

Journal of mathematics and computer science 11 (2014) 191-208

191

CCGDC: A new crossover operator for genetic data clustering

Gholam Hasan Mohebpour, Arash Ghorbannia Delavar

Department of Computer Science, Payame Noor University, Tehran, Iran

Department of Computer Science, Payame Noor University, Tehran, Iran

mohebpoor_gh_h@yahoo.com, a_ghorbannia@pnu.ac.ir

Article history:

Received April 2014

Accepted May 2014

Available online June 2014

Abstract

Genetic algorithm is an evolutionary algorithm and has been used to solve many problems such as

data clustering. Most of genetic data clustering algorithms just have introduced new fitness function to

improve the accuracy of algorithm in evaluation of generated chromosomes. Crossover operator is the

backbone of the genetic algorithm and should create better offspring and increase the fitness of

population with maintaining the genetic diversity. A good crossover should result in feasible offspring

chromosomes when we crossover feasible parent chromosomes. In this paper we introduce a new

crossover operator for genetic data clustering. Experimental results show that clustered crossover for

genetic data clustering (CCGDC) creates better offspring and increases the fitness of population and

also will not produce illegal chromosome.

Keywords: Data mining, data clustering, genetic algorithm, crossover operator, partitioning

1. Introduction

1.1. Data clustering

Let 𝑋 = 𝑥1, 𝑥2 , ⋯ , 𝑥𝑁 be a set of N data points in m- dimensional data space 𝑅𝑚 .Data clustering

means partitioning these data points in to K groups 𝐶 = 𝐶1 , 𝐶2 , … , 𝐶𝐾 as clusters where 𝐶𝑖 ≠ ∅ 𝑖 =

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

192

1,2, … , 𝑘 , 𝐶𝑖 ∩ 𝐶𝑗 = ∅ 𝑖 ≠ 𝑗 and 𝐶𝑖
𝐾
𝑖=1 = 𝑋 which means each data point has the most similarity

to its co-cluster data points and less similarity as possible to data points of other clusters according to

a distance measure function d x, y like Euclidean distance.

1.2. K-means algorithm

K-means is one of the well-known algorithms for clustering. It is a center-based and unsupervised

partitioning algorithm .K-means partitions the dataset into k mutually exclusive clusters, and treats

each data point as an object having a specific location in data space. It finds a partition in which data

points within each cluster are as close to each other as possible, and as far from data points in other

clusters as possible. It selects k data points as cluster centers randomly and tries to minimize sum of

squared error. At the next steps the mean of each cluster will be computed as cluster center. The

process of reassigning the data points and the updating of the cluster centers will be repeated until no

more change in the cluster centers and no more reassigning.

1.3. Genetic algorithms

Genetic algorithm is a search algorithm which is based on the biological evolution and originally

developed by Holland [1] and later refined by De Jong [2], Goldberg [3], and many others. It is a

search heuristic that mimics the process of natural evolution and principle of survival of the fittest laid

by Charles Darwin.

In genetic algorithm we generate an initial population consist of a specific number of individuals and

then our objective is to reach to a generation that has better fitness values than the last generations, as

it happens in nature.

In other words, in nature, each species has to change its chromosome combination to survive in the

living world. Genetic algorithm will mimic this nature rule and tries to generate better offspring. In

Genetic algorithm each chromosome of the population will be evaluated and assigned a value derived

from fitness function and then chromosomes with better fitness values will be more likely to be

selected for producing new offspring. A competitive strategy was employed to improve the selection

performance such as roulette wheel or tournament selection method. After that, crossover will be done

on selected parents and finally mutation will be used on generated offspring. If stopping criteria didn’t

reached the whole steps will be repeated.Fig.1 shows the flowchart of genetic algorithm.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

193

Fig.1. Flowchart of genetic algorithm

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

194

If we try to categorize structure of chromosomes in genetic algorithm, four aspects that are important

and have more effects on the structure of chromosomes and depend to the problem that we want to

solve are:

 Length

Depending on the problem, we can have chromosome structures with Fixed-length or

Variable-length. For instance in Traveling Salesman Problem which number of cities will be

specific from the beginning, we will have a Fixed-length chromosome structure.

 Order

An ordered chromosome or Position-based chromosome is the one that the place of genes are

important and each permutation of the same genes will be decoded as a different solution of

the problem, we call the position of each gene, Locus. For example in Traveling Salesman

Problem, the genes are ordered and any single permutation of n cities yields a different

solution. We call the encodings with ordered chromosomes a permutation encoding. In

permutation encoding, every gene in chromosome represents a position in a sequence.

 Gene structure

For some problems, it is necessary to have genes with different alleles. We call these kinds of

encodings direct value encoding and it can be used in problems where some more

complicated values such as real numbers are used. Use of binary encoding for this type of

problems would be difficult. In value encoding, every chromosome is a sequence of genes

which they can be anything connected to the problem, such as real numbers, characters,

strings or any objects.

