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Abstract 

Genetic algorithm is an evolutionary algorithm and has been used to solve many problems such as 

data clustering. Most of genetic data clustering algorithms just have introduced new fitness function to 

improve the accuracy of algorithm in evaluation of generated chromosomes. Crossover operator is the 

backbone of the genetic algorithm and should create better offspring and increase the fitness of 

population with maintaining the genetic diversity. A good crossover should result in feasible offspring 

chromosomes when we crossover feasible parent chromosomes. In this paper we introduce a new 

crossover operator for genetic data clustering. Experimental results show that clustered crossover for 

genetic data clustering (CCGDC) creates better offspring and increases the fitness of population and 

also will not produce illegal chromosome. 
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1. Introduction 

 

1.1. Data clustering 
 

Let 𝑋 =  𝑥1, 𝑥2 , ⋯ , 𝑥𝑁  be a set of N data points in m- dimensional data space 𝑅𝑚 .Data clustering 

means partitioning these data points in to K groups 𝐶 =  𝐶1 , 𝐶2 , … , 𝐶𝐾  as clusters where 𝐶𝑖 ≠ ∅ 𝑖 =
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1,2, … , 𝑘 , 𝐶𝑖 ∩ 𝐶𝑗 = ∅     𝑖 ≠ 𝑗 and  𝐶𝑖
𝐾
𝑖=1 = 𝑋 which means each data point has the most similarity 

to its co-cluster data points and less similarity as possible to data points of other clusters according to 

a distance measure function d x, y  like Euclidean distance. 

 

1.2. K-means algorithm 

 

K-means is one of the well-known algorithms for clustering. It is a center-based and unsupervised 

partitioning algorithm .K-means partitions the dataset into k mutually exclusive clusters, and treats 

each data point as an object having a specific location in data space. It finds a partition in which data 

points within each cluster are as close to each other as possible, and as far from data points in other 

clusters as possible. It selects k data points as cluster centers randomly and tries to minimize sum of 

squared error. At the next steps the mean of each cluster will be computed as cluster center. The 

process of reassigning the data points and the updating of the cluster centers will be repeated until no 

more change in the cluster centers and no more reassigning. 

 

1.3. Genetic algorithms 

 

Genetic algorithm is a search algorithm which is based on the biological evolution and originally 

developed by Holland [1] and later refined by De Jong [2], Goldberg [3], and many others. It is a 

search heuristic that mimics the process of natural evolution and principle of survival of the fittest laid 

by Charles Darwin. 

 

In genetic algorithm we generate an initial population consist of a specific number of individuals and 

then our objective is to reach to a generation that has better fitness values than the last generations, as 

it happens in nature.  

In other words, in nature, each species has to change its chromosome combination to survive in the 

living world. Genetic algorithm will mimic this nature rule and tries to generate better offspring. In 

Genetic algorithm each chromosome of the population will be evaluated and assigned a value derived 

from fitness function and then chromosomes with better fitness values will be more likely to be 

selected for producing new offspring. A competitive strategy was employed to improve the selection 

performance such as roulette wheel or tournament selection method. After that, crossover will be done 

on selected parents and finally mutation will be used on generated offspring. If stopping criteria didn’t 

reached the whole steps will be repeated.Fig.1 shows the flowchart of genetic algorithm. 
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Fig.1. Flowchart of genetic algorithm 
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If we try to categorize structure of chromosomes in genetic algorithm, four aspects that are important 

and have more effects on the structure of chromosomes and depend to the problem that we want to 

solve are: 

 Length 

Depending on the problem, we can have chromosome structures with Fixed-length or 

Variable-length. For instance in Traveling Salesman Problem which number of cities will be 

specific from the beginning, we will have a Fixed-length chromosome structure. 

 Order 

An ordered chromosome or Position-based chromosome is the one that the place of genes are 

important and each permutation of the same genes will be decoded as a different solution of 

the problem, we call the position of each gene, Locus. For example in Traveling Salesman 

Problem, the genes are ordered and any single permutation of n cities yields a different 

solution. We call the encodings with ordered chromosomes a permutation encoding. In 

permutation encoding, every gene in chromosome represents a position in a sequence. 

 Gene structure 

For some problems, it is necessary to have genes with different alleles. We call these kinds of 

encodings direct value encoding and it can be used in problems where some more 

complicated values such as real numbers are used. Use of binary encoding for this type of 

problems would be difficult. In value encoding, every chromosome is a sequence of genes 

which they can be anything connected to the problem, such as real numbers, characters, 

strings or any objects.  

 Gene repetition 

In some problems like Traveling Salesman Problem, which each gene shows one of the 

visited cities and each city will be visited exactly once, gene repetition is not allowed, but in 

problems like finding the roots of an equation which two or more roots may be equal, genes 

may have same values. 

