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Abstract 
A numerical method for solving Black-Scholes equation is presented. The method is based upon 

Bernstein multi-scaling basis approximations. The properties of Bernstein multi-scaling functions are first 

presented. These properties together with the forward Euler and Ritz-Galerkin method are then utilized to 

reduce the Black-Scholes equation to the solution of algebraic equations. Illustrative example is included 

to demonstrate the validity and applicability of the new technique. 
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1. Introduction 

Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. 

Because of this rapid change, modern financial instruments have become extremely complex. Options are 

one of the most important types of financial instruments, for a detailed discussion of options the reader is 

referred to [2], [3]. In 1973, a major breakthrough occurred in the field of finance when researchers Fischer 

Black and Myron Scholes developed a model for pricing options using continuous-time mathematics. Black 

and Scholes transformed the option pricing problem into the task of solving a (parabolic) partial differential 

equation (PDE) with a final condition [1]. European option prices (in the put case) under Black-Scholes 

model satisfy the well-known Black-Scholes partial differential equation: 
 

     ut(x, t) +   
1

2
 σ2 x2 uxx(x, t)  +  r x ux (x, t) −  r u(x, t) =  0, (x, t) ∈  [0, ∞) ×  [0, T], 

     u(x, T) =  max (K − x, 0),                                                                                                              (1) 

     u(0, t) =  K e−r(T−t), lim
𝑥→∞

 u(x, t)  =  0. 

 

Where the strike price 𝐾, the risk free interest rate 𝑟, the volatility 𝜎, and the expiry date 𝑇, are all positive 

constants. We can transform the Black-Scholes equation (1) to the heat equation by change of variables, 

having found the closed-form solution to the heat equation, it is possible to transform it back to find the 

corresponding solution of the Black-Scholes equation. See [2] for details. Using numerical methods, one 
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can approximate solutions of Black-Scholes differential equation. Some numerical methods such as finite 

difference, finite element and binomial ones were used for this purpose [4, 5, 6, 7, 8, 9, 10]. In this article 

we are aimed to use Bernstein Ritz-Galerkin method for approximate solutions of Black-Scholes partial 

differential equation (1). 
 

 

2. Properties of Bernstein polynomials 

The Bernstein polynomials of m-th degree are defined on the interval [a, b]  as [11, 12, 13] 

 

𝐵𝑖,𝑚(𝑥) = (
𝑚

𝑖
)

(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑚−𝑖

(𝑏 − 𝑎)𝑚
, 0 ≤  𝑖 ≤  𝑚, 

where 

(
𝑚

𝑖
) =  

𝑚!

𝑖! (𝑚 − 𝑖)!
.  

 

These Bernstein polynomials form a basis on [a, b]. There are m + 1 polynomials of degrees m. For 

convenience, we set 𝐵𝑖,𝑚(𝑥) = 0 if 𝑖 < 0 or 𝑖 > 𝑚.  A recursive definition can also be used to generate the 

Bernstein polynomials over [𝑎, 𝑏] so that the 𝑖-th 𝑚-th degree Bernstein polynomials can be written 

 

𝐵𝑖,𝑚(𝑥) =
(𝑏 −  𝑥)

𝑏 − 𝑎
 𝐵𝑖,𝑚−1(𝑥) +  

(𝑥 − 𝑎)

𝑏 − 𝑎
 𝐵𝑖−1,𝑚−1(𝑥). 

 

It can readily be shown that each of the Bernstein polynomials is positive and the sum of all the Bernstein 

polynomials is unity for all real 𝑥 ∈  [𝑎, 𝑏],  i.e.  ∑ 𝐵𝑖,𝑚
𝑚
𝑖=0 (𝑥) = 1.  It is easy to show that any given 

polynomial of degree  m  can be expanded in terms of these basis functions. 

