

Journal of mathematics and computer science 11 (2014), 93-104

An Ontology-Based Approach For Software Architectural Knowledge

Management

Narges Choobdaran 1, Sayed Mehran Sharfi
2 , Mohamad Reza Khayyambashi

3

1Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University,
Esfahan, Iran

2Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University,
Esfahan, Iran

3Computer Department, Faculty of Computer Engineering, University of Esfahan,
Esfahan, Iran

choobdaran.narges@yahoo.com, sharafi@iaun.ac.ir, m.r.khayyambashi@eng.ui.ac.ir

Article history:

Received April 2014

Accepted May 2014

Available online June 2014

Abstract:
 Over the past few years, a large number of models, ontologies and tools have been proposed to

capture, share and the management of architectural knowledge (AK) and particularly architectural

design decisions (ADD) as an important part of AK of a software-intensive system. However, the

growing tendency in Globalization of Software Development sets the stage for new challenges in the

management of AK in a geographically distributed context in which it seems the existing AK models

and tools are no longer sufficient for such setting. In this paper we develop an ontology-based

approach to manage AK in order to partly mitigate the deficiencies of existing AK approaches in a

distributed software devotement.

Keywords: Software Architecture, Architectural Knowledge Management, Architectural Design

Decision, Ontology

1. Introduction

The software architecture society has had a remarkable tendency towards the architectural

knowledge concept in recent years. Architectural knowledge management (AKM) is of special

importance for global software development (GSD); software systems, which require the

cooperation and coordination of, team members distributed across geographically. Architectural

knowledge is a knowledge that is produced along with software architecture during architectural

production process. Architectural knowledge is considered an essential element for architectural

production process in a way that it can enhance the quality of that process and, consequently,

the quality of architecture itself. Some define architecture knowledge as: AK= design decisions +

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

94

architectural design [3]. It seems that most people agree that at least one part of architecture

includes rationale, assumptions and decisions that lead to a specific design. Ordinary methods to

record architectural knowledge include documenting knowledge in files or using tools. However,

the following challenges are seen in the knowledge management of GSD systems [17]:

 Evolution: The requirement for change and development is seen along the life of a

software program [10]. Software architecture can be considered a decision making

process throughout which the software architect ought to make the right decisions at

the right times. People do not usually work on a single system during their lifetime. The

different dialects of stakeholders in GSD and growing complexity due to the expansion

of global software systems have led to some improper AKM produced along the

production phases of software architecture. [4] For example, a system designer might

leave the project when the system is completed or is being implemented. If the systems

designer does not document their knowledge and information system, that precious

knowledge may be lost due to the systems designer leaving. If the system requires

changes in the future, either inexperienced decisions will have to be taken or a lot of

time be spent on the retrieval and reconstruction of the lost knowledge failing to

record architectural knowledge and/or design decisions in GSD leading to higher costs

of software systems maintenance and completion.

 Knowledge coordination and consistency: In distributive systems, each system activity

is done in a certain section of the organization. An important challenge in such systems

is to coordinate and adapt with the knowledge that exists along architectural phases.

For example, with a requirement changing, the decisions and products related to that

requirement will also change. The information traceability and adaption capability in

those systems will enhance our understanding of architecture.

 Communication: Proper interaction among stakeholders means that both the sender

and receiver have a common understanding of the subject in question. Geographical

distances in GSD deprive the stakeholders of the opportunity to have face-to-face

communication despite the fact that stakeholder interaction is very important in GSD

systems.

 Control: Focusing on the management of the tasks done along architectural phases and

recording it are important for understanding and completing software systems, but

challenging in GSD systems.

In order to solve these challenges, alternatives are required that develop communication in a

distributive medium among individuals and have an array of characteristics based on knowledge

coordination and communication strategies. That knowledge may be exchanged among

stakeholders informally through simultaneous communication such as chatting or through non-

simultaneous communications that consists of recording knowledge in weblog or wiki email.

Wikis are lightweight documentations with a shared structure suitable to keep distributive

knowledge. In fact, wikis use proper function to store and keep the history of the activities done,

thus, removing knowledge-sharing problem and determining stakeholder’s roles *6, 7+. Another

advantage of wikis is easy access to pages and the possibility to make changes to them by

connecting to the internet in addition to using a simple browser. A shortcoming of wiki pages is

their inability to understand semantic relationships between entities. Semantic wiki is a

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

95

developed wiki medium based on semantic technology that supports such semantic concepts as

semantic annotation and semantic investigation. Semantic wiki can be used in different software

engineering fields such as architectural design and architectural knowledge reuse [8].