The above aspects not only effect on the structure of chromosome and problem encoding, but also 

they effect on genetic operators like crossover and mutation. For example ordered crossover operator 

developed by Davis [4] or cycle crossover operator proposed by Oliver et al. [5] are suitable for 

ordered chromosomes and permutation encoding. 

There are varieties of crossover and mutation operators which differ from each other in described 

aspects. Although there are some famous and widely used crossover and mutation operators, you 

cannot find a crossover or mutation operator which is suitable for all kinds of encodings and 

chromosome structures. 

In rest of this paper we will explain problem encoding for our genetic data clustering and introduce a 

new crossover operator which is suitable for genetic data clustering and compare it with ten famous 

crossover operators.  

 

2. Related work 

 

Since 1975, several attempts have been done to improve efficiency of genetic algorithm. These 

attempts have been done in different aspects of genetic algorithm such as initial population, fitness 

function, crossover and mutation operator .Crossover operator should create a better offspring and 

increase the fitness of population and prevent from inheriting just good genes to maintain the genetic 

diversity. 
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Wu and Chow [6] compared the one-point, two-point, three-point, and four-point crossover operators 

and showed that two-point, three-point, and four-point crossover operators are better than the one-

point crossover.  

Jenkins [7] argues in favor of multi-point crossover operator in term of fast progress becomes very 

slow in case single-point crossover is used. Using one-point crossover,  

Dejong and Spears [8] introduced the relationship between crossover operators and population size. 

They state that two-point crossover is performs better in the problems in which the population is large, 

but uniform crossover is better for the small size populations.  

Syswerda [9] showed that the uniform crossover operator is more efficient when compared with two-

point crossover.  

Erbatur and Hasanc¸ ebi [10, 11] suggested combining two crossover operators in their study about 

the effects of crossover operators on the behavior of GA. 

Mustafa Kaya [12] has introduced sequential and random mixed crossover operators and has 

compared them with other crossover operators on RC beam and the space truss problems 

Hong He and Yonghong Tan [13] have used a parallel crossover for automatic clustering of data 

without having number of clusters as input parameter. Their parallel crossover uses one point 

crossover and exchanges genes in length equal to smaller individual length. 

Dongxia Chang and et al. [14] introduce a genetic clustering algorithm using a message-based 

similarity measure for automatic data clustering but they also use one point crossover. 

Amin Aalaei et al. [15] have used a four point crossover operator for their matrix based chromosome 

structure to select a sub matrix from each parent chromosome and exchange it.  

Jose A. Castellanos-Garzon and Fernando Diaz [16] have proposed a new hierarchical clustering 

method using genetic algorithms for the analysis of gene expression data. They have used a crossover 

operator which works on parent's dendrogram to obtain a child dendrogram. 

After reviewing some known crossover operators, we find that they neglect the fact that when the 

algorithm converges to a solution, most of genes of individuals will be same and they produce illegal 

offspring and also to maintain population diversity they decrease population fitness and some of them 

cannot be used when we have a chromosome with few number of genes. 

 

3. Program encoding 

 

3.1. Chromosome representation 

 

In our genetic data clustering problem, an integer-valued problem-specific chromosome 

representation is used. Each chromosome has a fixed length of K ∗ log2 N where K in the number of 

clusters and N is the number of data points in dataset. So we have k genes in each chromosome. Each 

gene is made up of index of center data point of a cluster in dataset. The chromosome structure of our 

genetic data clustering problem is not ordered which means that the place of genes is not important 

and any permutation of genes produces the same chromosome. 

This structure will not produce any feasible chromosome but illegal chromosomes may be produced. 

In proposed structure repetition of genes produces illegal chromosomes because a data point cannot 

be center point of more than one cluster. So to be able to detect production of illegal chromosomes 

during crossover and mutation, we sort the genes in ascending order. The advantages of this 

chromosome structure are small length, fast detection of illegal chromosomes, fast detection of 

repetitive chromosomes and faster mutation and crossover operations. 
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3.2. Evaluation and fitness function 

 

The fitness function has an important effect on success of a genetic algorithm. In this paper which we 

want to examine efficiency of a crossover operator we use the simplest fitness function for genetic 

data clustering. Objective function of k-means is defined as follow: 

𝐸 =    𝑥 − 𝑐𝑖 
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

(1) 

Where 𝑐𝑖  is the center of i th cluster and E is the sum of the squared error of all instances in dataset. 

This Objective function tries to produce k clusters so that the instances in the same cluster are as 

compact as possible while the instances in different clusters are as separated as possible. The fitness 

function that we use is defined as bellow: 

Fi =
𝟏

𝑬
 

(2) 

 

3.3. Selection 

 

Parents are selected according to their fitness. Better chromosomes have more chances to be selected. 

Imagine a roulette wheel where are placed all chromosomes in the population, everyone has its place 

big accordingly to its fitness function. 