 Gene repetition

In some problems like Traveling Salesman Problem, which each gene shows one of the

visited cities and each city will be visited exactly once, gene repetition is not allowed, but in

problems like finding the roots of an equation which two or more roots may be equal, genes

may have same values.

The above aspects not only effect on the structure of chromosome and problem encoding, but also

they effect on genetic operators like crossover and mutation. For example ordered crossover operator

developed by Davis [4] or cycle crossover operator proposed by Oliver et al. [5] are suitable for

ordered chromosomes and permutation encoding.

There are varieties of crossover and mutation operators which differ from each other in described

aspects. Although there are some famous and widely used crossover and mutation operators, you

cannot find a crossover or mutation operator which is suitable for all kinds of encodings and

chromosome structures.

In rest of this paper we will explain problem encoding for our genetic data clustering and introduce a

new crossover operator which is suitable for genetic data clustering and compare it with ten famous

crossover operators.

2. Related work

Since 1975, several attempts have been done to improve efficiency of genetic algorithm. These

attempts have been done in different aspects of genetic algorithm such as initial population, fitness

function, crossover and mutation operator .Crossover operator should create a better offspring and

increase the fitness of population and prevent from inheriting just good genes to maintain the genetic

diversity.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

195

Wu and Chow [6] compared the one-point, two-point, three-point, and four-point crossover operators

and showed that two-point, three-point, and four-point crossover operators are better than the one-

point crossover.

Jenkins [7] argues in favor of multi-point crossover operator in term of fast progress becomes very

slow in case single-point crossover is used. Using one-point crossover,

Dejong and Spears [8] introduced the relationship between crossover operators and population size.

They state that two-point crossover is performs better in the problems in which the population is large,

but uniform crossover is better for the small size populations.

Syswerda [9] showed that the uniform crossover operator is more efficient when compared with two-

point crossover.

Erbatur and Hasanc¸ ebi [10, 11] suggested combining two crossover operators in their study about

the effects of crossover operators on the behavior of GA.

Mustafa Kaya [12] has introduced sequential and random mixed crossover operators and has

compared them with other crossover operators on RC beam and the space truss problems

Hong He and Yonghong Tan [13] have used a parallel crossover for automatic clustering of data

without having number of clusters as input parameter. Their parallel crossover uses one point

crossover and exchanges genes in length equal to smaller individual length.

Dongxia Chang and et al. [14] introduce a genetic clustering algorithm using a message-based

similarity measure for automatic data clustering but they also use one point crossover.

Amin Aalaei et al. [15] have used a four point crossover operator for their matrix based chromosome

structure to select a sub matrix from each parent chromosome and exchange it.

Jose A. Castellanos-Garzon and Fernando Diaz [16] have proposed a new hierarchical clustering

method using genetic algorithms for the analysis of gene expression data. They have used a crossover

operator which works on parent's dendrogram to obtain a child dendrogram.

After reviewing some known crossover operators, we find that they neglect the fact that when the

algorithm converges to a solution, most of genes of individuals will be same and they produce illegal

offspring and also to maintain population diversity they decrease population fitness and some of them

cannot be used when we have a chromosome with few number of genes.

3. Program encoding

3.1. Chromosome representation

In our genetic data clustering problem, an integer-valued problem-specific chromosome

representation is used. Each chromosome has a fixed length of K ∗ log2 N where K in the number of

clusters and N is the number of data points in dataset. So we have k genes in each chromosome. Each

gene is made up of index of center data point of a cluster in dataset. The chromosome structure of our

genetic data clustering problem is not ordered which means that the place of genes is not important

and any permutation of genes produces the same chromosome.

This structure will not produce any feasible chromosome but illegal chromosomes may be produced.

In proposed structure repetition of genes produces illegal chromosomes because a data point cannot

be center point of more than one cluster. So to be able to detect production of illegal chromosomes

during crossover and mutation, we sort the genes in ascending order. The advantages of this

chromosome structure are small length, fast detection of illegal chromosomes, fast detection of

repetitive chromosomes and faster mutation and crossover operations.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

196

3.2. Evaluation and fitness function

The fitness function has an important effect on success of a genetic algorithm. In this paper which we

want to examine efficiency of a crossover operator we use the simplest fitness function for genetic

data clustering. Objective function of k-means is defined as follow:

𝐸 = 𝑥 − 𝑐𝑖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

(1)

Where 𝑐𝑖 is the center of i th cluster and E is the sum of the squared error of all instances in dataset.

This Objective function tries to produce k clusters so that the instances in the same cluster are as

compact as possible while the instances in different clusters are as separated as possible. The fitness

function that we use is defined as bellow:

Fi =
𝟏

𝑬

(2)

3.3. Selection

Parents are selected according to their fitness. Better chromosomes have more chances to be selected.