Design decision storage and maintenance and the logic beyond that as part of the knowledge

plays an important role in effective interaction between stakeholders along architectural phases

and also in architectural knowledge completion and maintenance [5]. The existing models and

anthologies have paid less attention to offering a proper ontology in order to complete the

distributive software system and using the semantic wiki for stakeholder interaction, knowledge

reasonability and architectural knowledge marketing considering decisions as a primary entity.

This article aims at offering a proper ontology to complete the distributive software system and

using a semantic wiki called data wiki in order to remove these challenges and shortcomings.

2. Review of Literature

As said above, the recording and management of architectural knowledge in a decisive manner

through a systematic method will improve an organization’s architectural capabilities,

stakeholders’ interaction, quality and traceability of architectural design, and software systems

maintenance, and completion. By using such a method, knowledge vaporization can be avoided

to a great extent. Therefore, researchers and experts have made great efforts in the past few

years to develop tools, models and ontologies that can explicitly record and share architectural

decisions. These efforts have resulted in many different models emerging to record architectural

decisions. One of the initial models in the field of ADD was proposed by Tyree and Akerman

[20,22] which was used to model ADD as a text template. This template is used to record the ADD

by capturing design issue, assumptions and constraints of resulting system, arguments for making

decisions, its implications and its relationships with other decisions and artifacts. Neil et al. have

claimed that they can reduce the effort made to record design decision by using patterns. They

compared pattern with Tyree’s decision template and noticed that a lot of characteristics of

patterns match the entities of Tyree’s decision template. But architectural patterns cannot

alleviate software architect from all responsibility from documenting the ADDs. For instance, the

architect should make the documentation personally for application-specific decisions [21].

Kruchten suggests an ontology to model architectural design decision in software- intensive and

complicated systems. [9] in his ontology, each architectural design decision may be placed in one

of the following categories: existence decisions, behavior decisions, property decisions. In

Kruchten’s ontology, each design decision may have the following characteristics: rationale, state,

class. This type of classification can be useful for investigations into a variety of design decisions

belonging to a specific subject matter or qualitative specification. In addition to the

characteristics and specifications that each design decision can have, a design decision may have

attachments or relationships with other design decisions. The tool offered for this ontology is

capable of listing decision and relations, visualizing design structure and temporal view of design

decisions. This model and its tool neither do consider requirements relationships and their effects

nor the aspects of knowledge sharing and stakeholders interactions.

Barbar et al. [11] offered a data model for software architectural knowledge. Their model

identifies and defines architectural constructs and their interrelationships that constitute

architectural and design knowledge. By using this model, one can support architectural process

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

96

activities such as architectural evaluation. This data model includes twelve design decision

elements. Some of the most significant elements include design decision, architectural

scientifically requirement and rationale. DAMSAK connects architectural decisions with

architectural scenarios and important architectural requirements and can be used in architectural

evaluation methods such as Architecture Tradeoff Analysis Method (ATAM). PAKME is a web-

based AKM tool aimed at supporting AKM in architectural production processes that support the

data model DAMSAK. This tool offers its services in four modules: Data search service,

Architectural knowledge maintenance service, Knowledge recording service, and Architectural

knowledge display service. This tool has been suggested to support knowledge in architectural

evaluation but does not focus on architectural completion. It uses web 1 technology for

stakeholder’s interactions.

Capilla [10] offered a model for design decisions that can, not only be used in architectural

production process but also in providing better support for completion of architectural design

decisions. This model is composed of three main parts: project model, architectural model, and

decisions model. In the decision model, the specifications of design decision are divided into two

categories: mandatory attributes and optional attributes. ADDSS offers a web- based tool

following this model with capabilities such as architectural knowledge tracing, design decisions

recording and temporal view of architectural knowledge. The sharing process and shareholders’

interaction follow the technology in web 1. ADDSS has been the only model for completion of

software architecture using design decisions knowledge that has disadvantages such as inability

to seek knowledge, not considering other alternatives in the model and not considering

sensitivity points, risk and non- risk. Using web 1 technology to implement this model as a tool to

store software architectural knowledge in data search, data organization and data access and

maintenance entails some challenges.