The probability Pi for each individual is defined by Equation () and  Fi  is the fitness of i th individual.  

pi =
Fi

 Fj
pop  size
j=1

  (3) 

 

In roulette wheel selection, the individuals are mapped to sectors of a circle which has a 

circumference equal with one, such that each individual’s sector is equally sized to its fitness. A 

random number is generated and the individual whose segment spans the random number is selected. 

The process repeats until the desired number of individuals is obtained (called mating population). 

This technique is analogous to a roulette wheel with each slice proportionally sized to the fitness.  

 

3.4. Stopping criteria  

 

The only criterion that we have chosen is number of generations. As we reached predefined number of 

generations we will stop the algorithm and introduce the best individual as clustering result. 

 

4. Crossover operators 

 

Crossover is a process that exchanges information between two parent chromosomes for generating 

offspring chromosomes and occurs with a user specified probability, called the crossover probability 

𝑃𝑐 . 
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Crossover is the backbone of the genetic algorithm and applied to mating pool with hope that it 

creates a better offspring and increases the fitness of population. Crossover prevents from inheriting 

just good genes to maintain the genetic diversity. A good crossover should result in feasible offspring 

chromosomes when we crossover feasible parent chromosomes. 

As we mentioned in introduction section ,there are varieties of crossover and mutation operators 

which differ from each other in aspects like having fixed or variable length, being ordered or not and 

gene repetition .You cannot find a crossover or mutation operator which is suitable for all kinds of 

encodings and chromosome structures. In center-based genetic data clustering algorithm with 

predefined number of clusters, we need a Fixed-length, in ordered, identical gene structure without 

gene repetition chromosome structure and so we need crossover operators which are usable for this 

problem encoding. Now we explain ten famous and widely used crossover operators that can be used 

in our genetic data clustering problem. 

 

4.1. One Point Crossover[17] 

 

In one  point crossover a cutoff point between 1 and length of chromosome (0<C<L) is randomly 

selected to divide each parent chromosome in to two parts then left part of the first parent and right 

part of the second parent generate the first offspring and right part of the first parent and left part of 

the second parent generate the second offspring.Fig.2 (a) shows a one point crossover.  

 

4.2. Two Point Crossover[1][18] 
 

In two  point crossover two cutoff points between 1 and length of chromosome (0<C1<C2<L) are 

randomly selected to divide each parent chromosome in to three parts then first part of the first parent, 

second part of the second parent and third part of the first parent generate the first offspring and first 

part of the second parent, second part of the first parent and third part of second parent generate the 

second offspring. Fig.2 (b) shows a two point crossover. 

 

4.3. Three Point Crossover[19] 

 

In three point crossover three cutoff points between 1 and length of chromosome (0<C1<C2<C3<L) 

are randomly selected to divide each parent chromosome in to five parts then odd parts of the first 

parent and even parts of second parent generate the first offspring and odd parts of the second parent 

and even parts of first parent generate the second offspring. Fig.2 (c) shows a three point crossover. 
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Fig.2. (a) One point crossover (b) Two point crossover   (c) Three point crossover 

 

4.4. Multi Point Crossover[19] 

 

In multi point crossover N cutoff points between 1 and length of chromosome (0< C1<…<Cn <L) are 

randomly selected to divide each parent chromosome in to N+2 parts then odd parts of the first parent 

and even parts of the second parent generate the first offspring and odd parts of the second parent and 

even parts of the first parent generate the second offspring.(N will be selected between 0 and L 

randomly). 

 

4.5. Uniform Crossover[20] 

 

In uniform crossover we will form a binary mask with the same length with chromosomes of parents. 

Then randomly generate a binary digit for this mask. If the code of the nth site of the mask is 1, we 

will copy nth gene of the first parent to the first offspring and copy nth gene of the second parent to 

the second offspring. If the code of the nth site of the mask is 0, we will copy nth gene of the first 

parent to the second offspring and copy nth gene of the second parent to the first offspring. Fig.3 (a) 

shows a Uniform point crossover. 

 

4.6. Variable to variable Crossover[21] 

 

In variable to variable crossover odd genes of the first parent and even genes of the second parent 

generate the first offspring and odd genes of the second parent and even genes of the first parent 

generate the second offspring. Fig.3 (b) shows a variable to variable crossover. 
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Fig.3. (a) Uniform crossover (b) Variable to variable Crossover 

 

4.7. Mixed Crossover[21] 

 

The mixed crossover uses a combination of one point, two point and three point crossovers .It will 

randomly use one of these crossovers to generate offspring. 

 

4.8. Random Mixed Crossover[19] 

 

The Random mixed crossover randomly uses one of one point, two point, three point, multi point, 

uniform, variable to variable or mixed crossovers to generate offspring. 

 

4.9. Sequential Crossover[19] 

 

In Sequential Crossover, one point, two point, three point, multi point, uniform, variable to variable, 

mixed and random mixed crossovers will be used sequentially on the parent chromosomes to generate 

offspring. 