Imagine a roulette wheel where are placed all chromosomes in the population, everyone has its place

big accordingly to its fitness function.

The probability Pi for each individual is defined by Equation () and Fi is the fitness of i th individual.

pi =
Fi

 Fj
pop size
j=1

 (3)

In roulette wheel selection, the individuals are mapped to sectors of a circle which has a

circumference equal with one, such that each individual’s sector is equally sized to its fitness. A

random number is generated and the individual whose segment spans the random number is selected.

The process repeats until the desired number of individuals is obtained (called mating population).

This technique is analogous to a roulette wheel with each slice proportionally sized to the fitness.

3.4. Stopping criteria

The only criterion that we have chosen is number of generations. As we reached predefined number of

generations we will stop the algorithm and introduce the best individual as clustering result.

4. Crossover operators

Crossover is a process that exchanges information between two parent chromosomes for generating

offspring chromosomes and occurs with a user specified probability, called the crossover probability

𝑃𝑐 .

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

197

Crossover is the backbone of the genetic algorithm and applied to mating pool with hope that it

creates a better offspring and increases the fitness of population. Crossover prevents from inheriting

just good genes to maintain the genetic diversity. A good crossover should result in feasible offspring

chromosomes when we crossover feasible parent chromosomes.

As we mentioned in introduction section ,there are varieties of crossover and mutation operators

which differ from each other in aspects like having fixed or variable length, being ordered or not and

gene repetition .You cannot find a crossover or mutation operator which is suitable for all kinds of

encodings and chromosome structures. In center-based genetic data clustering algorithm with

predefined number of clusters, we need a Fixed-length, in ordered, identical gene structure without

gene repetition chromosome structure and so we need crossover operators which are usable for this

problem encoding. Now we explain ten famous and widely used crossover operators that can be used

in our genetic data clustering problem.

4.1. One Point Crossover[17]

In one point crossover a cutoff point between 1 and length of chromosome (0<C<L) is randomly

selected to divide each parent chromosome in to two parts then left part of the first parent and right

part of the second parent generate the first offspring and right part of the first parent and left part of

the second parent generate the second offspring.Fig.2 (a) shows a one point crossover.

4.2. Two Point Crossover[1][18]

In two point crossover two cutoff points between 1 and length of chromosome (0<C1<C2<L) are

randomly selected to divide each parent chromosome in to three parts then first part of the first parent,

second part of the second parent and third part of the first parent generate the first offspring and first

part of the second parent, second part of the first parent and third part of second parent generate the

second offspring. Fig.2 (b) shows a two point crossover.

4.3. Three Point Crossover[19]

In three point crossover three cutoff points between 1 and length of chromosome (0<C1<C2<C3<L)

are randomly selected to divide each parent chromosome in to five parts then odd parts of the first

parent and even parts of second parent generate the first offspring and odd parts of the second parent

and even parts of first parent generate the second offspring. Fig.2 (c) shows a three point crossover.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

198

Fig.2. (a) One point crossover (b) Two point crossover (c) Three point crossover

4.4. Multi Point Crossover[19]

In multi point crossover N cutoff points between 1 and length of chromosome (0< C1<…<Cn <L) are

randomly selected to divide each parent chromosome in to N+2 parts then odd parts of the first parent

and even parts of the second parent generate the first offspring and odd parts of the second parent and

even parts of the first parent generate the second offspring.(N will be selected between 0 and L

randomly).

4.5. Uniform Crossover[20]

In uniform crossover we will form a binary mask with the same length with chromosomes of parents.

Then randomly generate a binary digit for this mask. If the code of the nth site of the mask is 1, we

will copy nth gene of the first parent to the first offspring and copy nth gene of the second parent to

the second offspring. If the code of the nth site of the mask is 0, we will copy nth gene of the first

parent to the second offspring and copy nth gene of the second parent to the first offspring. Fig.3 (a)

shows a Uniform point crossover.

4.6. Variable to variable Crossover[21]

In variable to variable crossover odd genes of the first parent and even genes of the second parent

generate the first offspring and odd genes of the second parent and even genes of the first parent

generate the second offspring. Fig.3 (b) shows a variable to variable crossover.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

199

Fig.3. (a) Uniform crossover (b) Variable to variable Crossover

4.7. Mixed Crossover[21]

The mixed crossover uses a combination of one point, two point and three point crossovers .It will

randomly use one of these crossovers to generate offspring.

4.8. Random Mixed Crossover[19]

The Random mixed crossover randomly uses one of one point, two point, three point, multi point,

uniform, variable to variable or mixed crossovers to generate offspring.

4.9. Sequential Crossover[19]

In Sequential Crossover, one point, two point, three point, multi point, uniform, variable to variable,

mixed and random mixed crossovers will be used sequentially on the parent chromosomes to generate

offspring.