 

 

3. Properties of Bernstein multi-scaling functions 
 

Bernstein multi-scaling functions 𝜓𝑖,𝑛(𝑡) = 𝐵𝑖,𝑚(𝑘𝑡 − 𝑛),   𝑖 = 0,1, … , 𝑚, have four arguments; translation 

argument 𝑛 = 0,1, … , 𝑘 − 1, argument 𝑘 > 1 can assume any positive integer, 𝑚 is the order of Bernstein 

polynomial on [0,1]  and 𝑡 is the normalized time. They are defined on the interval [0,1) as  

 

                     𝜓𝑖,𝑡(𝑡) =  {𝐵𝑖,𝑚(𝑘𝑡 − 𝑛),
𝑛

𝑘
≤ 𝑡 ≤

𝑛 + 1

𝑘
 

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
                                                                  (2) 

 

 

3.1 Function Approximation 

 

Suppose that  H = L2[0,1]  and  {𝜓𝑖,𝑛(𝑡)}
𝑖=0,𝑛=0

𝑚 ,𝑘−1
⊂   𝐻 be the set of multi scaling-functions of 𝑚-th degree 

and  

𝑌 =   𝑆𝑝𝑎𝑛{ 𝜓𝑖,𝑛(𝑡)  ;    𝑖 = 0,1, … , 𝑚,   𝑛 = 0,1, … , 𝑘 − 1}, 
and 𝑓 be an  arbitrary element in 𝐻. Since 𝑌 is a finite dimensional vector space, 𝑓 has the unique best 

approximation out of 𝑌 such as y0 ∈ Y  that is  

 

 ∃  𝑦0 ∈  𝑌 ;     ∀ 𝑦 ∈  𝑌     ‖𝑓 − 𝑦0‖2 ≤  ‖𝑓 − 𝑦‖2,  

where ‖𝑓‖2 = √〈𝑓, 𝑓〉 .  
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Since 𝑦0 ∈  𝑌 there exist the unique coefficients 𝑐𝑖,𝑛 such that 

𝑓 ≃ 𝑦0 = ∑ ∑ 𝑐𝑖,𝑛

𝑚

𝑖=0

𝑘−1

𝑛=0

𝜓𝑖,𝑛 = 𝑪⊤𝝓, 

where  

𝝓⊤ = [ 𝜓0,0 , 𝜓1,0 , … , 𝜓𝑚−1,0 , 𝜓𝑚,0, … , 𝜓0,𝑘−1, 𝜓1,𝑘−1 , … , 𝜓𝑚−1,𝑘−1, 𝜓𝑚,𝑘−1],   
 

𝑪⊤ = [ 𝑐0,0 , 𝑐1,0 , … , 𝑐𝑚−1,0 , 𝑐𝑚,0, … , 𝑐0,𝑘−1, 𝑐1,𝑘−1 , … , 𝑐𝑚−1,𝑘−1, 𝑐𝑚,𝑘−1],   
 

and 𝑪⊤ can be obtained by  

𝑪⊤ 〈𝝓, 𝝓〉 = 〈𝑓, 𝝓〉, 
where  

〈𝑓, 𝝓〉 =  ∫ 𝑓(𝑥)𝝓(𝑥)⊤
1

0

, 

and 〈𝝓, 𝝓〉 is a 𝑘(𝑚 + 1) × 𝑘(𝑚 + 1) matrix which is said dual operational matrix of 𝝓 denoted by �̅� and 

will be obtained in the following. 

�̅� =  〈𝝓, 𝝓〉 =  ∫ 𝝓(𝑥)𝝓(𝑥)⊤,
1

0

 

And then  
 

                                    𝑪⊤ = (∫ 𝑓(𝑥)𝝓(𝑥)⊤
1

0

) (�̅�)−1.                                                                         (3) 

In the following lemma we present an upper bound for the error approximation. 