We focus on using design decisions knowledge to offer an ontology to complete software systems

along previous works and using semantic wiki to share architectural knowledge and reusing

architectural knowledge to facilitate system completion and maintenance. To better understand

this, the problem can be broken up as follows:

 Establishing an ontology to use design decisions in order to complete and keep

software architecture: What concepts should be considered in that ontology so it can

support the architectural completion process? How can the relationships between

entities and attributes in question support that process?

 Data retrieval, knowledge tracing and their compatibility play a key role in architectural

completion process in addition to maintenance software architectural knowledge. How

could knowledge inference capabilities including knowledge search, tracing and data

compatibility be developed by using proper tools and ontology?

 A current problem is the inability to share knowledge among stakeholders. How can a

proper strategy be used to establish the right interaction among stakeholders?

 What are the costs and advantages of developing that ontology and using semantic

wikis? Do that tool and model have better efficiency compared to older methods such

as ADDSS?

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

97

This article aims at studying the first three problems. The costs and advantages of this alternative

will be studied in future works.

3. Proposed Model

An ontology is a set of formal definitions for the concepts in a certain area and the relations

between them. An ontology along with the instances defined for its classes makes up a knowledge

base for the area in question in order to share knowledge. An ontology may be expressed by RDF

or OWL languages. Some of the advantages of using RDF include the ontology decipherability for

machines, enhanced comprehensibility for humans, and the ability to investigate and infer

knowledge. Ontology, RDF and OWL are part of the semantic web aiming at better management of

architectural knowledge in web- based systems. The framework offered for modeling design

decisions knowledge is shown using UML in the following figure 1. This ontology is defined using

the relations between entities and their attributes. The main entities in this ontology include

stakeholder, concern, decisions and architecture. Below, the details of this ontology are examined.

As we all know, software architectural design starts with a series of problems. Transparency and

completeness of this part constitute a principle for AKM. A software architect examines the

concerns and contents of the architecture to find and define most important architectural

requirements. Two main entities for problem expression include the stakeholder and the concerns

related to them. These two entities are defined as follows:

 Stakeholder entity: The concepts are expressed according to standard IEEE1471-2000[12]

and indicate persons that participate either directly or indirectly in different phases of

software system design.

 Concern: each stakeholder has some concerns and the system must be answerable to

remove those concerns and arrive at the stakeholder’s purposes. *12+

The next main entity is design decisions that are defined as a bridge to connect the requirements

and architectural design and it can be said that decisions are the main element to describe

software architecture in this ontology. [16] The attributes aimed at for design decisions for system

completion are as follows:

 Author/ Responsible: Along a decision making process, some of the decisions are local

where a stakeholder plays a part. However, some other decisions are inclusive, meaning

that, some stakeholders are related thereto. Knowledge of the person(s) that make the

decision and its responsibility can be important in project completion and other

individuals’ follow- up.

 Relate- to Dec: This attribute designates decisions that are related to a decision. A decision

affects other decisions. By using this option, the list of the decisions related to this

decision is saved. This attribute emphasizes system completion because following the

change of a decision, all other decisions related to that decision are identified and the

tracing and establishing compatibility between those requirements and decisions are

facilitated.

 Type- impact- component: In the previous attribute, the pieces related to a decision were

introduced. In this attribute, the type of the relationship between this decision and

developed pieces is suggested. This relationship consists of development, deletion and

change.

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

98

 Type decision: According to Kruchten’s ontology, each architectural design decision may

be placed in one of the following categories: entity decisions, attributive decisions or

executive decisions. [14]

 Status: Each decision has different states during its lifetime: rejected, approved,

obsolesced, decided. These states are suggested based on Kruchten’s ontology. *14+

 By using history entity, the history of decisions can be kept which, in fact, designates the

completion of a design decision during a time span. This entity is used in order to display

different versions of a single decision. For that, the attributes state, version and date are

used.

The decisions rationale has been selected as a justification for decision. This rationale must be

explicitly documented with design rules and design constraints so that stakeholders will be able to

comprehend it. While the system is being completed, it is important for decision selection method

and rationale to exist between the existing alternatives. In this model, decision-making rationale

has been suggested as an entity and has the following attributes.

 Assumption: Indicates the hypotheses that must be considered by selecting this decision.

 Constrain- design: By choosing each decision, a series of limits might be exerted onto the

system. This attribute indicates the limitations of these decisions.

 Measure- Evaluation: Each decision is selected based on the specific evaluation with an

eye to the stakeholder’s requirement. This attribute indicates the evaluation criterion for

selecting this decision.