4.10. Region Crossover

In region crossover all genes of the first parent will be copied in to the first offspring and genes of the

second parent will copied to the second offspring .after that two cutoff points between 1 and length of

chromosome (0<C1<C2<L) are randomly selected to divide each parent chromosome in to three parts

then the middle parts of two offspring will be swapped.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

200

Fig.4.A Hypothetical dataset with index of each data point in dataset

Fig.4 shows a hypothetical dataset consist of five clusters with forty data points. The numbers show

the indices of data points in dataset and won’t change during the execution. Any non repetitive

combination of these indices with a length equal with five can be a solution to our center-based

clustering algorithm and each index shows the center data point of a cluster. For example {8, 17, 22,

31, 33}, {4, 8, 18, 22, 31} are two solutions. If our selection mechanism choose {8, 17, 22, 31, 33},

{4, 8, 18, 22, 31} as parents to be copied into mating pool, Fig.5 (a) to (f) shows the offspring

generated by six of explained crossover operators. The repetition of genes that generate illegal

chromosomes, have been showed with dotted rectangle.

Fig.5 .Example of illegal offspring (a) one point crossover (b) two point crossover (c) Three
point crossover (d) Variable to variable Crossover (e) Uniform crossover (f) Region
Crossover

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

201

5. Proposed Crossover operator

Fig.4 shows a hypothetical dataset consist of five clusters with forty data points. Suppose that P1=

{8,17,22,31,33},P2={4,8,18,22,31} have been chosen with selection mechanism as parents. We will

introduce the proposed crossover with an example. At first Combine all genes of both parents and

make a set {8,17,22,31,33}+{4,8,18,22,31}={ 8,17,22,31,33,4,8,18,22,31} then remove all duplicated

genes from the set with their duplications. The duplicated or common genes are {8, 22, 31} .Then

make a set with unique genes {17, 33, 4, 18}.After that sort the unique genes {4, 17, 18,

33}.Determine the number of duplicated or common genes and name it R.In our example R=3.Copy

the common genes to offspring {8, 22, 31}.Cluster unique genes in K=L- R clusters where K>1.In our

example k=2 (5-3=2) and as Fig. 6 shows, two clusters are {4, 17} and {18, 33}.If clustering

algorithm hasn’t detected any empty clusters, copy a gene from each cluster to offspring randomly

.All of possible generated chromosomes have been shown in Fig.7. If clustering algorithm detected

any empty clusters, we should randomly copy genes which haven't copied to offspring, instead of

empty clusters.

Fig.6.Example of clustered crossover

The steps of clustered crossover are as follow:

Step 1. Combine all genes of both parents and make a set.

Step 2. Remove all duplicated genes from the set with their duplications and make a set with

them.

Step 3. Sort the remained genes.

Step 4. Determine the number of duplicated or common genes and name it R.

Step 5. Copy the duplicated genes to offspring.

Step 6. IF there is more than one cluster THEN cluster unique genes in L- R clusters and go

to Step 7 ELSE select a non duplicated gene randomly and go to Step 8.

Step 7. FOR EACH cluster DO

Step 7.1. IF it is an empty cluster THEN go to Step 7.3 ELSE go to Step 7.2.

Step 7.2. Copy a gene from cluster to offspring randomly and go to Step 7.

Step 7.3. Copy genes that have not copied in previous steps, instead of empty

cluster randomly and go to Step 7.

Step 8. Sort the genes of offspring and finish.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

202

We can use any clustering algorithm for clustering non repeated genes. We have used k-means

algorithm. As you know the order of k-means algorithm is O (KNI) where K is the number of clusters,

N is the number of data points in dataset and I is the number of iterations. In the worst case which we

don’t have any common gene between parents, we totally have 2K data points and we want to cluster

them in k clusters. So the order of clustered crossover in the worst case is equal to O(2K
2
I) .The best

case which is undefined and impossible happens when all the genes of parents are equal .In the best

case the order of clustered crossover is equal to O(1).

In problems with chromosome structures which repetition of genes generate illegal chromosomes all

the available crossover operators may generate illegal chromosomes.

In cases that we have parent chromosomes with lots of common genes and datasets that have few

clusters, we cannot use multi point crossover with lots of cutoff points because the probability of

generating illegal offspring will be increased. Even using one point, two point or three point crossover

may generate illegal offspring when we have datasets with less than 5 clusters.

In center-based genetic clustering algorithms with a suitable fitness function, when the algorithm

converges, ideally most of genes of different chromosomes of generation should have same values.

For example according to Fig.4 chromosomes like {8,17,22,31,33} and {4,8,18,22,31} seems to have

chosen cluster centers of three clusters correctly {8 ,31, 33}, but none of available crossover operators

are heuristic to pay attention to common genes , especially in center-based genetic clustering

algorithms that we encoded which repetition of genes generates illegal chromosomes. So this

weakness of available crossover operators put off convergence.

