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Abstract 
Trilevel programming deals with hierarchical optimization problems that in which the top-level, 

middle-level and bottom-level decision-makers attempt to optimize their individual objectives, but their 

decisions are affected by the optimal objective values presented at other levels. In this paper, we propose 

a hierarchical particle swarm optimization (PSO) method for solving linear trilevel programming 

problems (LTLPPs). The proposed method, solves the top-level, middle-level and bottom-level problems 

iteratively by three variants of PSO. Finally, we give some illustrative examples to show the efficiency of 

the proposed algorithm. 

 

Keywords: Bilevel programming, Trilevel Programming, Particle Swarm Optimization. 

1. Introduction 

Multi-level programming was first defined by Candler and Townsley [5] as a generalization of 

mathematical programming. Many organizational decisions are made a multilevel hierarchical 

structure. The linear trilevel programming (LT LP) is a special case of multi-level programming and 

arises in many fields, including decentralized resource planning and manufacturing [6] and road 

network management [9]. The bilevel linear case is addressed in detail [1],[3]. In this paper, we 
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consider a trilevel decision-making situation in which decision-maker 1 selects an action, within a 

specified constraint set, then decision-maker 2 selects an action within a constraint set determined by 

the action of decision-maker 1 and finally decision-maker 3 select an action within a constraint set 

determined by the action of decision makers 1 and 2. There already have beensome method for solving 

LTLPPs. Bard [2] and Wen and Bialas[15] give algorithms for solvingLTLPPs using cutting planes 

and Karush-Kuhn-Tucker (KKT) necessary optimality conditions. Benson [4] covers multilevel 

programming, which includes the trilevel case. Zhang and et. [16] present a Kth-best algorithm for 

LTLPPs. The most proposed methods require that theobjective functions at three levels TLP be 

differentiable or the feasible region must be convex. On the contrary, the metaheuristic needn’t 

differentiability of objective functions, even any gradient information or the convexity of search space. 

As a new metaheuristic, particle swarm optimization has proved to be a competitive algorithm for 

solving many optimizations problems since it was proposed by Kennedy and Eberhart in 1995 [9]. 

Xiangyong Li et al presented a PSO algorithm for solving bilevel programming problems [10]. In this 

paper, we extend the algorithm presented in [10] for trilevel case. Actually, we solve a general LTLPP 

by solving the top-level, middle-level and bottom-level problems iteratively by three variants of PSO. 

The rest of paper is organized as follows. In Section 2, we state some basic definitions and theorems 

for LTLPs, also we introduce the standard PSO. In Section 3, we propose a hierarchical PSO algorithm 

for solving a general version of trilevel programming problems. Numerical example and a brief are 

presented in Section 4. Section 5 deals with concluding remarks. 

2. Preliminaries 

 
In this section we introduce some definitions of linear trilevel programming and the standard PSO. 

 

2.1. Linear Trilevel Model 

 

A basic LTLP model can be stated as follows: 

 

For 𝑥 ∈ 𝑋 ⊆  ℝ𝑛  ,𝑦 ∈ 𝑌 ⊆ ℝ𝑚 ,, 𝑧 ∈ 𝑍 ⊆ ℝ𝑝 ,𝑓𝑖 :ℝ
𝑛 × ℝ𝑚 × ℝ𝑝 → ℝ , 𝑖 = 1,2,3 

                    min
                             𝑥∈𝑋

𝑓1 𝑥,𝑦, 𝑧 = 𝛼1𝑥+𝛽1𝑦 + 𝜇1𝑧 

s.t    𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 ≤ 𝑏1 

                                min
                                              𝑦∈𝑌

𝑓2 𝑥,𝑦, 𝑧 = 𝛼2𝑥+𝛽2𝑦 + 𝜇2𝑧 

                                    s.t    𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 ≤ 𝑏2 (2.1) 

                                                min
                                                                    𝑧∈𝑍

𝑓3 𝑥,𝑦, 𝑧 = 𝛼3𝑥+𝛽3𝑦 + 𝜇3𝑧 

       s.t    𝐴3𝑥 + 𝐵3𝑦 + 𝐶3𝑧 ≤ 𝑏3 

Where 𝛼𝑖 ∈ ℝ𝑛 ,𝛽𝑖 ∈ ℝ𝑚 , 𝜇𝑖 ∈ ℝ𝑝 ,𝑏𝑖𝜖ℝ
𝑞𝑖 ,𝐴𝑖 ∈ ℝ𝑞𝑖×𝑛 ,𝐵𝑖 ∈ ℝ𝑞𝑖×𝑚 ,𝐶𝑖 ∈ ℝ𝑞𝑖×𝑝 . 

