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Abstract

The aim of this article is to associate a bitopological space with every locally finite graph G (a graph in which every
vertex is adjacent with finite number of edges). Then some properties of this bitopological space were investigated. After that,
connectedness and dense subsets were discussed. Giving a fundamental step toward studying some properties of locally finite
graphs by their corresponding bitopological spaces is our motivation.
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1. Introduction

Graph theory is a prominent mathematical tool in many subjects [8] and it is considered as a sub-
stantial structure in discrete mathematics for two reasons. First, graphs are mathematically elegant from
theoretical viewpoint. Even though graphs are simple relational combinations, they can be used to rep-
resent topological spaces, combinatorial objects and many other mathematical combinations. Many con-
cepts will be very useful from practical perspective when they are abstractly represented by graphs and
this is the second reason [9]. Topology is an interesting and important field of mathematics because it
is a powerful tool that leading to such beneficial concepts as connectivity, continuity, and homotopy. Its
influence in most other branches of mathematics is evident [6].

Topologizing discrete structures is a problem that many publications concerned with. One of these
discrete structures is graph theory. The investigation of topology on graphs is inspired by the representa-
tion of the digital image using a graph model; the points of the image and the connectivity between them
are represented by the vertices and the edges of the graph respectively. Therefore, topological properties
of the digital images can be studied through topologies on the vertices of graphs [2]. Kelley [7] was the
first who formulated the concept of bitopological space, that is, the triple (A,τ1,τ2) of a set A with two
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(arbitrary) topologies τ1 and τ2 on A. In 2013, Baby Girija and Pilakkat [1] used the notion of Kelley to
study bitopological spaces associated with digraphs D = (V ,E) using a nonnegative real valued function
P on V × V called quasi pseudometric that generates tow topologies on V .

The previous work of Baby Girija and Pilakkat of bitopological spaces on graphs was associated
with digraphs only. Therefore, our target is to associate a bitopological space with undirected graphs
G = (V ,E) by using two different subbasis families to generate two topologies on V . The first subbasis
family introduced by Jafarian Amiri et al. [4] that generates a topology on V , called graphic topology and
the other introduced in our previous paper [5] that generate a topology on V , called incidence topology.
Then, they present a fundamental step toward studying some properties of locally finite graphs by their
corresponding bitopological spaces.

In this paper, we associate a bitopological space with every locally finite graph G = (V ,E) such that
G is a simple graph. Properties of bitopological space and the relation between this bitopological spaces
and corresponding graphs are presented. In Section 2 some definitions of graph theory, topology, and
bitopological spaces are shown. In addition, the incidence topology on graphs from our previous paper
is introduced. Section 3 is dedicated to main results of bitopological spaces on locally finite graphs. Also
this section comprises the connectivity and dense subsets of bitopological space.

2. Preliminaries

In this part, some basic notions of graph theory [8, 9], topology [6] and bitopological spaces [3, 7]
are presented. Furthermore, the incidence topology of simple graphs from our previous paper [5] is
introduced.

A (simple) graph G comprises a non-empty collection V(G) of nodes (or vertices), and a collection
E(G) of arcs (or edges). Usually G = (V ,E) indicates the graph. If u and v are vertices and e is an edge
such that e = uv, then u and v are adjacent vertices; each vertex (u and v) is incident with e. If there are
no edges incident with a node u, then u is called isolated node. The number of the edges e ∈ E such that
v incident with e is called the degree of the vertex v and denoted by d(v). A vertex of degree one is called
pendent vertex. A graph G with finite number of nodes and finite number of arcs is called finite graph;
otherwise it is an infinite graph. A finite sequence ukem,uk+1em+1,uk+2, ..., erun of distinct vertices and
distinct edges, which starts and ends with vertices such that the endpoints of ei are ui−1 and ui for each
i, is called a path and denoted by P. The number of edges in a path P is called the length of P. If any
vertex can be reached from any other vertex in a graph G by traveling along the edges, then G is called
connected graph and disconnected otherwise. A connected graph consisting of one vertex adjacent to all
others with no cycle is called a star graph and denoted by Sn.

A topology τ on a set A is a combination of subsets of A, called open, such that the union of the
members of any subset of τ is a member of τ, the intersection of the members of any finite subset of τ is a
member of τ, and both empty set and A are in τ. The ordered pair (A,τ) is called a topological space. The
topology τ=P(A) on A is called discrete topology while the topology τ={A,φ} on A is called trivial (or
indiscrete) topology. A topology in which arbitrary intersection of open set is open, called Alexandroff
space.