 

Lemma 1. Suppose that the function 𝑔: [0,1) → ℝ  is 𝑚 + 1 times continuously differentiable, 

 𝑔 ∈ 𝐶𝑚+1[𝑡0 , 𝑡𝑓] and  

𝑌 = 𝑆𝑝𝑎𝑛{𝜓𝑖,𝑛(𝑡) ;     𝑖 = 0,1, … 𝑚, 𝑛 = 0,1, … , 𝑘 − 1} 

 

If 𝑪⊤𝝓  is the best approximation 𝑔 out of  𝑌, then the mean error bounded is presented as follows: 

‖𝑔 − 𝑪⊤𝝓‖2 ≤   
𝑀

(𝑚 + 1)! 𝑘𝑚+1  √2𝑚 + 3
 , 

where   𝑀 = max
𝑥∈[t0,tf]

|𝑔𝑚+1(𝑥)|.      

 

Proof.   We consider the Taylor polynomial of order  𝑚 for function 𝑔 on [
𝑛

𝑘
,

𝑛+1

𝑘
). 

𝑦𝑛(𝑥) = 𝑔 (
𝑛

𝑘
 ) + 𝑔′ ( 

𝑛

𝑘
) (𝑥 −

𝑛

𝑘
) + ⋯ + 𝑔(𝑚)  ( 

𝑛

𝑘
)  

(𝑥 −
𝑛
𝑘

)
𝑚

𝑚!
 , 

for 𝑛 = 0,1, … , 𝑘 − 1  which we know  

            |𝑔(𝑥) − 𝑦𝑛(𝑥)| ≤  |𝑔𝑚+1(𝜂)| 
(𝑥 −

𝑛
𝑘

)
𝑚+1

(𝑚 + 1)!
 ,                                                                 (4) 

where 𝜂 ∈ (
𝑛

𝑘
,

𝑛

𝑘+1
).   Since 𝑪⊤𝝓 is the best approximation of 𝑔 out of  𝑌, 𝑦𝑛 ∈ 𝑌 and using (4) we have  

‖𝑔 − 𝑪⊤𝝓‖2
2 =  ∫ |𝑔(𝑥) − 𝑪⊤𝝓(𝑥)|2𝑑𝑥 =   ∑ ∫ |𝑔(𝑥) − 𝑪⊤𝝓(𝑥)|2

𝑛+1
𝑘

𝑛
𝑘

𝑑𝑥 

𝑘

𝑛=0

1

0
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             ≤  ∑ ∫ |𝑔(𝑥) − 𝑦𝑛(𝑥)|2

𝑛+1
𝑘

𝑛
𝑘

𝑘−1

𝑛=0

𝑑𝑥 ≤  ∑ ∫ [𝑔(𝑚+1)(𝜂)
(𝑥 −

𝑛
𝑘

)
𝑚+1

(𝑚 + 1)!
]

𝑛+1
𝑘

𝑛
𝑘

𝑘−1

𝑛=0

2

𝑑𝑥  

            ≤
𝑀2

(𝑚 + 1)!
∑ ∫ (𝑥 −

𝑛

𝑘
)

2𝑚+2

𝑑𝑥 =  
𝑀2

[(𝑚 + 1)!]2𝑘2𝑚+2(2𝑚 + 3)
.

𝑛+1
𝑘

𝑛
𝑘

𝑘−1

𝑛=0

          

and by taking square root we have the above bound.  □ 

 

Using the Bernstein scaling functions basis, we will have two degrees of freedom which increase the 

accuracy of the approximation. One of these parameters is the argument 𝑘 and another one is 𝑚 which 

corresponds to the degree of Bernstein polynomials in every subinterval   [
𝑛

𝑘
,

𝑛+1

𝑘
). As can be seen in the 

above lemma, the upper bound of the error depends on 
1

(𝑚+1)!𝑘𝑚+1√2𝑚+3
   which shows that the error 

reduces to zero very fast as 𝑚 and 𝑘 increase. This is one of the advantages of the Bernstein scaling 

approximation. 