 

The variables x, y, z are called the top-level, middle-level, and bottom-level variables, and the 

functions 𝑓1(𝑥,𝑦, 𝑧) , 𝑓2(𝑥, 𝑦, 𝑧)  and 𝑓3(𝑥,𝑦, 𝑧)  are the top-level, middle-level, and bottom-level 

objective functions, respectively. In this model, the decision problem consists of three optimization 

subproblems(represented by three objective functions) in a three-level hierarchy.Now, we state some 

definitions and notations. 

2.2. Definitions 

(1) Constraint region of the LTLP: 
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 𝑆 =  (𝑥,𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 𝐴𝑖𝑥 + 𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 . 
(2) Feasible set for the middle and bottom levels for each fixed 𝑥 ∈ 𝑋: 

𝑆 𝑥 =   𝑦, 𝑧 ∈ 𝑌 × 𝑍 𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 − 𝐴𝑖𝑥, 𝑖 = 2,3 . 
(3) Feasible set for the bottom-level for each fixed  𝑥,𝑦 ∈ 𝑋 × 𝑌: 
𝑆 𝑥,𝑦 =  𝑧 ∈ 𝑍 𝐶3𝑧 ≤ 𝑏3 − 𝐴2𝑥 − 𝐵2𝑦 . 
(4) Projection of S onto the top levels decision space: 

𝑆 𝑋 =  𝑥 ∈ 𝑋 ∃ 𝑦, 𝑧 ∈ 𝑌 × 𝑍,𝐴𝑖𝑥 + 𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 , 𝑖 = 1,2,3 . 
(5) Projection of S onto the top and middle levels decision space: 

𝑆 𝑋,𝑌 =  (𝑥,𝑦) ∈ 𝑋 × 𝑌 ∃𝑧 ∈ 𝑍,𝐴𝑖𝑥 + 𝐵𝑖𝑦 + 𝐶𝑖𝑧 ≤ 𝑏𝑖 , 𝑖 = 1,2,3  
(6) Rational reaction set for the middle level for 𝑥 ∈ 𝑆 𝑋 : 

𝑃 𝑥 =   𝑦, 𝑧   𝑦, 𝑧 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓2 𝑥, 𝑦, 𝑧  :  𝑦 , 𝑧  ∈ 𝑆 𝑥 , 𝑧 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓3 𝑥,𝑦 , 𝑧  , 𝑧 ∈ 𝑆 𝑥,𝑦     . 
(7) Rational reaction set of the bottom-level for (𝑥,𝑦) ∈ 𝑆(𝑋,𝑌): 

𝑃 𝑥,𝑦 =  𝑧 𝑧 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛[𝑓3 𝑥,𝑦, 𝑧  , 𝑧 ∈ 𝑆(𝑥,𝑦)] . 
(8) Inducible region (IR): 

𝐼𝑅 =  (𝑥,𝑦, 𝑧) ∈ 𝑆 (𝑦, 𝑧) ∈ 𝑃(𝑥) . 
In view of the above Definitions, determining the solution to (2.1) is equivalent to solving 

thefollowing problem:𝑚𝑖𝑛 𝑓1(𝑥,𝑦, 𝑧) (𝑥,𝑦, 𝑧) ∈ 𝐼𝑅 . 
Three assumptions presented below are required to come up with the existence theorem. 

(1) S is nonempty and compact. 

(2) For decisions taken by the leader, the follower has some room to respond, i.e,𝑃 𝑥 ≠ ∅,𝑃 𝑥, 𝑦 ≠ ∅ 

(3) 𝑃 𝑥 and𝑃 𝑥,𝑦  are point-to-point maps with respect toxand (x,y)respectively. 

The existence of the solution for the LTLPP, can be followed from the following theorems, for proofs 

see [15]. 

Theorem 2.1.If S is nonempty and compact, then there exists an optimal solution for theLTLP 

problem. 

Theorem 2.2.The inducible region can be expressed equivalently as a piecewise linear 

equalityconstraint comprised of supporting hyper planes of S. 

Corollary 2.1.A solution to the LTLP problem stated in (2.1) occurs at a vertex of the IR. 

Theorem 2.3.The solution 𝑥∗,𝑦∗, 𝑧∗ of the linear trilevel programming problem occurs at avertex of 

S. 

Corollary2.2.If(x, y, z) is an extreme point of the IR, then it is an extreme point of S. 