Fig.7.Possible offspring may be generated with clustered crossover

6. Experimental results

We have implemented proposed genetic clustering algorithm and all explained crossover operators

with java language in Netbeens IDE 7.1 environment and used weka.jar library of weka 3.6.6 software

which contains necessary classes for implementing data clustering algorithms. To compare crossover

operators we need to have the same parameters in each execution and just change crossover operator.

So for each dataset we have made 10 random initial populations with Population Size equal to 100

and prevent from mutation and elitism operators by setting mutation probability 𝑃𝑚=0 and elitism

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

203

probability 𝑃𝑒=0. For every dataset we will execute the algorithm 10 times with each initial population

and record fitness of elite, sum of fitness of each generation, fitness of final result and number of

illegal generated offspring. Table 1 shows execution parameters.

Table 1.Execution parameters

Population Size 100

Number Of Generations 20

𝑃𝑐 1

𝑃𝑚 0

𝑃𝑒 0

Reinsertion Type Complete

Selection Type Roulette Wheel

Fitness Type Squared Error

Table 2 shows the datasets of our experimental results which consists of 9 famous real life datasets

[22] and 5 artificial datasets. Fig .8 shows these artificial datasets.

Table 2.Datasets

 dataset instances attributes clusters

sonar 208 60 2

Ionosphere 351 34 2

iris 150 4 3

tae 151 5 3

wine 178 13 3

vehicle 846 18 4

glass 214 9 6

ecoli 336 7 8

vowel 990 10 11

DS 2 680 2 2

DS 3 600 2 3

DS 4 750 2 4

DS 5 1200 2 5

DS 6 1600 2 6

After 100 executions of proposed genetic data clustering on each dataset with one of crossovers,

Table 3 shows the average of illegal generated offspring, Table 4 shows average of Fitness of final

result of executions, Table 5 shows average of fitness of best elite of generations and Table 6 shows

average of sum of fitness of generations for artificial datasets.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

204

Fig .8.Artificial datasets (a) DS 2 (b) DS 3 (c) DS 4 (d) DS 5 (e) DS 6 (f) DS 7

Region Crossover, Two Point Crossover and Three Point Crossover are not usable for datasets with 2

clusters and Three Point Crossover is not also usable for datasets with 3 clusters, so in all result tables

we don’t have any value for these datasets.

Table 3.Average of illegal generated offspring in each execution for artificial datasets

