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Abstract
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1. Introduction and preliminaries

Let (X, d) be a metric space, and C a nonempty set of X. A mapping T: C — C is called nonexpansive
if d(Tx, Ty) < d(x,y) for all x,y € C. In 2007, Goebel and Japén Pineda [8] introduced the class of mean
nonexpansive mappings, an extension for the class of nonexpansive mappings. A mapping T: C — C is
called mean nonexpansive (or a-nonexpansive) if, for some o« = (01, 2, ..., 0n) with } " ;o4 =1, a; >0
for all 1, and &1, xn, > 0, we have

n
Z o d(THx, Thy) < d(x,y)
i=1

for all x,y € C. Further, Goebel and Jap6n Pineda [8] introduced the class of (&, p)-nonexpansive
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mappings. A mapping T: C — C is called («, p)-nonexpansive, if for some o = (x1, x2,..., &) with
Z{;l i =1,y =0 for all i, and &4, ¢, > 0, and for some p € [1,00), we have

Zoqdp x, Thy) < dP(x,y)

for all x,y € C. In particular, for n = 2, the above inequality reduces to
a1 dP (Tx, Ty) 4+ xdP (T?x, T?y) < dP(x,y)
for all x,y € C, we say that T is ((ot, x2), p)-nonexpansive.

Example 1.1. Let X = [0, 00) C R with usual metric d(x,y) = |x —y| for all x,y € X. Define a translation
function T: X — X by the formula Tx = x + a for any fixed a > 0. Now, setting o; = x» = % and p > 1,
we have

Tx —TylP + [T — THy[P =2x —y/?,

that is,
1 1
§|TX— TylP + §|TX — TylP =[x —ylP.

Therefore, T is ((x1, x2), p)-nonexpansive mapping.

Example 1.2. Let X = {0, 1,2} with usual metric d(x,y) = [x —y| for all x,y € X. Define the mapping

1, x#0,

T X=X, Tx=
{0, x = 0.

Setting o« = (ot1, 0t2), 1, p > 0 and ;1 + 2 =1, for any p > 1, we have
0| Tx — Ty|P + oo T2 — T2y[P < x —ylP.
Therefore, T is ((«1, &t2), p)-nonexpansive mapping.

In 1982, Istrdtescu [10] introduced the class of convex contraction mappings in the setting of metric
space and generalized the well known Banach’s contraction principle [2]. Some works have appeared
recently on generalization of such class of mappings in the setting of metric, ordered metric, and cone
metric, b-metric and 2-metric spaces (for example, Alghamdi et al. [1], Ghorbanian et al. [7], Miandaragh
et al. [14], Miculescu and Mihail [15], Khan et al. [12], etc.).

Let (X,d) be a metric space and T: X — X be a mapping. Given ¢ > 0, then xy € X is said to
be an e-fixed point of T on X, whenever d(xg, Txg) < e. Note that every fixed point is e-fixed point
but the converse need not be true. We denote the set of all ¢- fixed points of T for a given ¢ > 0 by
Fe(T) ={x € X|d(Tx,x) < ¢} and Fix(T), the set of all fixed points of T.

We say that T has the approximate fixed point property (AFPP) if for all ¢ > 0, there exists an e-fixed
point of T i.e., for all ¢, F¢(T) # 0, or equivalently, infxex d(Tx,x) = 0.

For details we refer to Berinde [3], Kohlenbach and Leustean [13], Reich and Zaslavski [16], Tijs et al.
[17].

Example 1.3 ([12]). If X 0,00),letT: X — X, Tx =x+
xo € X such that x¢ > 2 -5, we obtain,

2X1+1 for all x € X. Setting 0 < & <  and taking

d(TXO,Xo) = |TXO —X0| = ’2)(0 1 < €

This shows that T has an e-fixed point, so F.(T) # 0. Note that T has no fixed point in X.
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Definition 1.4 ([4]). A self mapping T on X is said to be asymptotically regular at a point x € X if
limn oo d(T™x, TMH1x) = 0.