 

 

4.  Bernstein Ritz Galerkin method 
 

By change of variable  t → T − t we can rewrite equation (1) as  
 

                             𝑢𝑡(𝑥, 𝑡) −  ℒ(𝑢(𝑥, 𝑡)) = 0,     (𝑥, 𝑡)  ∈  [0, ∞) × [0, 𝑇],                                                 (5)                                     

                         𝑢(0, 𝑡) = 𝐾 𝑒−𝑟𝑡 ,       lim
𝑥→∞

𝑢(𝑥, 𝑡) =  0 .                                                                                         

 

Where ℒ is a linear partial differential operator introduced by  
 

ℒ(𝜙) =
1

2
𝜎2𝑥2

𝜕2𝜙

𝜕𝑥2
+ 𝑟𝑥

𝜕𝜙

𝜕𝑥
− 𝑟 𝜙. 

 

The semi-infinite domain in the space direction is replaced by an interval [0, 𝐿] for a sufficiently large 𝐿. 

Given the discretization of the time interval [0, 𝑇] 
 

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇, 
 

with time step size 𝑡 = 𝑡𝑛+1 − 𝑡𝑛 , the forward Euler method for equation (5) is  

 

            𝑢(𝑥, 𝑡𝑛+1) − 𝛿𝑡 ℒ (𝑢(𝑥, 𝑡𝑛+1)) = 𝑢(𝑥, 𝑡𝑛),                                                                   (6)           
 

so for each time step, we have an ordinary differential equation with two boundary conditions. In equation 

(6)  𝑢(𝑥, 𝑡𝑛+1) is unknown and 𝑢(𝑥, 𝑡𝑛) in the right hand side is obtain from initial condition of PDE.  

Let {𝜓𝑖,𝑛(𝑡)}
𝑖=0,𝑛=0

𝑚 ,𝑘−1
 be the Bernestein scaling functions defined as (2) so the total number of this functions 

is 𝑀 = 𝑘(𝑚 + 1)  We can rewrite these functions as  𝜙1(𝑥) , 𝜙2 (𝑥), … , 𝜙𝑀 (𝑥)  by changing indices, 

where  

𝜓𝑖𝑛(𝑥) = 𝜙𝑖+ 𝑛 (𝑚+1)+ 1(𝑥) ∶=   𝜙𝑗(𝑥),   𝑗 = 1,2, … , 𝑀. 

  
The approximation of the unknown function  𝑢(𝑥, 𝑡𝑛+1)  may be written as  
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                             𝑢(𝑥, 𝑡𝑛+1)   =  ∑ 𝑐𝑗 𝜙𝑗(𝑥)

𝑀

𝑗=1

   =  𝑪⊤𝝓                                                                       (7)    

Where 𝐂 = [c1, c2, … , cM]⊤ is the vector of unknown coefficient that must be found and  

𝝓 =  [𝜙1(𝑥), 𝜙2(𝑥), … 𝜙𝑀(𝑥)]⊤ is the vector of basis functions. Substituting equation (7) into equation 

(6) yields   

            ∑ 𝑐𝑗  (𝜙𝑗(𝑥) − 𝛿𝑡 ℒ (𝜙𝑗(𝑥))) = 𝑢(𝑥, 𝑡𝑛).

𝑀

𝑗=1

                                                                                 (8)      

Taking the inner product from both sides of   (8) with  𝜙𝑖(𝑥) , 𝑖 = 1,2, … , 𝑀 yields  

 

  ∑ 𝑐𝑗  〈(𝜙𝑗(𝑥) − 𝛿𝑡 ℒ (𝜙𝑗(𝑥))) , 𝜙𝑖(𝑥)〉      =  〈𝑢(𝑥, 𝑡𝑛), 𝜙𝑖(𝑥)〉 , 𝑖 = 2,3, … , 𝑀 − 1.           (9)        

𝑀

𝑗=1

 

 

From boundary conditions we have  

              ∑ 𝑐𝑗𝜙𝑗(0) = 𝐾 𝑒−𝑟 𝑡𝑛+1

𝑀

𝑗=1 

  ,       ∑ 𝑐𝑗𝜙𝑗(𝐿) = 0

𝑀

𝑗=1 

 .                                                             (10) 