A bitopological space is the triple (A, τ1, τ2) of a collection A with two (arbitrary) topologies τ1 and
τ2 on A. If τ1 and τ2 are compact, then (A, τ1, τ2) is called double compact. An (i, j)-dense subset
in A is a subset B of a bitopological space (A, τ1, τ2) such that τicl(τjcl(B)) = A and i, j=1,2. Also if
τiInt(τjcl(B)) = φ where (i, j=1,2), i.e., τjcl(B) contains no non-empty i-open set, then B is (i, j)-nowhere
dense subset in A. If for each pair of distinct points there exists a τ1-open set or τ2-open set containing
one but not the other, then (A, τ1, τ2) is weakly pairwise T0. The bitopological space (A, τ1, τ2) is pairwise
T0 if for each pair (a,b) of distinct points of A, there is either a τ1-open set containing a but not b or there
exists a τ2-open set containing b but not a. If for each pair of distinct points a,b, there exist a τ1-open set
D and a τ2-open set W such that a ∈ D, b /∈ D and b ∈ W, a /∈ W or a ∈ W, b /∈ W and b ∈ D, a /∈ D,
then (A, τ1, τ2) is weakly pairwise T1. The bitopological space (A, τ1, τ2) is weakly pairwise T2 if for each
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pair of distinct points a,b, there exist a τ1-open set D and a τ2-open set W with D ∩ W = φ such that
a ∈ D and b ∈ W or a ∈ W and b ∈ D. If for each pair of distinct points a,b, there exist a τ1-open set
D and a τ2-open set W with D ∩ W = φ such that a ∈ D and b ∈ W, then (A, τ1, τ2) is pairwise T2. If A
cannot be expressed as a union of two non-empty open disjoint sets U and M such that U ∈ τ1 and M
∈ τ2, then (A, τ1, τ2) is pairwise connected.

Now, we are going to introduce from our previous paper [5] the incidence topology on the set of
vertices V of a simple graph G = (V ,E) without isolated vertex. Let Ie be the incidence vertices with
the edge e. Define SIG as follows: SIG = {Ie/e ∈ E}. Since there is no isolated vertex in G, we have
V=

⋃
e∈E Ie. Hence SIG forms a subbasis for a topology τIG on V , called incidence topology of G.

It is obvious that the incidence topologies of the cycle Cn;n > 3, the complete graph Kn;n > 3, and
the complete bipartite graph Kn,m;n,m > 1 are discrete, but the incidence topology of the path Pn is not
discrete because Pn contains two vertices incident with one edge is not open.

Proposition 2.1. Suppose that τIG is the incidence topology of the graph G = (V ,E). If d(v) > 2, then {v} ∈ τIG
for every v ∈ V .

Proof. Since G is a simple graph and for any degree of v, we have
⋂∞

i=2 Iei
= {v} such that v ∈ Iei

for all
i=2,3,. . . . Now by definition of τIG, {v} is an element in the basis of τIG. Hence {v} ∈ τIG.

The following corollary is a trivial result for Proposition 2.1.

Corollary 2.2. Let G = (V ,E) be a graph. If d(v) > 2 for all v ∈ V , then τIG is a discrete topology.

Remark 2.3. Let G = (V ,E) be a graph, then Iv is the set of all edges incident with the vertex v.

Proposition 2.4. In any graph G = (V ,E), Uv =
⋂

e∈Iv Ie for every v ∈ V .

Proof. Since SIG is the subbasis of τIG and Uv is the intersection of all open set containing v, we have
Uv =

⋂
e∈A Ie for some subset A of E. This leads to v ∈ Ie for each e ∈ A. Therefore, e ∈ Iv for all e ∈ A.

Hence A ⊆ Iv and so v ∈
⋂

e∈Iv Ie ⊆ Uv. From the definition of Uv the proof is complete.

Corollary 2.5. For any u, v ∈ V in a graph G = (V ,E), we have u ∈ Uv if and only if Iv ⊆ Iu. Equivalently
Uv = {u ∈ V | Iv ⊆ Iu}.