Definition 1.5 ([5]). A sequence {xy}in X is called an asymptotically T-regular, if limp oo d(xn, Txn) = 0.

Lemma 1.6 ([3]). If (X,d) is a metric space and T is an asymptotically regular self mapping on X, that is
d(T™x, T™*1x) — 0 for all x € X, then T has the AFPP.

In the next section, we discuss the notions of («, p)-convex contraction (resp. («,p)-contraction) and
asymptotically T?-regular (resp. (T, T?)-regular) sequences. Further, we show with examples that the
notions of asymptotically T-regular and T?-regular sequences are independent to each other.

2. (x,p)-convex contraction and asymptotic regularity
Let T be a self mapping on a metric space (X, d).

Definition 2.1. A self mapping T on X is said to be («, p)-contraction, if for some « € (0,1) and p > 1,
there exists 0 < k < 1 satisfying the following inequality

xdP(Tx, Ty) + (1 — «)dP (T>, T?y) < kdP(x,y) (2.1)
for all x,y € X.

Note that if we set &« = &1, ) =1 — «, and k = 1 in the inequality (2.1), then T reduces to ((x1, x2), p)-
nonexpansive (see [8]). Further, if p =1 and k < 1 (resp. k = 1) in the inequality (2.1), then T reduces to
a-contraction (resp. a-nonexpansive) with multi-index length 2 (see [9]).

Definition 2.2. A self mapping T on X is said to be («, p)-convex contraction, if for some « € (0,1) and
p > 1, there exist k; > 0 for all i € {1,2,...,5) such that Y \=> k; < 1 satisfying the following inequality
adP (Tx, Ty) + (1 — &)dP (T?x, T?y) < k1dP (x,y) + kodP (x, TX)
+ kadP (Tx, T*x) 4 kadP (y, Ty) + ksdP (Ty, T?y) @2)
for all x,y € X.

Obviously, if ki = 0 for all i € {2,3,4,5}, then the inequality (2.2) reduces to («, p)-contraction. We
shall call -contraction and x-convex contraction, if p =1 in the inequalities (2.1) and (2.2). If x =k; =0
and p =1 in (2.2), then it reduces to two-sided convex contraction [10].

Example 2.3. On X = [0, 1], consider T: X — X, endowed with usual metric d(x,y) = [x —y|. We define
Tx = 13X2, for all x € X. Then, we obtain T?x = %:*"4 . Now, we have
(x+y)

1 2 2
ITx — Tyl 2Ix Y-l 7 x —yl < [x—yl

Also,

1 1 1
T2 — T2y = g\(ZxZ—x4) —(2y* —yY)I < Elxz—yzl+§|x4—y4l <Ix—yl.

Therefore, for o« = % and p = 1, we obtain

«|Tx — Tyl + (1 — oc)Isz—szI < x—yl.

This shows that T is nonexpansive and a-nonexpansive for p = 1.
Further, forp =2 and « = %, we obtain

2 2 201 2 1 2_ D 2

oafTx = Ty" + (1 = [T = TyYI" < g =yl + glx —yl* = glx —yl~

This shows that T is («, p)-contraction for p =2 > 1.
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In [6], Gallagher mentioned that all nonexpansive mappings are mean nonexpansive, but the converse
is not true. That is, there exists a mean nonexpansive mapping which is not nonexpansive (see [6, Exam-
ples 2.3 and 2.4]). However, it may happen that a nonexpansive mapping need not necessarily be a mean
nonexpansive.

Example 2.4. Let T: X — X, where X = [0, 1] with usual metric d(x,y) = [x —y|. We define Tx = %2 for all
x € X. Setting o = 3 and p = 1. Now, we have
1,
Tx =Tyl = 50—y < [x—y.
Also, we have,

1 X2 +1y?)(x + 1
|T2x—T2y|:8|x4—y4|:( 98)( y)lx—y|< §|X—U|-

Therefore,
1 1 3
STx — Tyl + =[T2x — T?y| < S|x —
2|>< y|+2\ X Yyl 4lx yl,

where, k = %, o= % This shows that T is nonexpansive but not mean nonexpansive.