 

4.10. Region Crossover 

 

In region crossover all genes of the first parent will be copied in to the first offspring and genes of the 

second parent will copied to the second offspring .after that two cutoff points between 1 and length of 

chromosome (0<C1<C2<L) are randomly selected to divide each parent chromosome in to three parts 

then the middle parts of two offspring will be swapped. 
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Fig.4.A Hypothetical dataset with index of each data point in dataset 

Fig.4 shows a hypothetical dataset consist of five clusters with forty data points. The numbers show 

the indices of data points in dataset and won’t change during the execution. Any non repetitive 

combination of these indices with a length equal with five can be a solution to our center-based 

clustering algorithm and each index shows the center data point of a cluster. For example {8, 17, 22, 

31, 33}, {4, 8, 18, 22, 31} are two solutions. If our selection mechanism choose {8, 17, 22, 31, 33}, 

{4, 8, 18, 22, 31} as parents to be copied into mating pool, Fig.5 (a) to (f) shows the offspring 

generated by six of explained crossover operators. The repetition of genes that generate illegal 

chromosomes, have been showed with dotted rectangle. 

 

Fig.5 .Example of illegal offspring  (a) one point crossover (b) two point crossover (c) Three 
point crossover (d) Variable to variable Crossover (e) Uniform crossover (f) Region 
Crossover 
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5. Proposed Crossover operator 

 

Fig.4 shows a hypothetical dataset consist of five clusters with forty data points. Suppose that P1= 

{8,17,22,31,33},P2={4,8,18,22,31}  have been chosen with selection mechanism as parents. We will 

introduce the proposed crossover with an example. At first Combine all genes of both parents and 

make a set {8,17,22,31,33}+{4,8,18,22,31}={ 8,17,22,31,33,4,8,18,22,31} then remove all duplicated 

genes from the set with their duplications. The duplicated  or common genes are {8, 22, 31} .Then 

make a set with unique genes {17, 33, 4, 18}.After that sort the unique genes {4, 17, 18, 

33}.Determine the number of duplicated  or common genes and name it R.In our example R=3.Copy 

the common genes to offspring {8, 22, 31}.Cluster unique genes in K=L- R clusters where K>1.In our 

example k=2 (5-3=2) and as Fig. 6 shows, two clusters are {4, 17} and {18, 33}.If clustering 

algorithm hasn’t detected any empty clusters, copy a gene from each cluster to offspring randomly 

.All of possible generated chromosomes have been shown in Fig.7. If clustering algorithm detected 

any empty clusters, we should randomly copy genes which haven't copied to offspring, instead of 

empty clusters. 

 

Fig.6.Example of clustered crossover 

 

The steps of clustered crossover are as follow: 

Step 1. Combine all genes of both parents and make a set. 

Step 2. Remove all duplicated genes from the set with their duplications and make a set with 

them. 

Step 3. Sort the remained genes. 

Step 4. Determine the number of duplicated or common genes and name it R. 

Step 5. Copy the duplicated genes to offspring. 

Step 6. IF there is more than one cluster THEN cluster unique genes in L- R clusters and go 

to Step 7 ELSE select a non duplicated gene randomly and go to Step 8. 

Step 7. FOR EACH cluster DO 

Step 7.1. IF it is an empty cluster THEN go to Step 7.3 ELSE go to Step 7.2. 

Step 7.2. Copy a gene from cluster to offspring randomly and go to Step 7. 

Step 7.3. Copy genes that have not copied in previous steps, instead of empty 

cluster randomly and go to Step 7. 

Step 8. Sort the genes of offspring and finish. 
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We can use any clustering algorithm for clustering non repeated genes. We have used k-means 

algorithm. As you know the order of k-means algorithm is O (KNI) where K is the number of clusters, 

N is the number of data points in dataset and I is the number of iterations. In the worst case which we 

don’t have any common gene between parents, we totally have 2K data points and we want to cluster 

them in k clusters. So the order of clustered crossover in the worst case is equal to O(2K
2
I) .The best 

case which is undefined and impossible happens when all the genes of parents are equal .In the best 

case the order of clustered crossover is equal to O(1).  

 

In problems with chromosome structures which repetition of genes generate illegal chromosomes all 

the available crossover operators may generate illegal chromosomes. 

In cases that we have parent chromosomes with lots of common genes and datasets that have few 

clusters, we cannot use multi  point crossover with lots of cutoff points because the probability of 

generating illegal offspring will be increased. Even using one point, two point or three point crossover 

may generate illegal offspring when we have datasets with less than 5 clusters. 

 

In center-based genetic clustering algorithms with a suitable fitness function, when the algorithm 

converges, ideally most of genes of different chromosomes of generation should have same values. 

For example according to Fig.4 chromosomes like  {8,17,22,31,33} and {4,8,18,22,31} seems to have 

chosen cluster centers of three clusters correctly {8 ,31, 33}, but none of available crossover operators 

are heuristic to pay attention to common genes , especially in center-based genetic clustering 

algorithms that we encoded which repetition of genes generates illegal chromosomes. So this 

weakness of available crossover operators put off convergence.  