 Crossover DS 2 DS 3 DS 4 DS 5 DS 6

Clustered 0.00 0.00 0.00 0.00 0.00

Mixed 542.21 215.25 3.53 4.15 4.43

Multi Point 2.18 2.06 3.62 3.93 4.01

One Point 1.38 2.85 3.50 4.20 4.70

Random Mixed 363.70 142.98 4.92 7.51 7.53

Region - 2.17 3.86 5.31 5.29

Sequential 1273.29 1004.32 422.99 440.21 401.38

Three Point - - 3.08 3.67 4.08

Two Point - 1.84 3.21 3.76 4.99

Uniform 2.21 3.82 6.79 10.32 12.50

Variable to variable 2.26 6.23 12.25 16.27 20.36

Table 4.Average of Fitness of final result of executions for artificial datasets

Crossover DS 2 DS 3 DS 4 DS 5 DS 6

Clustered 0.00084801 0.00168425 0.00114500 0.00072495 0.00056112

Mixed 0.00084251 0.00166363 0.00107163 0.00067577 0.00052513

Multi Point 0.00083737 0.00167924 0.00106174 0.00067601 0.00052975

One Point 0.00083335 0.00165841 0.00108611 0.00067152 0.00052656

Random Mixed 0.00082711 0.00166024 0.00109162 0.00068310 0.00053573

Region - 0.00166160 0.00108675 0.00068533 0.00051703

Sequential 0.00083570 0.00159192 0.00096490 0.00059990 0.00044618

Three Point - - 0.00102699 0.00067304 0.00051788

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

205

Two Point - 0.00161057 0.00107561 0.00066429 0.00051719

Uniform 0.00084311 0.00167691 0.00109459 0.00067648 0.00053040

Variable to variable 0.00083917 0.00167202 0.00110183 0.00068983 0.00055876

Table 5.Average of fitness of best elite of generations for artificial datasets

Crossover DS 2 DS 3 DS 4 DS 5 DS 6

Clustered 0.00085 0.00168 0.00114 0.00073 0.00057

Mixed 0.00084 0.00166 0.00107 0.00067 0.00052

Multi Point 0.00084 0.00167 0.00106 0.00067 0.00052

One Point 0.00083 0.00165 0.00108 0.00066 0.00052

Random Mixed 0.00083 0.00166 0.00108 0.00068 0.00053

Region - 0.00166 0.00108 0.00068 0.00051

Sequential 0.00084 0.00159 0.00099 0.00061 0.00046

Three Point - - 0.00103 0.00066 0.00051

Two Point - 0.00161 0.00107 0.00066 0.00051

Uniform 0.00084 0.00166 0.00109 0.00067 0.00053

Variable to variable 0.00084 0.00167 0.00110 0.00069 0.00056

Table 6.Average of sum of fitness of generations for artificial datasets

Crossover DS 2 DS 3 DS 4 DS 5 DS 6

Clustered 0.07382 0.14452 0.10054 0.06442 0.05021

Mixed 0.06928 0.14130 0.09100 0.05723 0.04418

Multi Point 0.06984 0.14433 0.09014 0.05712 0.04402

One Point 0.07016 0.14186 0.09237 0.05658 0.04449

Random Mixed 0.06945 0.14284 0.09162 0.05827 0.04599

Region - 0.14317 0.09231 0.05813 0.04441

Sequential 0.06028 0.11676 0.07696 0.04872 0.03627

Three Point - - 0.00851 0.00566 0.00436

Two Point - 0.13767 0.00908 0.00564 0.00438

Uniform 0.06972 0.14420 0.09310 0.05833 0.04570

Variable to variable 0.06983 0.14237 0.09270 0.05802 0.04697

After 100 executions of proposed genetic data clustering on each real life dataset with one of

crossovers, Table 7 shows the average of illegal generated offspring, Table 8 shows average of Fitness

of final result of executions, Table 9 shows average of fitness of best elite of generations and Table 10

shows average of sum of fitness of generations for real life datasets.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

206

Table 7.Average of illegal generated offspring in each execution for real life datasets

 Crossover sonar Ionosphere iris tae wine vehicle glass ecoli vowel

Clustered 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mixed 519.74 528.92 223.88 218.35 227.22 4.60 6.40 6.90 8.23

Multi Point 4.14 2.92 3.16 3.83 3.23 5.05 5.13 5.30 64.02

One Point 4.47 3.70 3.47 5.84 3.91 5.88 6.70 8.29 8.29

Random Mixed 346.55 350.05 147.28 146.99 153.23 6.88 10.62 15.56 22.52

Region - - 2.61 4.36 3.85 4.60 7.36 8.75 11.05

Sequential 1178.32 1233.31 1093.07 977.51 1025.57 432.95 433.83 384.92 369.73

Three Point - - - - - 3.58 5.56 5.86 7.80

Two Point - - 2.53 2.37 3.16 4.74 6.91 6.97 8.63

Uniform 4.94 4.78 5.47 6.07 4.36 9.99 14.07 20.12 33.91

Variable to variable 6.19 4.74 7.22 12.36 7.91 14.28 23.19 33.01 44.27

Table 8.Average of Fitness of final result of executions for real life datasets

 Crossover Sonar Ionosphere iris tae wine vehicle glass ecoli vowel

Clustered 3.46178E-03 1.11426E-03 8.50079E-03 4.70357E-04 3.77442E-05 1.39398E-05 3.28827E-03 1.22544E-02 4.66348E-04

Mixed 3.44348E-03 1.08846E-03 8.44622E-03 4.61394E-04 3.72245E-05 1.37703E-05 3.18056E-03 1.21832E-02 4.58374E-04

Multi Point 3.43343E-03 1.09319E-03 8.47241E-03 4.58741E-04 3.75412E-05 1.37981E-05 3.17294E-03 1.21759E-02 4.61440E-04

One Point 3.43915E-03 1.07638E-03 8.41907E-03 4.56790E-04 3.74026E-05 1.37976E-05 3.20884E-03 1.21713E-02 4.59968E-04

Random Mixed 3.45492E-03 1.08221E-03 8.46690E-03 4.64791E-04 3.74060E-05 1.39277E-05 3.23321E-03 1.20635E-02 4.55068E-04

Region 3.46178E-03 1.11426E-03 8.42433E-03 4.63160E-04 3.76147E-05 1.37676E-05 3.19985E-03 1.16865E-02 4.56309E-04

Sequential 3.45506E-03 1.10726E-03 8.25742E-03 4.66323E-04 3.47172E-05 1.34510E-05 3.01580E-03 1.14654E-02 4.38889E-04

Three Point - - - - - 1.37898E-05 3.17318E-03 1.20970E-02 4.60977E-04

Two Point - - 8.42637E-03 4.54271E-04 3.66757E-05 1.37638E-05 3.24468E-03 1.21709E-02 4.60893E-04

Uniform 3.43668E-03 1.08869E-03 8.49173E-03 4.51794E-04 3.76887E-05 1.38697E-05 3.18510E-03 1.21299E-02 4.54180E-04

