p(y, z) − p(y,y).

Next, we give a brief description of the topology of partial metric spaces.

1. A sequence {xn}
∞
n=0 of elements in X is called p-Cauchy if limn,m→∞ p(xn, xm) exists and finite.

2. A partial metric space (X,p) is called complete if for each p-Cauchy sequence {xn}
∞
n=0 there exists

z ∈ X such that
p(z, z) = lim

n→∞p(z, xn) = lim
n,m→∞p(xn, xm).

3. A sequence xn in a partial metric space (X,p) is called 0-Cauchy if

lim
n,m→∞p(xn, xm) = 0.

4. We say that (X,p) is 0-complete if every 0-Cauchy in X converges to a point x ∈ X such that p(x, x) =
0.

Since M-metric spaces is a generalization of partial metric spaces, and that is every M-metric is a
partial metric but the converse not always true, for instance the M-metric presented in Example 3.5 is not
a partial metric space. More examples can be found in [1].

Definition 4.2. Let (X,p) be a complete partial metric space. A self mapping T on X is said to be an
Fp-contraction on X if there exist F ∈ F and t > 0 such that for all x,y ∈ X the following holds:

p(Tx, Ty) > 0⇒ t+ F(p(Tx, Ty)) 6 F(p(x,y)).

Definition 4.3. Let (X,p) be an partial metric space. We say that a self mapping T on X is Fp-expanding
if there exists F ∈ F and t > 0 such that for all x,y ∈ X the following holds:

p(x,y) > 0⇒ F(p(Tx, Ty) > F(p(x,y)) + t.

Remark 4.4. Notice that,

if a map T is Fp-contractive on X, then T is Fm-contractive on X.

Also,
if a map T is Fp-expanding on X, then T is Fm-expanding on X.

Therefore, the following are consequences of our results in the previous two sections.

Corollary 4.5. Let (X,p) be a complete partial metric space and let T : X→ X be an Fp-contraction. Then T has a
unique fixed point u in X, and for every x0 ∈ X the sequence {Tnx0}n∈N is convergent to u.

Corollary 4.6. Let (X,m) be a complete partial metric space and let T : X→ X be a surjective Fp-expanding map.
Then T has a unique fixed point in X.

Similarly, it is not difficult to see most the results of [7] and [3] are direct consequences of our results.
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5. Conclusion

In closing, we want to present some open questions.

Question 5.1. Let (X,m) be an M-metric space, F ∈ F, t > 0, and T be a self mapping on X, such that for every
x,y ∈ X we have

m(Tx, Ty) > 0⇒ t+ F(m(Tx, Ty) 6 F(max{m(x,y),m(x, Tx),m(y, Ty),
m(x, Ty) +m(y, Tx)

2
}).

Does T have a unique fixed point on X?

In [6], Ms-metric spaces were introduced.

Notation 5.2.

1. msx,y,z := min{ms(x, x, x),ms(y,y,y),ms(z, z, z)};
2. Msx,y,z := max{ms(x, x, x),ms(y,y,y),ms(z, z, z)}.

Definition 5.3 ([6]). An Ms-metric space on a nonempty set X is a function ms : X3 → R+ if for all
x,y, z, t ∈ X we have

1. ms(x, x, x) = ms(y,y,y) = ms(z, z, z) = ms(x,y, z) if and only if x = y = z;
2. msx,y,z 6 ms(x,y, z);
3. ms(x, x,y) = ms(y,y, x);
4. (ms(x,y, z) −msx,y,z) 6 (ms(x, x, t) −msx,x,t) + (ms(y,y, t) −msy,y,t) + (ms(z, z, t) −msz,z,t),

then the pair (X,ms) is called an Ms-metric space.

Examle 5.4. Let X = {1, 2, 3} and define the Ms-metric space ms on X by ms(1, 2, 3) = 6, ms(1, 1, 2) =
ms(2, 2, 1) = ms(1, 1, 1) = 8, ms(1, 1, 3) = ms(3, 3, 1) = ms(3, 3, 2) = ms(2, 2, 3) = 7, ms(2, 2, 2) =
9, and ms(3, 3, 3) = 5. It is not difficult to see that (X,ms) is an Ms-metric space.

Definition 5.5 ([6]). Let (X,ms) be a Ms-metric space. Then

1) a sequence {xn} in X converges to a point x if and only if

lim
n→∞(ms(xn, xn, x) −msxn,xn,x) = 0;

2) a sequence {xn} in X is said to be ms-Cauchy sequence if and only if

lim
n,m→∞(ms(xn, xn, xm) −msxn,xn,xm) and lim

n→∞(Msxn,xn,xm −msxn,xn,xm)

exist and finite;
3) an Ms-metric space is said to be complete if every ms-Cauchy sequence {xn} converges to a point x

such that
lim
n→∞(ms(xn, xn, x) −msxn,xn,x) = 0 and lim

n→∞(Msxn,xn,x −msxn,xn,x) = 0.

Question 5.6. Let (X,m) be an Ms-metric space, k > 1, and T be a surjective self mapping on X, such that for
every x,y, z ∈ X we have

ms(Tx, Ty, Tz) > kms(x,y, z).

Does T have a unique fixed point on X?

Question 5.7. Let (X,m) be an Ms-metric space, F ∈ F, t > 0, and T be a self mapping on X, such that for every
x,y ∈ X we have

ms(x, Tx,y) > 0⇒ F(ms(Tx, T 2x, Ty)) > F(ms(x, Tx,y)) + t.

Does T have a unique fixed point on X?
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