The linear algebraic equations (9) and (10) can be written as the matrix form  

 

                                    𝑨 𝑪 = 𝒃                                                                                                                      (11)       
 

Where the matrix 𝑨 has entries  

𝑨𝑖𝑗 =  ∫ (𝜙𝑗(𝑥) − 𝛿𝑡 ℒ (𝜙𝑗(𝑥))) 𝜙𝑖(𝑥)
𝐿

0

 𝑑𝑥 ,     𝑗 = 1,2, … , 𝑀     𝑖 = 2,3, … , 𝑀 − 1, 

𝑨1𝑗 =  𝜙𝑗(0),     𝑗 = 1,2, … , 𝑀,                                                                                                     

𝑨𝑀𝑗 =  𝜙𝑗(𝐿),    𝑗 = 1,2, … , 𝑀,                                                                                                     

 

and the elements of right hand side vector 𝒃  are  

𝒃𝑖 =  ∫ 𝑢(𝑥, 𝑡𝑛)𝜙𝑖(𝑥)𝑑𝑥, 𝑖 = 2,3, … , 𝑀 − 1,   
𝐿

0

 

𝒃1 = 𝐾 𝑒−𝑟𝑡𝑛+1 ,                                                                 
𝒃𝑀 = 0.                                               

 

We have to solve the system of linear equation (11) at 𝑛-th time step to find the solution 𝑢(𝑥, 𝑡𝑛)  for  

𝑛 = 2,3, … , 𝑁. We would notice that the coefficients matrix 𝑨 is unchanged in time steps. 

 

 

5.   Numerical results 
 

 

To illustrate the description above and to test the Bernstein Ritz-Galerkin (BRG) method developed here 

for solving the Black-Scholes equation, we give a numerical example.  

 

Consider (5) with parameters 

 

𝐾 = 10,   𝑇 =  0.5,    𝑟 =  0.5,   𝜎 =  0.25 . 
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The analytical solution satisfying the PDE (5) with the given initial and boundary conditions is [2] 

 

𝑢(𝑥, 𝑡) =  𝐾𝑒−𝑟𝑡𝒩(−𝑑2) −  𝑥 𝒩(−𝑑1), 
Where 

𝒩(𝑦) =
1

√2𝜋
∫ 𝑒−

𝑢2

2

𝑦

−∞

𝑑𝑢   

 

Is the cumulative distribution function of standard normal distribution and 

𝑑1 =
ln (

𝑥
𝐾

) + (𝑟 +
𝜎2

2
𝑡 ) 

𝜎√ 𝑡 
,   

𝑑2 =
ln (

𝑥
𝐾) + (𝑟 −

𝜎2

2 𝑡 ) 

𝜎√ 𝑡 
.  

 

We use the BRG method with 𝑀 = 30, 𝑘 = 3  and 𝑁 = 101  temporal levels to compute u(x, t). 

Financially the value of 𝑢(𝑥, 𝑇) in equation (5) is important because it shows the price of option at present 

time. The results are presented in table 1.  Figure 1 shows the solution of PDE in the entire of domain. 

Figures 2 and 3 present the solution and the absolute error at time 𝑡 = 𝑇 versus the parameter 𝑥  
respectively. 

 

 
 

 

                        Table 1:  Comparison between BRG and exact solution to 𝑢(𝑥, 𝑡) at the  

                        time 𝑡 = 𝑇 for various values of 𝑥. 

 

 

 

 

 

 

 

 

 

From Table 1, it can be seen that the BRG method provides an accurate approximation for pricing European 

options. We observe that the accuracy grows as the number of basis increases gradually, then the solution 

can be computed with a small error in a small computer time. 