 

Fig.7.Possible offspring may be generated with clustered crossover 

 

6. Experimental results 

 

We have implemented proposed genetic clustering algorithm and all explained crossover operators 

with java language in Netbeens IDE 7.1 environment and used weka.jar library of weka 3.6.6 software 

which contains necessary classes for implementing data clustering algorithms. To compare crossover 

operators we need to have the same parameters in each execution and just change crossover operator. 

So for each dataset we have made 10 random initial populations with  Population Size equal to 100  

and prevent from mutation and elitism operators by setting mutation probability 𝑃𝑚=0 and elitism 
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probability 𝑃𝑒=0. For every dataset we will execute the algorithm 10 times with each initial population 

and record fitness of elite, sum of fitness of each generation, fitness of final result and number of 

illegal generated offspring. Table 1 shows execution parameters.  

Table 1.Execution parameters 

Population Size 100 

Number Of Generations 20 

𝑃𝑐  1 

𝑃𝑚  0 

𝑃𝑒  0 

Reinsertion Type Complete 

Selection Type Roulette Wheel 

Fitness Type Squared Error 

 

Table 2 shows the datasets of our experimental results which consists of 9 famous real life datasets 

[22] and 5 artificial datasets. Fig .8 shows these artificial datasets.  

Table 2.Datasets 

 dataset instances attributes clusters 

sonar 208 60 2 

Ionosphere 351 34 2 

iris 150 4 3 

tae 151 5 3 

wine 178 13 3 

vehicle 846 18 4 

glass 214 9 6 

ecoli 336 7 8 

vowel 990 10 11 

DS 2 680 2 2 

DS 3 600 2 3 

DS 4 750 2 4 

DS 5 1200 2 5 

DS 6 1600 2 6 

 

After 100 executions of proposed genetic data clustering on each dataset with one of crossovers, 

Table 3 shows the average of illegal generated offspring, Table 4 shows average of Fitness of final 

result of executions, Table 5 shows average of fitness of best elite of generations and Table 6 shows 

average of sum of fitness of generations for artificial datasets.  
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Fig .8.Artificial datasets (a) DS 2 (b) DS 3 (c) DS 4 (d) DS 5 (e) DS 6 (f) DS 7 

Region Crossover, Two Point Crossover and Three Point Crossover are not usable for datasets with 2 

clusters and Three Point Crossover is not also usable for datasets with 3 clusters, so in all result tables 

we don’t have any value for these datasets.  

 

Table 3.Average of illegal generated offspring in each execution for artificial datasets 

 Crossover DS 2 DS 3 DS 4 DS 5 DS 6 

Clustered  0.00 0.00 0.00 0.00 0.00 

Mixed  542.21 215.25 3.53 4.15 4.43 

Multi Point  2.18 2.06 3.62 3.93 4.01 

One Point  1.38 2.85 3.50 4.20 4.70 

Random Mixed  363.70 142.98 4.92 7.51 7.53 

Region  - 2.17 3.86 5.31 5.29 

Sequential  1273.29 1004.32 422.99 440.21 401.38 

Three Point  - - 3.08 3.67 4.08 

Two Point  - 1.84 3.21 3.76 4.99 

Uniform  2.21 3.82 6.79 10.32 12.50 

Variable to variable  2.26 6.23 12.25 16.27 20.36 

 

Table 4.Average of Fitness of final result of executions for artificial datasets 

Crossover  DS 2 DS 3 DS 4 DS 5 DS 6 

Clustered  0.00084801 0.00168425 0.00114500 0.00072495 0.00056112 

Mixed  0.00084251 0.00166363 0.00107163 0.00067577 0.00052513 

Multi Point  0.00083737 0.00167924 0.00106174 0.00067601 0.00052975 

One Point  0.00083335 0.00165841 0.00108611 0.00067152 0.00052656 

Random Mixed  0.00082711 0.00166024 0.00109162 0.00068310 0.00053573 

Region  - 0.00166160 0.00108675 0.00068533 0.00051703 

Sequential  0.00083570 0.00159192 0.00096490 0.00059990 0.00044618 

Three Point  - - 0.00102699 0.00067304 0.00051788 
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Two Point  - 0.00161057 0.00107561 0.00066429 0.00051719 

Uniform  0.00084311 0.00167691 0.00109459 0.00067648 0.00053040 

Variable to variable  0.00083917 0.00167202 0.00110183 0.00068983 0.00055876 

 

 
Table 5.Average of fitness of best elite of generations for artificial datasets 

 