Proof. By Proposition 2.4, Uv =
⋂

e∈Iv Ie. Therefore, u ∈ Uv ⇔ u ∈
⋂

e∈Iv Ie ⇔ u incident with e for all
e ∈ Iv ⇔ e ∈ Iu for all e ∈ Iv ⇔ Iv ⊆ Iu.

Remark 2.6. The Alexandroff topological space (X, τ) is T1 ⇔ Ux = {x}. It follows that (X,τ) is discrete.
Therefore, the incidence topology (V ,τIG) which is an Alexandroff space is T1 if and only if it is discrete.
Now, if (V ,τIG) is an Alexandroff space, then (V ,τIG) is T0 space if and only if Uu = Uv implies u=v. This
means Uu 6= Uv for all distinct pairs of vertices u, v ∈ V . Then from Corollary 2.5, the incidence topology
is T0 ⇔ Iu 6= Iv for every distinct pair of vertices u, v ∈ V .

Proposition 2.7. Let G = (V ,E) be a graph. Then (V ,τIG) is a compact topological space if and only if V is finite.

Proof. Let (V ,τIG) be a compact topological space. By contradiction, assume that V is infinite. Then
MG = {Uv | v ∈ V} is an open covering of (V ,τIG) which has no finite subcover. Therefore, (V ,τIG) is not
compact which is a contradiction. For the converse, it follows directly that (V ,τIG) is compact since there
are only finitely many open subsets on finite space.

Proposition 2.8. Let τIG be the incidence topology of the graph G = (V ,E), then the set L = {v ∈ V | d(v) = 1}
is closed in τIG.

Proof. By assumption L =
⋃

v∈L{v} and so L=
⋃

v∈L{v}=
⋃

v∈L {v} by properties of closure. Let u ∈ L, then
u ∈ {v} for some v ∈ L and Iu ⊆ Iv. Since d(v)=1, then Iv = {e} such that e ∈ E. Therefore, d(u)=1 because
Iu ⊆ Iv and so u ∈ L. Hence L ⊆ L and the proof is complete.
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Proposition 2.9. Let G = (V ,E) be a connected graph with at least one vertex v ∈ V such that d(v)=1. Then the
set M={v ∈ V | d(v) > 2)} is dense in (V ,τIG).

Proof. It is enough to prove that the complement of M has empty interior. For every v ∈Mc, v is a vertex
such that d(v)=1. Therefore, Ie

⋂
If 6= {v} for every e,f∈ E, and any two distinct vertices in Mc are not

adjacent. As a result, for every B ⊆Mc, B cannot be written as a union of finitely intersection of elements
of SIG, i.e., B /∈ τIG. Hence Int(Mc)=φ and this means M is dense subset in (V ,τIG).

All graphs throughout this paper are locally finite simple graphs.

3. Main results

3.1. Bitopological spaces on undirected graphs

Let G = (V ,E) be a simple graph without isolated vertex. Define SG as follows: SG = {Au | u ∈ V}
such that Au is the set of all vertices adjacent to u. Since G has no isolated vertex, we have V =

⋃
u∈V Au.

Hence SG forms a subbasis for a topology τG on V , called graphic topology of G.
Let Ie be the incidence vertices with the edge e. Define SIG as follows: SIG = {Ie | e ∈ E}. Since there

is no isolated vertex in G, we have V =
⋃

e∈E Ie. Hence SIG forms a subbasis for a topology τIG on V ,
called incidence topology of G.

The above two topologies τG and τIG on V give the bitopological space (V , τG, τIG).

Example 3.1. Let G = (V ,E) be a simple graph as in Figure 1 such that V = {v1, v2, v3, v4}, E = {e1, e2, e3}.
Then τG = {φ,V , {v2}, {v3}, {v1, v3}, {v2, v4}, {v2, v3}, {v1, v2, v3}, {v2, v3, v4}} and τIG = {φ,V , {v2}, {v3}, {v1, v2},
{v2, v3}, {v3, v4}, {v1, v2, v3}, {v2, v3, v4}}. Therefore, τG and τIG on V give the bitopological space (V , τG, τIG)
and clearly that τG and τIG are non-similar.

Figure 1: Simple graph with four vertices and three edges.

It is easy to see that, τG and τIG are non-similar, but they produce the same topology on the ground
set V of a graph G = (V ,E) when they are both discrete topologies as in the graphs Cn and Kn ; n> 3.