Variable to variable 3.41493E-03 1.08983E-03 8.46372E-03 4.40359E-04 3.73028E-05 1.38589E-05 3.22982E-03 1.22375E-02 4.57757E-04

Table 9.Average of fitness of best elite of generations for artificial datasets

 Crossover sonar Ionosphere iris tae wine vehicle glass ecoli vowel

Clustered 3.46215E-03 1.11426E-03 8.48134E-03 4.70357E-04 3.74480E-05 1.38692E-05 3.26546E-03 1.22807E-02 4.69179E-04

Mixed 3.46178E-03 1.09248E-03 8.40545E-03 4.62500E-04 3.66855E-05 1.37766E-05 3.18341E-03 1.22074E-02 4.63073E-04

Multi Point 3.43466E-03 1.09815E-03 8.44695E-03 4.59853E-04 3.71451E-05 1.37675E-05 3.18183E-03 1.22015E-02 4.66557E-04

One Point 3.44399E-03 1.08034E-03 8.42109E-03 4.56782E-04 3.70485E-05 1.37606E-05 3.19743E-03 1.22281E-02 4.65668E-04

Random Mixed 3.45306E-03 1.08597E-03 8.41131E-03 4.62953E-04 3.69083E-05 1.37768E-05 3.24134E-03 1.21803E-02 4.61419E-04

Region 3.46178E-03 1.11426E-03 8.37041E-03 4.60134E-04 3.71253E-05 1.36860E-05 3.20055E-03 1.18944E-02 4.61574E-04

Sequential 3.45738E-03 1.10597E-03 8.25742E-03 4.70357E-04 3.47172E-05 1.35268E-05 3.08040E-03 1.17781E-02 4.49285E-04

Three Point - - - - - 1.37681E-05 3.19158E-03 1.21422E-02 4.64935E-04

Two Point - - 8.42523E-03 4.56367E-04 3.64395E-05 1.37318E-05 3.22722E-03 1.21902E-02 4.65376E-04

Uniform 3.43855E-03 1.09162E-03 8.45137E-03 4.54065E-04 3.72689E-05 1.38459E-05 3.19442E-03 1.22374E-02 4.60478E-04

Variable to variable 3.42109E-03 1.09029E-03 8.44019E-03 4.42438E-04 3.69262E-05 1.38059E-05 3.22020E-03 1.22393E-02 4.60366E-04

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

207

Table 10.Average of sum of fitness of generations for real life datasets

 Crossover sonar Ionosphere iris tae wine vehicle glass ecoli vowel

Clustered 3.14565E+00 9.47127E-01 7.21828E+00 3.94914E-01 3.00118E-02 1.19574E-02 2.85054E+00 1.14176E+01 4.43803E-01

Mixed 3.13190E+00 9.39208E-01 7.17379E+00 3.92357E-01 2.95199E-02 1.16593E-02 2.81073E+00 1.13286E+01 4.40774E-01

Multi Point 3.12041E+00 9.39643E-01 7.20950E+00 3.91995E-01 2.98675E-02 1.17057E-02 2.81932E+00 1.12770E+01 4.43712E-01

One Point 3.13115E+00 9.20178E-01 7.11157E+00 3.89313E-01 2.96480E-02 1.16678E-02 2.82389E+00 1.13720E+01 4.42896E-01

Random Mixed 3.13125E+00 9.31567E-01 7.12949E+00 3.93548E-01 2.92679E-02 1.17440E-02 2.84640E+00 1.13133E+01 4.40585E-01

Region 3.11721E+00 8.95216E-01 7.12095E+00 3.93526E-01 2.95540E-02 1.15751E-02 2.82734E+00 1.09158E+01 4.41624E-01

Sequential 3.11721E+00 8.95216E-01 5.89800E+00 3.77758E-01 2.37243E-02 1.09860E-02 2.67962E+00 1.04928E+01 4.27188E-01

Three Point - - - - - 1.15231E-02 2.81915E+00 1.13231E+01 4.43459E-01

Two Point - - 7.04533E+00 3.78926E-01 2.79687E-02 1.16811E-02 2.84111E+00 1.13005E+01 4.41625E-01

Uniform 3.12874E+00 9.36603E-01 7.13047E+00 3.87296E-01 2.97955E-02 1.17875E-02 2.81906E+00 1.13314E+01 4.39849E-01

Variable to variable 3.11597E+00 9.38340E-01 7.01385E+00 3.86687E-01 2.92487E-02 1.15631E-02 2.74941E+00 1.13072E+01 4.37571E-01

7. Conclusions

According to our experimental results, clustered crossover for genetic data clustering (CCGDC)

creates better offspring and increases the fitness of population with maintaining the genetic diversity

and results in feasible offspring chromosomes. Unlike two point and three point crossovers, the

number of chromosomes will not effect on efficiency and usability of proposed crossover .With a

suitable fitness function, when the algorithm converges, ideally most of genes of different

chromosomes of generation should have same values. Proposed crossover is heuristic enough to pay

attention to these common genes.