Crossover  DS 2 DS 3 DS 4 DS 5 DS 6 

Clustered  0.00085 0.00168 0.00114 0.00073 0.00057 

Mixed  0.00084 0.00166 0.00107 0.00067 0.00052 

Multi Point  0.00084 0.00167 0.00106 0.00067 0.00052 

One Point  0.00083 0.00165 0.00108 0.00066 0.00052 

Random Mixed  0.00083 0.00166 0.00108 0.00068 0.00053 

Region  - 0.00166 0.00108 0.00068 0.00051 

Sequential  0.00084 0.00159 0.00099 0.00061 0.00046 

Three Point  - - 0.00103 0.00066 0.00051 

Two Point  - 0.00161 0.00107 0.00066 0.00051 

Uniform  0.00084 0.00166 0.00109 0.00067 0.00053 

Variable to variable  0.00084 0.00167 0.00110 0.00069 0.00056 

 

Table 6.Average of sum of fitness of generations for artificial datasets 

Crossover  DS 2 DS 3 DS 4 DS 5 DS 6 

Clustered  0.07382 0.14452 0.10054 0.06442 0.05021 

Mixed  0.06928 0.14130 0.09100 0.05723 0.04418 

Multi Point  0.06984 0.14433 0.09014 0.05712 0.04402 

One Point  0.07016 0.14186 0.09237 0.05658 0.04449 

Random Mixed  0.06945 0.14284 0.09162 0.05827 0.04599 

Region  - 0.14317 0.09231 0.05813 0.04441 

Sequential  0.06028 0.11676 0.07696 0.04872 0.03627 

Three Point  - - 0.00851 0.00566 0.00436 

Two Point  - 0.13767 0.00908 0.00564 0.00438 

Uniform  0.06972 0.14420 0.09310 0.05833 0.04570 

Variable to variable  0.06983 0.14237 0.09270 0.05802 0.04697 

 

After 100 executions of proposed genetic data clustering on each real life dataset with one of 

crossovers, Table 7 shows the average of illegal generated offspring, Table 8 shows average of Fitness 

of final result of executions, Table 9 shows average of fitness of best elite of generations and Table 10 

shows average of sum of fitness of generations for real life datasets.  
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Table 7.Average of illegal generated offspring in each execution for real life datasets 

 Crossover sonar Ionosphere iris tae wine vehicle glass ecoli vowel 

Clustered  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mixed  519.74 528.92 223.88 218.35 227.22 4.60 6.40 6.90 8.23 

Multi Point  4.14 2.92 3.16 3.83 3.23 5.05 5.13 5.30 64.02 

One Point  4.47 3.70 3.47 5.84 3.91 5.88 6.70 8.29 8.29 

Random Mixed  346.55 350.05 147.28 146.99 153.23 6.88 10.62 15.56 22.52 

Region  - - 2.61 4.36 3.85 4.60 7.36 8.75 11.05 

Sequential  1178.32 1233.31 1093.07 977.51 1025.57 432.95 433.83 384.92 369.73 

Three Point  - - - - - 3.58 5.56 5.86 7.80 

Two Point  - - 2.53 2.37 3.16 4.74 6.91 6.97 8.63 

Uniform  4.94 4.78 5.47 6.07 4.36 9.99 14.07 20.12 33.91 

Variable to variable  6.19 4.74 7.22 12.36 7.91 14.28 23.19 33.01 44.27 

 

Table 8.Average of Fitness of final result of executions for real life datasets 

 Crossover Sonar Ionosphere iris tae wine vehicle glass ecoli vowel 

Clustered  3.46178E-03 1.11426E-03 8.50079E-03 4.70357E-04 3.77442E-05 1.39398E-05 3.28827E-03 1.22544E-02 4.66348E-04 

Mixed  3.44348E-03 1.08846E-03 8.44622E-03 4.61394E-04 3.72245E-05 1.37703E-05 3.18056E-03 1.21832E-02 4.58374E-04 

Multi Point  3.43343E-03 1.09319E-03 8.47241E-03 4.58741E-04 3.75412E-05 1.37981E-05 3.17294E-03 1.21759E-02 4.61440E-04 

One Point  3.43915E-03 1.07638E-03 8.41907E-03 4.56790E-04 3.74026E-05 1.37976E-05 3.20884E-03 1.21713E-02 4.59968E-04 

Random Mixed  3.45492E-03 1.08221E-03 8.46690E-03 4.64791E-04 3.74060E-05 1.39277E-05 3.23321E-03 1.20635E-02 4.55068E-04 

Region  3.46178E-03 1.11426E-03 8.42433E-03 4.63160E-04 3.76147E-05 1.37676E-05 3.19985E-03 1.16865E-02 4.56309E-04 

Sequential  3.45506E-03 1.10726E-03 8.25742E-03 4.66323E-04 3.47172E-05 1.34510E-05 3.01580E-03 1.14654E-02 4.38889E-04 

Three Point  - - - - - 1.37898E-05 3.17318E-03 1.20970E-02 4.60977E-04 

Two Point  - - 8.42637E-03 4.54271E-04 3.66757E-05 1.37638E-05 3.24468E-03 1.21709E-02 4.60893E-04 