Now, we introduce the notions of asymptotically T?-regular (resp. (T, T?)-regular) sequences.
Definition 2.5. A sequence {x,} is called an asymptotically T?-regular, if limy o0 d(xn, T?xn) = 0.
Example 2.6. Let X = R endowed with usual metric d(x,y) = |[x —y|. We define

1—x2, x #1,

T X—=X, Tx=
2, x =1.

Choose a sequence {x,,} in X such that x, — 1 as n — oo, except the constant sequence x, = 1. Then,
Txn = (1—x%) — 0 as n — oco. Therefore, limp o0 [TXn —Xn| = 1 # 0. Also, we have T?x, = T(Tx,) =
T1—%n?) = 1—(1—=%n2)% — 1. Consequently, [xn — T?xn| — 0. Therefore, {xn} is asymptotically
T2-regular sequence but not asymptotically T-regular sequence in X.

Example 2.7. Let T: X — X, where X = R with the usual metric d(x,y) = [x —yl|. Define

2

>, x<2,
Tx=<¢0, x=2,
2, x>2

Consider a sequence {xn} in X such that x, — 2 as n — oo, except the constant sequence x,, = 2.
Then, Txn, — 2 as n — oo. Therefore, limn_y00 |TXn — Xn| = 0. Further, we have T?x,, = T(Txn) — 2 or
0, according as xn — 2 from left or right. So, limn_,« T%x,, does not exist. Therefore, |xn — T?xn| does
not tend to 0 as n — 0. It shows that {x,} is asymptotically T-regular sequence, but not asymptotically
T2-regular sequence in X.

It may be observed from Examples 2.6 and 2.7, that the notions of asymptotically T-regular and T2
-regular sequences are independent to each other.

Definition 2.8. A sequence {x,,} in X is called an asymptotically (T, TZ)-regular, if im0 d(Xm, Txn) =0
and limn 00 d(Xn, T?xn ) = 0.
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Obviously, if {x,} is an asymptotically (T, T?)-regular sequence, then it satisfies both asymptotically T
and T?-regular conditions.

Example 2.9. Let T: X — X, where X = R with usual metric d(x,y) = [x —yl|. Define
4—x, x<2,
0

Tx =<0, X =2,
5 x> 2.

Consider a sequence {xn } in X such that x, — 2 as n — oo, except the constant sequence x, = 2. Then,
Txn — 2 as n — oo and T2x, = T(Txn) — 2. Therefore, [xn — Txn| — 0 and Xy — T?xn| — 0 as n — oo.
So, {xn} is both asymptotically T-regular and T?-regular sequence in X. Therefore, {x,} is asymptotically
(T, TZ)—regular sequence in X.

Lemma 2.10. If a sequence {xn} in X is asymptotically (T, T?)-reqular in X, then

lim d(Txn, T*xn) = 0.

n—o0

Proof. By the triangle inequality, we obtain
d(Txn, T%n) < d(Txn, xn) + d(xn, Txn).
Hence, d(Txn, T®xn) — 0 as n — oo. O
The converse of Lemma 2.10 is not true. In support of this, we have the following example.
Example 2.11. Let T: X — X, where X = R with usual metric d(x,y) = [x —y|. We consider

Ty — 1, x#0,
0, x=0.

Choose a sequence {xn } in X such that x, — 0 as n — oo. Then, Tx,, and T2xn converge to 1 as n — oo.
Therefore, [Txn, —xn| — 1 # 0 and |xn, — T?xn| — 1 # 0 as n — oo. It shows that d(Txn, T?xn) — 0
as n — oo, but the sequence {x,} is neither asymptotically T-regular nor asymptotically T?-regular in X.
Therefore, the sequence {x,,} is not asymptotically (T, T?)-regular.