 Sensitivity Point: Architectural decisions have specific effects on one or more architectural

qualities. Also, an architectural decision might result in an undesirable effect due to said

qualitative attributes. A non- risk is an architectural decision that seems safe according to

the analysis. Identified risks may be a basis for diminution of architectural risk.

In order to arrive at a requirement, several alternatives may be proposed. Recording the positive

and negative points of the alternatives and the reason why they are rejected are important for

system completion. While the system is being evolutes, the architect can be informed of the

reasons why the decision are not approved by reviewing them and, if a decision requirements

changing, one can have quick access to other alternatives proposed before and avoid waste of

time and money. In addition to the above mentioned attributes for design decisions and their part

in completing decisions, the relationships between entities are also important. The combination of

these two elements indicates the relation between them. The relationship between requirements

and architectural design has been made possible through the existence of design decisions. These

relationships and their consideration play a key role in architectural analysis, architectural

knowledge reuse and completion. First, the relations between requirements are studied: [19]

 Change to: A requirement may result in another requirement changing if a new version of

the requirement is proposed.

 Refined to: A requirement may be a result of correcting and refining several requirements,

which makes a hierarchical construct. Some of those requirements are related to other

requirements as part of a whole.

 Conflict: A requirement might interfere with another requirement. Meeting a requirement

might overshadow the effect of another requirement, as in security and effectiveness. This

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

99

case includes states where both requirements can be met or when these requirements

affect each other negatively and the trade- off between them requirements recording.

 Require: The completion of a requirement depends on the completion of another

requirement.

Each decision may affect other decisions. The relationships include constrains, forbids, conflict

with, is an alternative to, is bound to, is made of. [14] The knowledge management process in the

ontology offered is as follows: Each stakeholder has a set of concerns identified as either

functional requirements or non- functional requirements and affecting each other. The correct

identification of those requirements and their effects on each other affect the solution space, too.

Also, considering the changes of those requirements in the future plays an important role for

system completion. [15] Qualitative scenarios are employed to identify and describe the

qualitative attributes of software. These scenarios offer an explicit expression of qualitative

attributes. Many concerns may be related to one decision making group and therefore can be

examined as a single group. The grouping of concerns has been done for the purpose of their quick

retrieval and their classification for the purposes of the facilitation of reuse and classification of

data. After the analysis of the requirements related to a concern, different alternatives are

suggested for solution in the decision making space. Considering the criteria in stakeholders’

minds, one of those alternatives is selected as the final decision. Each decision includes a rationale

to take that decision and a history entity that is useful for maintenance of the system and the

individuals who work on system completion.

Figure 1:Ontology Model For Knowledge Management

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

100

4. Using semantic wiki tool to support conceptual model.

The semantic web aims at making the data on the web comprehensible and enhancing inter-
personal cooperation. Therefore it can be used to share architectural knowledge and data
solidification. Making comprehensible aims at providing the ability to infer the new knowledge
using response to users’ investigations into the existing knowledge.
Data- Wiki is a semantic media wiki with attributes of semantic nature which can be used in
software engineering domains such as sharing knowledge among stakeholders, reuse and
tracing of knowledge. The semantic features in this tool can be helpful for better data search
and data retrieval compared to other tools. Here, we focus on the sharing, tracing and
semantic search attributes of the architectural design, decisions, requirement recording. The
executive details of Data wiki are offered below.

 Ontology support: Semantic wikis are based on ontology and are used to explain wiki
pages and existing data on wiki pages. The feature Data Explorer makes it possible for
the user to use the ontology in this medium including instances, group and attributes
and with which knowledge models are expressed. The ontology offered in the previous
stage is composed of four main parts shown in the following table. Figure 2 depict
ontology model that import in Data-Wiki.

Table 1: Ontology Construct In Data Wiki

ontology construct construct Data Wiki Example Datawiki

Class Category [Category:Requirement]]
Class properties Property [[req id:FR-001]]
Class Relationship Property that link to the

instance of other Class

[[is proposed by:Stakeholder A]]

Subclass of Category Sub categorization Functional Requirement, specify
[[Category:Requirement]]

 Semantic annotation: Data wiki supports semantic annotation on wiki pages. This very
simple task for annotating requirements, design decisions and architectural products is
done by adding [[Category: Concept Name]] in the existing editing box based on the
entered ontology.

 Semantic tracing: This feature indicates semantic tracing through semantic annotation. In
ordinary wikis, tracing is done as relation between wiki pages without semantic concepts
while in the semantic wiki, the meanings of these links are determined and distinguished
through the existing relations in the entered ontology.