Remark 3.2. From [4] the graphic topology τG of a graph G = (V ,E) is discrete if and only if Au * Av

and Av * Au for every distinct pair of vertices u, v ∈ V , and by Corollary 2.2, the incidence topology τIG
of a graph G = (V ,E) is discrete if d(v) > 2 for every v ∈ V . Therefore, if a graph G = (V ,E) satisfies the
stipulations above, then τG and τIG are identical topologies (both are discrete topologies).

Proposition 3.3. The bitopological space (V , τG, τIG) of a graph G = (V ,E) is weakly pairwise T0.

Proof. By Remark 2.6, the incidence topology τIG of a graph G = (V ,E) is T0 if and only if Iu 6= Iv for
every distinct pair of vertices u, v ∈ V . Now, if Iu = Iv, then u and v are adjacent vertices of degree one.
By the definition of graphic topology, we have {u}, {v}∈ τG. Therefore, for every pair of distinct points
of V there exists a τIG-open set or τG-open set containing one but not the other. Hence the bitopological
space (V , τG, τIG) of a graph G = (V ,E) is weakly pairwise T0.
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Proposition 3.4. The bitopological space (V , τG, τIG) of a graph G = (V ,E) is pairwise T0.

Proof. Let (u, v) be any distinct pair of points of V . Then there are two cases.

Case 1: u and v are adjacent vertices. From definition of graphic topology τG, there are two τG- open
sets Au and Av such that Au containing v but not u and Av containing u but not v.

Case 2: u and v are not adjacent vertices. This means there exist two different edges e,f∈ E such that
u incident with e and v incident with f. By the definition of incidence topology τIG, Ie and If are two
τIG-open sets such that Ie containing u but not v and If containing v but not u.

From cases above, for each pair (u, v) of distinct points of V , there is either a τG- open set containing u
but not v or there exist a τIG-open set containing v but not u. Hence the bitopological space (V , τG, τIG)
is pairwise T0.

Proposition 3.5. The bitopological space (V , τG, τIG) of a graph G = (V ,E) is weakly pairwise T1 if and only if
Au 6=Av and Iu 6=Iv for every distinct pair of vertices u,v∈ V .

Proof. (⇒) Let (V , τG, τIG) be a weakly pairwise T1 bitopological space. By contradiction, suppose that
there exists a distinct pair of vertices u,v∈ V such that Au=Av or Iu=Iv.

(i) If Au=Av, then from [4], τG is not a T0 space, i.e., there is no τG-open set containing u but not v or
containing v but not u which is a contradiction with the assumption since (V , τG, τIG) is weakly pairwise
T1.

(ii) If Iu=Iv, then by Remark 2.6, τIG is not a T0 space, i.e., there is no τIG-open set containing u but
not v or containing v but not u which is a contradiction with the assumption since (V , τG, τIG) is weakly
pairwise T1.

(⇐) Let Au 6=Av and Iu 6=Iv for every distinct pair of vertices u,v∈ V . For each pair of distinct points
u,v∈ V , we have the following cases:

Case 1: u and v are adjacent vertices. From definition of graphic topology τG, there are two τG- open
sets Au and Av such that Au containing v but not u and Av containing u but not v. From assumption
Iu 6=Iv for every distinct pair of vertices u,v∈ V . Then by Remark 2.6, τIG is a T0 space, i.e., there exists a
τIG-open set containing u but not v or containing v but not u.

Case 2: u and v are not adjacent vertices. This means there exist two different edges e,f∈ E such that
u incidents with e and v incidents with f. By definition of incidence topology τIG, Ie and If are two
τIG-open sets such that Ie containing u but not v and If containing v but not u. From assumption Au 6=Av

for every distinct pair of vertices u,v∈ V . Thus τG is T0 space (see [4]), i.e., there exist a τG- open set
containing u but not v or containing v but not u.

From cases above, for each pair of distinct vertices u,v∈ V , there exists a τG- open set D and τIG- open
set W such that either u ∈ D, v /∈ D and v ∈ W, u /∈ W or u ∈ W, v /∈ W and v ∈ D, u /∈ D. Hence the
bitopological space (V , τG, τIG) is weakly pairwise T1.

Proposition 3.6. The bitopological space (V , τG, τIG) of a graph G = (V ,E) is pairwise T1 if and only if τG and
τIG are discrete topologies.