Uniform  3.43668E-03 1.08869E-03 8.49173E-03 4.51794E-04 3.76887E-05 1.38697E-05 3.18510E-03 1.21299E-02 4.54180E-04 

Variable to variable  3.41493E-03 1.08983E-03 8.46372E-03 4.40359E-04 3.73028E-05 1.38589E-05 3.22982E-03 1.22375E-02 4.57757E-04 

 

Table 9.Average of fitness of best elite of generations for artificial datasets 

 Crossover sonar Ionosphere iris tae wine vehicle glass ecoli vowel 

Clustered  3.46215E-03 1.11426E-03 8.48134E-03 4.70357E-04 3.74480E-05 1.38692E-05 3.26546E-03 1.22807E-02 4.69179E-04 

Mixed  3.46178E-03 1.09248E-03 8.40545E-03 4.62500E-04 3.66855E-05 1.37766E-05 3.18341E-03 1.22074E-02 4.63073E-04 

Multi Point  3.43466E-03 1.09815E-03 8.44695E-03 4.59853E-04 3.71451E-05 1.37675E-05 3.18183E-03 1.22015E-02 4.66557E-04 

One Point  3.44399E-03 1.08034E-03 8.42109E-03 4.56782E-04 3.70485E-05 1.37606E-05 3.19743E-03 1.22281E-02 4.65668E-04 

Random Mixed  3.45306E-03 1.08597E-03 8.41131E-03 4.62953E-04 3.69083E-05 1.37768E-05 3.24134E-03 1.21803E-02 4.61419E-04 

Region  3.46178E-03 1.11426E-03 8.37041E-03 4.60134E-04 3.71253E-05 1.36860E-05 3.20055E-03 1.18944E-02 4.61574E-04 

Sequential  3.45738E-03 1.10597E-03 8.25742E-03 4.70357E-04 3.47172E-05 1.35268E-05 3.08040E-03 1.17781E-02 4.49285E-04 

Three Point  - - - - - 1.37681E-05 3.19158E-03 1.21422E-02 4.64935E-04 

Two Point  - - 8.42523E-03 4.56367E-04 3.64395E-05 1.37318E-05 3.22722E-03 1.21902E-02 4.65376E-04 

Uniform  3.43855E-03 1.09162E-03 8.45137E-03 4.54065E-04 3.72689E-05 1.38459E-05 3.19442E-03 1.22374E-02 4.60478E-04 

Variable to variable  3.42109E-03 1.09029E-03 8.44019E-03 4.42438E-04 3.69262E-05 1.38059E-05 3.22020E-03 1.22393E-02 4.60366E-04 
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Table 10.Average of sum of fitness of generations for real life datasets 

 Crossover sonar Ionosphere iris tae wine vehicle glass ecoli vowel 

Clustered  3.14565E+00 9.47127E-01 7.21828E+00 3.94914E-01 3.00118E-02 1.19574E-02 2.85054E+00 1.14176E+01 4.43803E-01 

Mixed  3.13190E+00 9.39208E-01 7.17379E+00 3.92357E-01 2.95199E-02 1.16593E-02 2.81073E+00 1.13286E+01 4.40774E-01 

Multi Point  3.12041E+00 9.39643E-01 7.20950E+00 3.91995E-01 2.98675E-02 1.17057E-02 2.81932E+00 1.12770E+01 4.43712E-01 

One Point  3.13115E+00 9.20178E-01 7.11157E+00 3.89313E-01 2.96480E-02 1.16678E-02 2.82389E+00 1.13720E+01 4.42896E-01 

Random Mixed  3.13125E+00 9.31567E-01 7.12949E+00 3.93548E-01 2.92679E-02 1.17440E-02 2.84640E+00 1.13133E+01 4.40585E-01 

Region  3.11721E+00 8.95216E-01 7.12095E+00 3.93526E-01 2.95540E-02 1.15751E-02 2.82734E+00 1.09158E+01 4.41624E-01 

Sequential  3.11721E+00 8.95216E-01 5.89800E+00 3.77758E-01 2.37243E-02 1.09860E-02 2.67962E+00 1.04928E+01 4.27188E-01 

Three Point  - - - - - 1.15231E-02 2.81915E+00 1.13231E+01 4.43459E-01 

Two Point  - - 7.04533E+00 3.78926E-01 2.79687E-02 1.16811E-02 2.84111E+00 1.13005E+01 4.41625E-01 

Uniform  3.12874E+00 9.36603E-01 7.13047E+00 3.87296E-01 2.97955E-02 1.17875E-02 2.81906E+00 1.13314E+01 4.39849E-01 

Variable to variable  3.11597E+00 9.38340E-01 7.01385E+00 3.86687E-01 2.92487E-02 1.15631E-02 2.74941E+00 1.13072E+01 4.37571E-01 

 

7. Conclusions 

 

According to our experimental results, clustered crossover for genetic data clustering (CCGDC) 

creates better offspring and increases the fitness of population with maintaining the genetic diversity 

and results in feasible offspring chromosomes. Unlike two point and three point crossovers, the 

number of chromosomes will not effect on efficiency and usability of proposed crossover .With a 

suitable fitness function, when the algorithm converges, ideally most of genes of different 

chromosomes of generation should have same values. Proposed crossover is heuristic enough to pay 

attention to these common genes. 