 Semantic query: A user link for query makes it possible to develop semantic queries using
semantic concepts and data. These queries are used for search in semantic data using the
semantic search language SPARQL.

The ontology offered in the previous section is implemented using the software protégé, which is

for establishing a knowledge base and developing semantic concepts between entities. Further we

will show how the developed ontology in this software can be implemented by using semantic

concepts in the software Data- wiki and we will explain knowledge sharing and saving abilities

[13].

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

101

Figure 2: Import Ontology Model in Data Wiki

5. Case Study

The documentation related to the software architecture of a case study system is entered into the

Data wiki environment, and a semantic relationship is established among entities using semantic

annotation. Since the existing architectural knowledge and requirements are linked to one another

using the semantic annotation in this tool through ontology, semantic search can be used to

extract the existing knowledge for better understanding the saved knowledge.

A WYSIWYG editor in Data Wiki, with image upload functionality, was implemented to allow users

to copy software documentation content in popular text editors and paste it. In the scenario

offered by the architect, changing a functional requirement requires tracing the effect of

requirement change on other requirements and its effect on the decisions and products related to

it. Tracing requirements, the decisions and products related to those requirements will provide the

ability to establish compatibility between requirements and products. For example, the architect

requirements to list qualitative and non- qualitative requirements to change a requirement which

are related to DD1 decision and want to comprehend the effect of that decision on requirements.

Using semantic search in Data wiki, the architect extracts requirements that are related to decision

DD1. That way, the architect can discover requirements that lead to making the decisions DD1 in

the shortest possible period. Part A of Figure 3 deals with query design. Below that, the results are

shown as a table. The results show that the decision DD1 was taken in line with requirements

FR03, FR02. If a decision changed during completion period and has different versions, the

requirements of each version and their products can be easily extracted and the changes be

examined with a semantic search.

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

102

Figure 3: Semantic Search in Data Wiki

6. Conclusion

The main idea of this article is to develop an ontology using design decisions knowledge to

complete software system and using semantic wiki to keep, retrieve and share knowledge with

various stakeholders in distributive media. The tool used to implement this model was Data wiki.

The ontology offered and applied tool complement each other. The abilities of this ontology and

offered tool are as follows:

 Using semantic annotation in software architectural knowledge and decisions: The user
can easily select part of the text and annotate it. Using annotation provides a better
understanding of the existing documentation according to the defined ontology. In
addition, it plays an important role in semantic searches.

 Architectural knowledge tracing: Semantic annotation is developed based on the
existing relations in the entered ontology. This annotation also includes the interactions
between stakeholders. For example, a system includes many requirements suggested
by other stakeholders. This relationship can be traced through semantic annotation.

 Architectural query: Semantic annotation has the possibility of data search by using the
search language SPARQL. For example, searching all the decisions that were related to
requirement XX and studied by stakeholder Y.

 Checking decision compatibility: By using data tracing attribute, the user will be able to
study incompatibility between architectural design and requirement using the inference
attribute. For example, when a requirement changes upon system completion, the
entities related to that requirement can be extracted, the related documentation
updated, and knowledge incompatibility avoided.

 Requirements defects: By using the existing relations between entities, one can find out
if the suggested requirement was followed up to the implementation stage or it was
dealt with defectively.

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

103

 Developing a proper medium for knowledge sharing: Suing this tool along with a proper
ontology makes a non- simultaneous shared medium for the stakeholder where the
data existing in the system can be easily traced if a new stakeholder, such as an
architect, is added and can be employed as an instructional aspect for new
stakeholders.

The next steps in research would be the comparison and evaluation of the suggested ontology to

determine levels of productivity in architectural knowledge sharing and its effects on

architectural completion compared to existing file- based methods in addition to developing a

model to keep architectural knowledge and use it in industries and transform existing implicit

knowledge to formal knowledge to use it for inference and logic.

8. References

[1] Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 2nd edition, SEI Series in
Software Engineering, Addison-Wesley Pearson Education, 2003.