Proof. (V , τG, τIG) is pairwise T1 bitopological space if and only if each of τG and τIG is T1 space because
pairwise T1 in bitopological space is equivalent to T1 in each topology (see [7]) if and only if τG and τIG
are discrete topologies since from [4] and Remark 2.6, τG and τIG are T1 spaces if and only if τG and τIG
are discrete topologies.

Proposition 3.7. The bitopological space (V , τG, τIG) of a graph G = (V ,E) is weakly pairwise T2 if and only if
Au 6=Av; Iu 6=Iv for every distinct pair of vertices u,v∈ V ; and the length of any path between any two distinct
pendent vertices is at least four.
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Proof. (⇒) Let (V , τG, τIG) be a weakly pairwise T2 bitopological space. By contradiction, suppose that
there exists a distinct pair of vertices u,v∈ V such that Au=Av or Iu=Iv or there is a path of length less
than four between two distinct pendent vertices.

(i) If Au=Av, then from [4], τG is not a T0 space, i.e., there is no τG-open set containing u but not v or
containing v but not u which is a contradiction with the assumption since (V , τG, τIG) is weakly pairwise
T2.

(ii) If Iu=Iv, then by Remark 2.6, τIG is not a T0 space, i.e., there is no τIG-open set containing u but
not v or containing v but not u which is a contradiction with the assumption since (V , τG, τIG) is weakly
pairwise T2.

(iii) Suppose that u and v are two distinct pendent vertices and P is a path of length less than four
between u and v. Therefore, the length of P is three since if the length is one or two, then Au=Av or
Iu=Iv, respectively which is a contradiction with the assumption. Now, let P = ue1xe2ye3v such that
u,x,y,v∈ V and e1, e2, e3 ∈ E. Then the open sets in SG of τG that contain u and v are Ax and Ay such
that u,y ∈ Ax and x, v ∈ Ay. Also the open sets in SIG of τIG that contain u and v are Ie1 = {u, x} and
Ie3 = {y, v}, respectively. Clearly, Ax

⋂
Ie3 6= φ and Ay

⋂
Ie1 6= φ. Thus, there is no τG-open set D and

τIG-open set W such that u ∈ D and v ∈ W or u ∈ W and v ∈ D, which is a contradiction with the
assumption since (V , τG, τIG) is weakly pairwise T2.

(⇐) Assume that Au 6=Av ; Iu 6=Iv for every distinct pair of vertices u,v∈ V ; and the length of any path
between any two distinct pendent vertices is at least four. For any pair of distinct vertices u,v∈ V , we have
the following cases:

Case 1: u and v are not adjacent vertices of degree at least two. By Proposition 2.1, we have {u},{v}∈ τIG.
From assumption Au 6=Av for every distinct pair of vertices u,v∈ V , then τG is T0 space (see [4]), i.e., there
exists a τG-open set containing u but not v or containing v but not u. Therefore, there exist τG-open set
D and τIG-open set W with D

⋂
W = φ such that u ∈ D and v ∈W or u ∈W and v ∈ D.

Case 2: u and v are adjacent vertices such that d(u) = 1 and d(v) > 2. By Proposition 2.1, {v}∈ τIG.
From definition of graphic topology, Av is an open set containing u but not v. Hence, Av is τG-open set
containing u and {v} is τIG-open set containing v such that Av

⋂
{v} = φ.

Case 3: u and v are not adjacent vertices such that d(u) = 1 and d(v) > 2. Suppose that x ∈ V is a vertex
adjacent with u. This means there exists an edge e ∈ E such that e = ux. Now, either v is adjacent with x
or v is not adjacent with x.

(a) If v is adjacent with x, then Ie = {u, x} is τIG-open set by the definition of incidence topology. From
[4], the smallest open set in τG containing v is Uv = {y ∈ V | Av ⊆ Ay}. Since d(u) = 1 and d(v) > 2,
then Av * Au. Also, Av * Ax since v is adjacent with x. As a result, u,x/∈ Uv. Hence, Ie is τIG-open
set containing u and Uv is τG-open set containing v such that Ie

⋂
Uv = φ.

(b) If v is not adjacent with x, then Ax is an open set containing u but not v by the definition of graphic
topology. By Proposition 2.1, {v} ∈ τIG. Therefore, Ax is τG-open set containing u and {v} is
τIG-open set containing v such that Ax

⋂
{v} = φ.