 

 

𝒙   Exact 
solutions  

BRG 
solutions 

  𝒙   Exact 
solutions 

BRG 
solutions 

1 8.7530     8.7531 11 0.2697   0.2690 
2 7.7530     7.7531    12 0.1131  0.1130 
3 6.7530      6.7531    13 0.0434    0.0436 
4 5.7530        5.7531      14 0.0154     0.0157 
5 4.7531         4.7531      15 0.0052  0.0054 
6     3.7543               3.7544          16     0.0016       0.0017 
7     2.7702      2.7706 17 0.0005   0.0005 
8 1.8556        1.8560 18 0.0001   0.0001 
9 1.1038          1.1034    19 0.0000   0.0000 

10 0.5791        0.5782   20 0.0000   0.0000 
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     Figure 1: Surface plot of the numerical solution 𝑢(𝑥, 𝑡) at the entire of 

 domain [0, 𝐿] × [0, 𝑇].                                                                              

 

Figure 2: Curve plot of the numerical solution 𝑢(𝑥, 𝑡) at time 𝑡 =  𝑇 by using  

                 M= 30, 𝑘 = 3 and 𝑁 = 101 temporal levels.                                                                         
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Figure 3: Absolute error of the BRG solution 𝑢(𝑥, 𝑡) at time 𝑡 =  𝑇 by using 

M= 30, 𝑘 = 3 and 𝑁 = 101 temporal levels.                                                        

 

 

 

6.   Conclusions 
 

In this article the Bernstein multi-scaling approximation in forward Euler and Ritz-Galerkin method was 

used successfully for solving the Black-Scholes equation. Bernstein multi-scaling functions as basis have 

different resolution capabilities for expanding functions and therefore by increasing dilation parameter 𝑘 we 

get local approximation and this is good for equations that have non-smooth solution. Illustrative example 

is included to demonstrate the validity and applicability of the new technique. 

 

 

References 

[1] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, Journal of Political 

Economy, (1973), 637-659. 

[2] J. C. Hull, “Options, futures, and other derivatives”, Pearson Prentice Hall, Upper Saddle River, 

NJ, 6.ed, (2006). 

[3] P. Wilmott, “Introduces quantitative finance”, John Wiley & Sons, (2007). 

[4] Y. Achdu, O. Pironneau, “Computational methods for option pricing”, SIAM, (2005). 

[5] D. J. Duffy, “Finite Difference Methods in Financial Engineering”, John Wiley & Sons, (2006). 

[6] J. C. Cox, “Option pricing: a simplified approach”, Journal of Financial Economics 7 (1979), 229-

263. 



M. Moradipour, S. A. Yousefi / J. Math. Computer Sci.    15 (2015) 272 - 280 
 

280 
 

[7] M. Dehghan, S. Pourghanbar, “Solution of the Black-Scholes equation for pricing of barrier 

option”, Z. Naturforsch., A, Vol. 66a (2011), 289-296. 

[8] J. Ankudinova, M. Ehrhardt, ”On the numerical solution of nonlinear Black–Scholes equations”, 

Computers and Mathematics with Applications 56 (2008), 799-812. 

[9] R. Company, E. Navarro, J.  R. Pintos, E. Ponsoda, “Numerical solution of linear and nonlinear 

Black-Scholes option pricing equations”, Computers and Mathematics with Applications 56 

(2008), 813-821. 

[10] M. Chawla, M. Al-zanaidi, D. Evans, “Generalized Trapezoidal Formulas for  the Black-Scholes 

Equation of Option Pricing”, International Journal of Computer Mathematics Vol. 80, No. 12, 

(2003), 1521-1526. 

[11] M. Idrees Bhatti, P. Bracken, “Solutions of differential equations in a Bernstein polynomial 

basis”, J. Comput. Appl. Math. 205 (2007), 272-280. 

[12] S. A. Yousefi, M. Behroozifar, “Operational matrices of Bernstein polynomials and their 

applications”, International Journal of Systems Science, Vol. 41, No. 6, (2010), 709-716. 

[13] S. A. Yousefi, “B-polynomial multiwavelets approach for the solution of Abel's integral 

equation”, International Journal of Computer Mathematics, Vol. 87, No. 2, (2010), 310-316. 

 

  