 [2] Kruchten, P., P. Lago, and H. van Vliet. Building up and Reasoning about Architectural
Knowledge. In Second International Conference on the Quality of Software Architectures (QoSA
2006), volume 4214 of Lecture Notes in Computer Science, pages43–58, V¨aster°as, Sweden,
2006. Springer Berlin / Heidelberg. Cited on page

 [3] D. Falessi, G. Cantone, and M. Becker. Documenting design decision rationale to improve

individual and team design decision making: an experimental evaluation. In Proceedings of the
2006 ACM/IEEE international symposium on International symposium on empirical software
engineering (ISESE ’06), pages 134–143, New York,NY, USA, 2006. ACM Press

[4] Holmstr¨om, H., E. ´O Conch´uir, P. J. °Agerfalk, and B. Fitzgerald. Global Software Development
Challenges: A Case Study on Temporal, Geographical, and Socio-Cultural Distance. In IEEE
International Conference on Global Software Engineering

(ICGSE’06), pages 3–11, Florianopolis, Brazil, 2006. IEEE Computer Society.
Cited on pages
[5] Clerc, V., P. Lago, and H. van Vliet. Assessing a Multi-Site Development Organization for

Architectural Compliance. In 6th Working IEEE/IFIP Conference on Software Architecture (WICSA
2007), Mumbai, India, 2007a. IEEE Computer Society. Cited

[6]B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki- Based Stakeholder Participation in
Requirements Engineering.

IEEE Software, 24(2):28–35, 2007.
[7] C. Silveira, J. Faria, A. Aguiar, and R. Vidal.Wiki Based Requirements Documentation of Generic

Software Products.
In Proceedings of the 10th Australian Workshop on Requirements Engineering (AWRE), pages 42–51,

2005.
[8] S. Schaffert, F. Bry, J. Baumeister, and M. Kiesel. Semantic Wikis. IEEE Software, 25(4):8–11, 200
[9] Kruchten, P., An Ontology of Architectural Design Decisions in Software-Intensive Systems,

Proceedings 2nd Groningen Workshop on Software Variability Management, Groningen, pages
109-119, 2004.

[10] Capilla, R., Naval, F., and Dueñas, J.C., Modeling and Documenting the Evolution of Architectural
Design Decisions, Proceedings of the 2nd Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent (SHARK/ADI), 2007.

[11] Babar, M.A., Gorton, I., and Kitchenham, B., A Framework for Supporting Architecture
Knowledge and Rationale Management, In Rationale Management in Software Engineering, A.H.
Dutoit, et al., eds, Springer, pages 237-254, 2006.

N. Choobdaran, S.M. Sharafi, M.R. Khayyambashi / J. Math. Computer Sci. 11 (2014), 93-104

104

[12] I. S. 1471-2000, "IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems," 2000.

[13] http://diqa-pm.com/en/DataWiki
[14] Kruchten, P., An Ontology of Architectural Design Decisions in Software-Intensive Systems,

Proceedings 2nd Groningen Workshop on Software Variability Management, Groningen, pages
109-119, 2004.

*15 + Bilal Saeed Raja, M. Ali Iqbal, and Imran Ihsan” Moving From Problem Space to Solution Space
“,World Academy of Science, Engineering and Technology 11 2007

*16+ Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla and Muhammad Ali Babar, “A
Comparative Study of Architecture Knowledge Management Tools”. Journal of Systems and
Software, 83(3):352–370, 2010

[17] Agerfalk, P. J., B. Fitzgerald, H. Holmstr¨om, B. Lings, B. Lundell, and E. ´OConch´uir.A Framework
for Considering Opportunities and Threats in Distributed Software Development.In International
Workshop on Distributed Software Development, pages47–61, Paris, 2005. Austrian Computer
Society.

[18] Noy NF, McGuinness DL (2001) Ontology development 101: A guide to creating your first
ontology. Tech. rep., Stanford University

[19] He Zhang, Juan Li, Liming Zhu, Ross Je, Yan Liu ,Qing Wang, Mingshu Li, Investigating
Dependencies in Software Requirements for Change Propagation Analysis

[20] Tyree, J., and Akerman, A., Architecture Decisions: Demystifying Architecture, IEEE Software,
22(2):19–27, 2005.

[21] Harrison, N.B., Avgeriou, P., and Zdun, U., Using Patterns to Capture Architectural Decisions,
IEEE Software, 24(4):38-45, 2007.

[22] Mojtaba Shahin, Peng Liang, Mohammad-Reza Khayyambashi: Architectural design decision:
Existing models and tools. WICSA/ECSA 2009: 293-296

http://www.informatik.uni-trier.de/~ley/pers/hd/l/Liang:Peng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Khayyambashi:Mohammad=Reza.html
http://www.informatik.uni-trier.de/~ley/db/conf/wicsa/wicsa2009.html#ShahinLK09