Case 4: u and v are not adjacent vertices such that d(u) = d(v) = 1. From assumption, the length of
any path between u and v is at least four. Let P = ue1xe2ye3ze4v be a path between u and v such that
u, x,y, z, v ∈ V and e1, e2, e3, e4 ∈ E. By definition of graphic topology and incidence topology, Ax and Ie4

are τG-open set and τIG-open set, respectively, with Ax

⋂
Ie4 = φ such that u ∈ Ax and v ∈ Ie4 .

From cases above, for each pair of distinct vertices u, v ∈ V there exist τG-open set D and τIG-open
set W with D

⋂
W = φ such that u ∈ D and v ∈ W or u ∈ W and v ∈ D. Hence the bitopological space

(V , τG, τIG) is weakly pairwise T2.

Proposition 3.8. Let (V , τG, τIG) be the bitopological space of a graph G(V ,E). Then the two statements below
are equivalent.
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(1) (V , τG, τIG) is pairwise T2 (pairwise Hausdorff).
(2) (V , τG, τIG) is pairwise T1.

Proof. (1)⇒(2) is evident. Now suppose that (V , τG, τIG) is pairwise T1. By Proposition 3.6, τG and τIG
are discrete topologies. This means each singleton is an open set in τG and τIG. Therefore, for each pair
of distinct vertices u, v ∈ V there exist τG-open set D and τIG-open set W such that u ∈ D, v ∈ W and
D
⋂
W = φ. Hence, (V , τG, τIG) is pairwise T2.

Remark 3.9. From [4] and Proposition 2.7, the topology (τG and τIG respectively) of a graph G = (v,E) are
compact if and only if V is finite. Therefore, the bitopological space (V , τG, τIG) is double compact if and
only if V is finite.

3.2. Connectedness in bitopological spaces (V , τG, τIG)

The sufficient conditions for connectivity of the bitopological space (V , τG, τIG) of a graph G = (V ,E)
are presented in this section.

Proposition 3.10. The bitopological space (V , τG, τIG) of a graph G = (V ,E) such that d(v) > 2 for all v ∈ V is
disconnected.

Proof. If d(v) > 2 for all v ∈ V in a graph G = (V ,E), then τIG is discrete topology by Corollary 2.2.
Also the graphic topology τG for any graph G = (V ,E) is not an indiscrete topology since Au 6= V for all
u ∈ V . Therefore, for any open set A ∈ τG there exists an open set Ac ∈ τIG such that V = A

⋃
Ac. Hence

(V , τG, τIG) is disconnected bitopological space.

Corollary 3.11. The bitopological space (V , τG, τIG) of the complete graph Kn, the cycle Cn, and the wheel Wn

are disconnected such that n > 3.

Proof. From definition of Kn, Cn, and Wn, d(v) > 2 for all v ∈ Kn,Cn,Wn. Then by Proposition 3.10,
(V , τG, τIG) is disconnected bitopological space.

Proposition 3.12. The bitopological space (V , τG, τIG) of every disconnected graph G = (V ,E) is disconnected.

Proof. Suppose that {Gi, i ∈ N} is the set of all components (connected subgraphs) of G such that Gi =
(Vi,Ei). For every component Gi, i ∈ N we have

⋃
u∈Vi

Au = V(Gi) such that Au is an open set for all
u ∈ Vi in τG and

⋃
e∈Ei

Ie = V(Gi) such that Ie is an open set for all e ∈ Ei in τIG. As a result, V(Gi) ∈ τG
and τIG. Since [V(Gi)]

c in V(G) is the union of vertices of other components, thus [V(Gi)]
c ∈ τG and

τIG. Then we have V(G) = V(Gi)
⋃
[V(Gi)]

c for every i ∈ N. Therefore, V(G) is the union of two disjoint
sets V(Gi) and [V(Gi)]

c such that V(Gi) ∈ τG \ {φ} and [V(Gi)]
c ∈ τIG \ {φ} or V(Gi) ∈ τIG \ {φ} and

[V(Gi)]
c ∈ τG \ {φ}. Hence the bitopological space (V , τG, τIG) is disconnected.

Now, suppose that G = (V ,E) is a connected graph. The bitopological space (V , τG, τIG) of a graph
G = (V ,E) such that n(V) = 2 which is the star graph S2 is connected since τIG is indiscrete topology.
Also if τG and τIG are discrete topologies, then the bitopological space (V , τG, τIG) is disconnected as in
the graphs Cn and Kn;n > 3.