 

References 

 

[1] John H.  Holland, Adaptation in Natural and Artificial Systems, the University of Michigan Press, 1975. 
[2] De Jong, Kenneth A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral 

thesis, Dept. Computer and Communication Sciences, University of Michigan, Ann Arbor. 

[3] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Addison –Wesley, New York, 

1989. 

[4] L. Davis,Job-shop Scheduling with Genetic Algorithms”. Proceedings of an International Conference on Genetic 

Algorithms and Their Applications, pp. 136-140, 1985. 

[5] I.M. Oliver, D. J. Smith and J.R.C. Holland. “A Study of Permutation Crossover Operators on the Travelling 

Salesman Problem”. In J.J. Grefenstette (ed.). Genetic Algorithms and Their Applications: Proceedings of the 2nd 

International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hilladale, NJ, 1987. 

[6] S.J. Wu, P.T. Chow, Steady-state genetic algorithm for discrete optimization of trusses, Computers and Structures 

56 (6) (1995) 979–991. 

[7] W.M. Jenkins, On the application of natural algorithms to structural design optimization, Engineering Structure 19 

(4) (1997) 302–308. 

[8] K. Dejong, W.M. Spears, An analysis of the interacting roles of population sizes and crossover in genetic function 

optimization, in: H.P. Schwefel, R. Manner (Eds.), Proceedings of Parallel Problem Solving from Nature, 

Springer, Berlin, 1990, pp. 38–47. 

[9] G. Syswerda, Uniform crossover in genetic algorithms, in: J.D. Schaffer, M.Kaufman (Eds.), Proceedings of the 

Third International Conference on Genetic Algorithms, 1989, pp. 2–9. 

[10] O. Hasanc¸ ebi, F. Erbatur, Evaluation of crossover operators in genetic algorithms based optimum structural 

design, Computers and Structures 1999 78 (2000) 435–448. 

[11] D. Zaharie, Influence of crossover on the behavior of differential evolution algorithms, Applied Soft Computing 9 

(June (3)) (2009) 1126–1138. 



Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci.        11 (2014) 191-208 
 

208 
 

[12] Mustafa Kaya, The effects of two new crossover operators on genetic algorithm performance, Applied Soft 

Computing 11 (2011) 881–890. 

[13] Hong He , YonghongTan, A two-stage genetic algorithm for automatic clustering, Neurocomputing 81 (2012) 49–

59. 

[14] Dongxia Chang, Yao Zhao , Changwen Zheng , Xianda Zhang , A genetic clustering algorithm using a message-

based similarity measure, Expert Systems with Applications 39 (2012) 2194–2202. 

[15] Amin Aalaei, Hamed Fazlollahtabar, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mohammad Hassan Yahyanejad, A 

genetic algorithm for a creativity matrix cubic space clustering: A case study in Mazandaran Gas Company, 

Applied Soft Computing 13 (2013) 1661–1673. 

[16] Jose A. Castellanos-Garzon , Fernando Diaz, An evolutionary computational model applied to cluster analysis of 

DNA microarray data, Expert Systems with Applications 40 (2013) 2575–2591. 

[17] Riccardo Poli , W. B. Langdon,Genetic programming with one-point crossover,In P. K. Chawdhry, R. Roy, and R. 

K. Pant, editors, Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing. 

Springer-Verlag London, 23-27 June 1997. 

[18] V. A. Cicirello and S. F. Smith,Modeling GA performance for control parameter optimization,In GECCO-2000: 

Proceedings of the Genetic and Evolutionary Computation Conference, pages 235–242.Morgan Kaufmann 

Publishers, 8-12 July 2000. 

[19] M, Kaya, The effects of two new crossover operators on genetic algorithm performance, Applied Soft Computing, 

11(1) (2011) 881-890. 

[20] G. Syswerda, Uniform crossover in genetic algorithms, in: J.D. Schaffer, M.Kaufman (Eds.), Proceedings of the 

Third International Conference on Genetic Algorithms, 1989, pp. 2–9. 

[21] O. Hasanc¸ ebi, F. Erbatur, Evaluation of crossover operators in genetic algorithms based optimum structural 

design, Computers and Structures 1999 78 (2000) 435–448. 

[22] http://repository.seasr.org/Datasets/UCI/arff/ 

[23] R. Maghsoudi , A. Ghorbannia Delavar, S. Hoseyny, R. Asgari, Y. Heidari,  Representing the New Model for 

Improving K-Means Clustering Algorithm based on Genetic Algorithm,  The Journal of Mathematics and 

Computer Science Vol .2 No.2 (2011) 329-336. 

 