2.3. Particle Swarm Optimization 

PSO is a population-based stochastic optimization algorithm. The system is initialized witha 

population of random solutions and searches for optima by updating generations. However,unlike GA, 

the PSO algorithm has no evolutionary operators, such as crossover and mutation.In the PSO 

algorithm, the individuals who called particles, manipulate their trajectories towardthe best region of 

their own previous best performance and toward the locations found by members in their 

neighborhoods. The location of particleiis represented as𝑋𝑖 =  𝑥𝑖1 ,… , 𝑥𝑖𝐷 which is a D-dimentional 

vector in problem space, and its performance is evaluated on the predefined fitness function related to 

the problem and each particle keeps the memory of its previous best position, Pbest. The velocity of 

each particle, represented as𝑉𝑖 = (𝑣𝑖1 , . . , 𝑣𝑖𝐷) and theposition of the particle with the best performance 

in the search space is represented byPg.Theparticle velocities in each dimension are controlled by a 

maximal velocity, Vmax , and the velocityin that dimension is limited to Vmax. The flying direction of 

particle is the dynamical interactionof individual and social flying experience. The position change of 
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each particle is a function of itscurrent velocity vector, the stochastically weighted difference between 

its current position andthe best position found by itself so far, (Pbest) and difference between the 

individual’s currentposition and the best position found by any member in its neighborhood (Pg). The 

velocity and position of j-th component of i-th particle at iteration t is updating by the following two 

equations: 

           𝑣𝑖
𝑗  𝑡 + 1 = 𝑤𝑣𝑖

𝑗  𝑡 + 𝑐1𝑟𝑎𝑛𝑑1  𝑝𝑖
𝑗  𝑡 − 𝑥𝑖

𝑗  𝑡  + 𝑐2𝑟𝑎𝑛𝑑2  𝑝𝑔
𝑗  𝑡 − 𝑥𝑖

𝑗  𝑡   

            𝑥𝑖
𝑗  𝑡 + 1 = 𝑥𝑖

𝑗  𝑡 + 𝑣𝑖
𝑗  𝑡                    (2.2) 

Where 𝑝𝑖
𝑗

 is the j-th component of the best position encountered by the i-th particle so far,𝑝𝑔
𝑗
 

represents the j-th component of the position of the best performance in whole swarm, tis the iteration 

counter,c1 and c2 are the acceleration coefficients; rand1 andrand2 are two randomnumbers in [0,1] 

and,wis inertia weight. From the velocity update equation is clear that c2 regulates the maximum step 

size in the direction of the global best particle, and c1 regulatesthe step size in the direction of the 

personal best position of that particle. 

2.3.1 Rate of convergence improvements 

 

Several techniques have been proposed for improving the rate of convergence of the PSO. Someof the 

earliest modifications to the original PSO were aimed at further improving the rateof convergence of 

the algorithm. Shi and Eberhart investigated the effect ofwvalues in therange [0,1.4], as well as 

varyingwover time [13]. Their results indicate that choosing 𝑤 ∈ [0.8,1.2] results in faster 

convergence, but that largerwvalue ( > 1.2) results in more failuresto converge. Further empirical 

experiments have been performed with an inertia weight set todecrease linearly from 0.9 to 0.4 during 

the course of a simulation [12]. This setting allows thePSO to explore a large area at the start of the 

simulation run, and to refine the search later byusing a smaller inertia weight. Some research have 

found out that settingc1=c2=2 gets thebest overall performance. Suganthan method shows that small 

cognitive coefficient and largesocial coefficient can improve the algorithm convergence [14]. For more 

information about theanalysis of the parameter selection in PSO, see [9]. 

 3. Proposed Algorithm for Solving Linear trilevel Programming Problems 

In this section, we introduce a hierarchical PSO algorithm for solving linear trilevel programming 

problems. As mentioned above, LTLPs are hierarchical and sequential optimization problems. Moreover 

each top-level, middle-level and bottom-level problem can be considered as an individual optimization 

problem. In view of the characteristics of sequential decision, we can constructa hierarchical algorithm 

based on three variants of standard PSO to solve LTLPPs.By Theorem 2.3, the optimal solution of LTLPP 

occurs in an extreme point of the setS.So, the set ofScan be considered as our search space. Since often it 

is difficult to constructS,we consider an ordered polyhedral which covers S, as our search space. In first 

step we generatesome particles and their corresponding velocities, and to apply them as input values of 

the toplevel PSO (PSO-T), that finds the optimal solution off1in constraint region S. Let 

(𝑥0 ,𝑦0 , 𝑧0) be the output of PSO-T, In the next step we generate some new particles with fixed x=x0 

,anduse them as input of PSO-M which finds the optimal solution off2in the feasible set for themiddle and 

bottom levels for fixed x=x0, i.e, S(x0), let (x0, y1, z1) be the output of PSO-M.Again produce some new 

particles with fixed x=x0, y = y1, and use them as input data of PSO-B which finds the optimal solution of 
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f3 in the feasible set for the bottom level, i.e., S(x0,y1) The output of this algorithm is considered as the 

solution of LTLPP. 