Proposition 3.13. The bitopological space (V , τG, τIG) of the star graph Sn such that n > 3 is disconnected
bitopological space.

Proof. From definition of star graph,
⋂

e∈E Ie = {u} such that u ∈ V . This means u is adjacent with all
vertices of the set V \ {u} and so d(u) > 2. From definition of graphic topology τG, Au is an open set such
that v ∈ Au for all v ∈ V \ {u}. By Proposition 2.1, {u} ∈ τIG because d(u) > 2. Thus V = Au

⋃
{u} and so

V is a union of two non-empty open disjoint sets such that Au ∈ τG and {u} ∈ τIG. Hence (V , τG, τIG) is
disconnected bitopological space.



K. A. Abdu, A. Kilicman, J. Math. Computer Sci., 18 (2018), 232–241 239

Example 3.14. Consider the star graph S4 in Figure 2. The graphic topology of S4 is τS4 = {φ,V , {v1}, {v2, v3,
v4}} and the incidence topology is τIS4 = {φ,V , {v1}, {v1, v2}, {v1, v3}, {v1, v4}, {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}}.
Thus V = {v2, v3, v4}

⋃
{v1} such that {v2, v3, v4} ∈ τS4 and {v1} ∈ τIS4 .

Figure 2: The star graph S4.

The next proposition gives the sufficient condition for connectedness of the bitopological space
(V , τG, τIG) of a connected graph G = (V ,E) which is not a star with at least one pendent vertex, i.e.,
τIG is not a discrete topology.

Proposition 3.15. Let G = (V ,E) be a connected graph which is not a star with at least one pendent vertex. Then
the bitopological space (V , τG, τIG) is pairwise connected if and only if for every v ∈ V such that d(v) > 2, v is
adjacent with at least one pendent vertex.

Proof. (⇒) Let (V , τG, τIG) be a pairwise connected bitopological space. By contradiction, suppose that
there exists a vertex v ∈ V such that d(v) > 2 and v is not adjacent with a pendent vertex. By the definition
of graphic topology, we have

⋂
u∈V Au = {v} such that u is adjacent with v. Therefore, {v} ∈ τG since τG

is an Alexandroff space. Since v is not adjacent with a pendent vertex,
⋃

e∈E Ie = V \ {v} such that e is
not incident with v. By definition of incidence topology, V \ {v} ∈ τIG. Thus V = {v}

⋃
V \ {v} and so V

is a union of two non-empty open disjoint sets such that {v} ∈ τG and V \ {v} ∈ τIG. Hence (V , τG, τIG)
is disconnected which is a contradiction with the assumption. Similarly if G has more than one vertex of
degree at least two and not adjacent with a pendent vertex, then (V , τG, τIG) is disconnected.

(⇐) Let M be the set of all vertices v ∈ V such that d(v) > 2. From assumption, for all v ∈ M, v is
adjacent with at least one pendent vertex. Therefore,

⋃
Ie 6= V \ P for some e ∈ E and P ⊆M. This means

V \ P /∈ τIG such that P ⊆M. From the definition of graphic topology τG, we have {v} ∈ τG for all v ∈M.
Now, for any open set A ∈ τG \ {φ,V}, we have the following cases:

Case 1: A ⊆M. Then Ac /∈ τIG since V \ P /∈ τIG such that P ⊆M.

Case 2: A =
⋃
Au for some u ∈ M. Then there exists at least one vertex v ∈ A such that v 6= u and

d(v) > 2 because G is not a star. If Ac ∈ τIG, then v is not adjacent with a pendent vertex which is a
contradiction with the assumption.

Case 3: A =
⋃
(Au

⋃
{u}) for some u ∈M. The proof is similar as Case 2.

From cases above, for all open set A ∈ τG \ {φ,V}, Ac /∈ τIG. Hence (V , τG, τIG) is pairwise connected
bitopological space.

3.3. Density in bitopological spaces (V , τG, τIG)

Some necessary conditions for dense subsets and nowhere dense subsets, which their definitions are
mentioned in preliminaries, of the bitopological space (V , τG, τIG) of a graph G=(V,E) are investigated in
this part.