References

[1] John H. Holland, Adaptation in Natural and Artificial Systems, the University of Michigan Press, 1975.
[2] De Jong, Kenneth A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral

thesis, Dept. Computer and Communication Sciences, University of Michigan, Ann Arbor.

[3] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Addison –Wesley, New York,

1989.

[4] L. Davis,Job-shop Scheduling with Genetic Algorithms”. Proceedings of an International Conference on Genetic

Algorithms and Their Applications, pp. 136-140, 1985.

[5] I.M. Oliver, D. J. Smith and J.R.C. Holland. “A Study of Permutation Crossover Operators on the Travelling

Salesman Problem”. In J.J. Grefenstette (ed.). Genetic Algorithms and Their Applications: Proceedings of the 2nd

International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hilladale, NJ, 1987.

[6] S.J. Wu, P.T. Chow, Steady-state genetic algorithm for discrete optimization of trusses, Computers and Structures

56 (6) (1995) 979–991.

[7] W.M. Jenkins, On the application of natural algorithms to structural design optimization, Engineering Structure 19

(4) (1997) 302–308.

[8] K. Dejong, W.M. Spears, An analysis of the interacting roles of population sizes and crossover in genetic function

optimization, in: H.P. Schwefel, R. Manner (Eds.), Proceedings of Parallel Problem Solving from Nature,

Springer, Berlin, 1990, pp. 38–47.

[9] G. Syswerda, Uniform crossover in genetic algorithms, in: J.D. Schaffer, M.Kaufman (Eds.), Proceedings of the

Third International Conference on Genetic Algorithms, 1989, pp. 2–9.

[10] O. Hasanc¸ ebi, F. Erbatur, Evaluation of crossover operators in genetic algorithms based optimum structural

design, Computers and Structures 1999 78 (2000) 435–448.

[11] D. Zaharie, Influence of crossover on the behavior of differential evolution algorithms, Applied Soft Computing 9

(June (3)) (2009) 1126–1138.

Gh. H. Mohebpour, A. Ghorbannia Delavar / J. Math. Computer Sci. 11 (2014) 191-208

208

[12] Mustafa Kaya, The effects of two new crossover operators on genetic algorithm performance, Applied Soft

Computing 11 (2011) 881–890.

[13] Hong He , YonghongTan, A two-stage genetic algorithm for automatic clustering, Neurocomputing 81 (2012) 49–

59.

[14] Dongxia Chang, Yao Zhao , Changwen Zheng , Xianda Zhang , A genetic clustering algorithm using a message-

based similarity measure, Expert Systems with Applications 39 (2012) 2194–2202.

[15] Amin Aalaei, Hamed Fazlollahtabar, Iraj Mahdavi, Nezam Mahdavi-Amiri, Mohammad Hassan Yahyanejad, A

genetic algorithm for a creativity matrix cubic space clustering: A case study in Mazandaran Gas Company,

Applied Soft Computing 13 (2013) 1661–1673.

[16] Jose A. Castellanos-Garzon , Fernando Diaz, An evolutionary computational model applied to cluster analysis of

DNA microarray data, Expert Systems with Applications 40 (2013) 2575–2591.

[17] Riccardo Poli , W. B. Langdon,Genetic programming with one-point crossover,In P. K. Chawdhry, R. Roy, and R.

K. Pant, editors, Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing.

Springer-Verlag London, 23-27 June 1997.

[18] V. A. Cicirello and S. F. Smith,Modeling GA performance for control parameter optimization,In GECCO-2000:

Proceedings of the Genetic and Evolutionary Computation Conference, pages 235–242.Morgan Kaufmann

Publishers, 8-12 July 2000.

[19] M, Kaya, The effects of two new crossover operators on genetic algorithm performance, Applied Soft Computing,

11(1) (2011) 881-890.

[20] G. Syswerda, Uniform crossover in genetic algorithms, in: J.D. Schaffer, M.Kaufman (Eds.), Proceedings of the

Third International Conference on Genetic Algorithms, 1989, pp. 2–9.

[21] O. Hasanc¸ ebi, F. Erbatur, Evaluation of crossover operators in genetic algorithms based optimum structural

design, Computers and Structures 1999 78 (2000) 435–448.

[22] http://repository.seasr.org/Datasets/UCI/arff/

[23] R. Maghsoudi , A. Ghorbannia Delavar, S. Hoseyny, R. Asgari, Y. Heidari, Representing the New Model for

Improving K-Means Clustering Algorithm based on Genetic Algorithm, The Journal of Mathematics and

Computer Science Vol .2 No.2 (2011) 329-336.