4.Computational Experiences 

 
In order to test the proposed PSO algorithm, we solved two problems with this method. Thecodes have 

been written in Matlab 7.1. Numerical experiments have been carried out on a Pentium (R) 2.00 GHz 

processor. For each problem, 30 runs were simulated. This was done to ensure that the randomness of 

generating the particles, did not have a major influence onthe final solution. The parameters for the 

implementation of the algorithm are set as follows: The swarm sizes Nmax are set to 40, 30 and 20, for 

PSO-T, PSO-M and PSO-B respectively.The number of maximum generations, Gmax are set to 60, 40, 20, 

for PSO-T, PSO-M, PSO-Brespectively, acceleration coefficient c1 is 0.5 and, c2 is 1.5, inertia weight, W, 

is set to decrease linearly from 1.2 to 0.1. For each testing problem, it can be seen that the standard 

deviation of the best top level objective value over 30 runs, and the difference between the best and the 

worst value of the top level objective, is almost equal to 0, which means that the robustness of 

ourproposed algorithm is very high. 

We can observe relocation of particles in all iterations in PSO-T, PSO-M and PSO-B subalgorithms for 

testing problem one in Figures 1, 2 and 3. The summery of the found results are reported in Table 1. If we 

solve the problems with existent algorithms such as Kth-Best algorithm, we observe that, the solution 

obtained for test problem one is exact and, the solution obtained for the test problem two is very close to 

the exact solution in which the value of objective functions is f1= -35.33, f2= -20, f3= -12. 

 

 

 

 
 

Figure 1. Relocation of particles in PSO-T 

 

                                                 
Figure 2.Relocation of particles in PSO-M                               Figure 3. Relocation of particles in PSO-B 
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Table 1. Results for Testing Problems 

 Best f1 Worst f1 Avg. Std. Best f2 Worst f2 Best f3 Worst f3 

 

Test1 -20 -20 -20 0 10 10 -8 -8 

 

Test2 -35.319 -33.5541 -34.9829 0.2124 -20 -19.0764 -12 -12 

 
 

5. Conclusion 

 
In this paper, we extend the application of PSO to solving linear trilevel programming problems. 

Actually, we solve a general LTLPP by solving the top-level, middle-level and bottom-levelproblems 

iteratively by three variants of PSO, that are called PSO-T, PSO-M and PSO-B. Withthis approach, we 

can solve this kind of programming problems without need to solve differentsimplex tables and without 

any transformation of the objective or constraints functions. Alsobecause of nature of PSO algorithm 

which is designed for solving nonlinear programming withoutany specified assumptions and conditions, it 

seems that different classes of  LTLPPs can be solved more effectively through such an interaction 

between three variants of PSO. 

6.Appendix: Testing problems 

 
1. Testing problem one: 

min
𝑥≥0

𝑓1 𝑥,𝑦, 𝑧 = 𝑥 − 4𝑦 + 2𝑧 

−𝑥 − 𝑦 ≤ −3 

−3𝑥 + 2𝑦 − 𝑧 ≥ −10 
 

min
𝑦≥0

𝑓2  𝑥,𝑦, 𝑧 = 𝑥 + 𝑦 − 𝑧 

−2𝑥 + 𝑦 − 2𝑧 ≤ −1 

2𝑥 + 𝑦 − 4𝑧 ≤ 14 

min
𝑧≥0

𝑓3 𝑥,𝑦, 𝑧 = 𝑥 − 2𝑦 − 2𝑧 

2𝑥 − 𝑦 − 𝑧 ≤ 2 

2. Testing problem two: 

 

min
𝑥≥0

𝑓1 𝑥,𝑦, 𝑧 = −4𝑥 + 2𝑦 − 5𝑧 

3𝑥 − 𝑦 + 𝑧 ≤ 12 

𝑥 ≥ 2 
 

min
𝑦≥0

𝑓2 𝑥,𝑦, 𝑧 = 𝑦 − 4𝑧 

2𝑦 − 𝑧 ≥ 2 

3𝑦 + 𝑧 ≤ 24 
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min
𝑧≥0

𝑓3 𝑥,𝑦, 𝑧 = −2𝑧 

𝑧 ≤ 6 
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