Proposition 3.16. Let (V , τG, τIG) be the bitopological space of a connected graph G = (V ,E). Then the set
M = {v ∈ V | d(v) > 1} is (1, 2)-dense and (2, 1)-dense in V .
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Proof. From [4], M is dense in (V , τG) of a connected graph G which is not a star. Also by Proposition 2.9,
M is dense in (V , τIG) if G is a connected graph. Therefore, M is (1,2)-dense in V in a connected graph
G = (V ,E) since τIG(cl(M)) = V and then τG(cl(V)) = V . Similarly M is (2,1)-dense in V in a connected
graph G = (V ,E) because the star graph has only one vertex v ∈ V such that d(v) > 1, then τG(cl{V}) = {v}

since V \ {v} ∈ τG. As a result, τIG(cl{V}) = V because any non-empty open set in τIG contains v.

Proposition 3.17. Let G = (V ,E) be a connected graph which is not a star. Then any non-empty subset of B is
nowhere dense in (V , τG) such that B = {v ∈ V | d(v) < 2}.

Proof. LetN be a non-empty subset of B. It is obvious that B =
⋃

v∈B{v} and thus B =
⋃

v∈B{v}=
⋃

v∈B {v} by
properties of closure (see [6]). Suppose that u ∈ B. Thus u ∈ {v} for some v ∈ B. From [4], d(u) 6 d(v) = 1.
Therefore, d(u) = 1 and u ∈ B. As a result B ⊆ B and so B is closed. This means cl(B) = B. Hence for any
non-empty subset N of B, cl(N) ⊆ cl(B) = B (see [6]). Now to prove that τGcl(N) contains no non-empty
τG open set. Since G is not a star, B /∈ τG and so τGInt(τGcl(N)) 6= B. For any F ⊂ B, we have Au 6= F

and Au

⋂
Ar 6= F for all u, r ∈ V because G is a connected graph. For this reason, F cannot be written as

a union of finitely intersection of elements of SG, i.e., F /∈ τG. Hence τGInt(τGcl(N)) = φ since cl(N) ⊆ B
and this means N is nowhere dense in (V , τG).

Proposition 3.18. Let G = (V ,E) be a connected graph and n(V) > 2. Then any non-empty subset of B is nowhere
dense in (V , τIG) such that B = {v ∈ V | d(v) < 2}.

Proof. Let N be a non-empty subset of B. By Proposition 2.8, B is closed set in τIG. This means cl(B) = B.
As a result for any non-empty subset N of B, cl(N) ⊆ cl(B) = B (see [6]). Now, to prove that τIGcl(N)
contains no non-empty τIG open set. For any F ⊆ B, we have Ie 6= F and Ie

⋂
Ih 6= F for all e,h ∈ E since

G is a connected graph. As a result, F cannot be written as a union of finitely intersection of elements
of SIG, i.e F /∈ τIG. Hence τIGInt(τIGcl(N)) = φ since cl(N) ⊆ B and this means N is nowhere dense in
(V , τIG).

Corollary 3.19. Let Let (V , τG, τIG) be the bitopological space of a connected graph G = (V ,E) which is not a star
and n(V) > 2. Then any non-empty subset N of B = {v ∈ V | d(v) < 2} is (1,2)-nowhere dense and (2,1)-nowhere
dense in V(G).

Proof. By Propositions 3.17 and 3.18, any non-empty subset N of B = {v ∈ V | d(v) < 2} is (1,2)-nowhere
dense in V(G) since τIGcl(N) ⊆ B and then τGInt(τIGcl(N)) = φ. Similarly N is (2,1)-nowhere dense in
V(G) because τGcl(N) ⊆ B and so τIGInt(τGciN) = φ.

Remark 3.20. If G in Corollary 3.19 is a star, then the non-empty subset N of B = {v ∈ V | d(v) < 2} is (2,1)-
nowhere dense in V(G) since τGcl(N) = B for all N and then τIGInt(B) = φ. Whereas, only non-empty
proper subset N of B = {v ∈ V | d(v) < 2} is (1,2)-nowhere dense in V(G) because τIGcl(B) = B and so
τGInt(B) = B 6= φ.

Conclusion

In this paper a synthesis between graph theory and topology has been made. A bitopological space
with every locally finite graph has been associated. Then some properties of this bitopological space have
been studied in details. Furthermore, a fundamental step toward studying some properties of locally
finite graphs by their corresponding bitopological spaces has been displayed.
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