3. Fixed point results

Theorem 3.1. Let (X, d) be a metric space and T: X — X be a (o, p)-contraction such that k + « < 1. Then, T has
the AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

Proof. Let xg € X. Now, we define a sequence {xn} by xn4+1 = THxg for all n > 0. If X = Xpyq i€,
T'xo = T(T™xp) for some n, then the conclusion follows immediately. Without lost of generality, we
assume that x, # Xxn41 for all n > 0. Setting v = d(xo, Txg) + d(Txo, T?>x0) we have d(xg, Txg) < v and
d(Txg, T®xg) < v. Taking x = xp and y = Txg in the inequality (2.1), we obtain

(1—a)dP (T?xg, T3xg) < adP (Txg, T2x0) + (1 — &) dP (T?xg, T>x0)

VP = d(T%x0, T3x0) < hv,

k
< kdP (Xo, TX()) =kvP = dP (TZXO, T3X0) < 1

where hP = %, and since k+ <1 = hP < 1.

Again, taking x = Txp and y = T?x in relation (2.1), we obtain

(1—o)dP (T3xg, T*xg) < adP (T?x0, T?x0) + (1 — x)dP (T>xq, T4xo)
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< kdP (Txo, T?x0) = dP(T3xq, T4xp) < hPVP = d(T3xo, T4xg) < hv.
And
(1—a)dP(T*xg, T°xg) < adP (T3xg, T*xg) + (1 — &)dP (T*xg, T2x0) < kdP (T?xg, T>xg) = d(T*x0, T°xg) < h?v.
Also, we obtain
d(T5xp, To%g) < h?v.

Following similar arguments as in ([12, 14]), we obtain d(T™xy, Tm+1xg) < hlv, whenever m = 21 or
m = 21+ 1. Therefore, d(T™xo, T™*1x¢) — 0 as m — oo, i.e., T is asymptotically regular at xo. By Lemma
1.6, T has an approximate fixed point. Now, suppose that T is continuous and (X, d) is a complete metric
space. In order to show that {x,,} is a Cauchy sequence in X, fix a nonzero positive integer m.

Case (i). For m =2l with 1,q > 1, then

d(T™x, T™ %) =d(T? 'xg, T?1 T 9%0)
<d(T2xp, T2 o) + d (T2 g, T2 2xp)
+d(T2W2xg, T2 Bxg) + d (T2 3%, T2 Hxg) + - - -
+d (T2 972, T2 A1y ) 4 q(T2HHa 1y, T2 )

<hlv+hlv ity ntly 4o
1
(I1—h)

<2h1<1+h+h2+h3+---)v<2h‘ v,

Case (ii). Similarly, for m =214 1 with 1, q > 1, we obtain

d(TmXO, Tm+qxo) :d(T21+1X0, T21+q+1xO)
<d(T21+1X(), T21+2X0) + d(TZlJrZXO’ T21+3X0)
d(T23x, T2V ) + d (T2 4, T2 %) + - - -
(T2 ATy, T2 Axg) 4 d (T2 dx, T2UH 9+ )
<hbv+hty - hbly f hb 2y o

1
(1—h)

<2hl(1++h+h2+h3+~->v<2h1 v.

Taking | — oo in all cases, since h < 1, we obtain, d(T™xg, T"xg) — 0. Therefore, {x,,} is a Cauchy
sequence in X. Since, X is complete, there exists a point z € X such that x, = T"xg — z € X asn — oo.
This shows that z is a fixed point of T. Now, we prove that T has a unique fixed point in X. Let z* € X be
another fixed point of T. Using (2.1) for x = z and y = z*, we obtain

adP (Tz, Tz*) 4 (1 — «)dP (T%z, T?2*) <kdP(z,z*) = (1 —k)dP(z,z*) <0
leading to d(z,z*) = 0, a contradiction. Hence, T has a unique fixed point in X. O
We have the following example for the validity of Theorem 3.1.

Example 3.2. Let T: X — X, where X = [0, 1] with usual metric d(x,y) = [x —y|. Define Tx = % for all
x € X. Setting e = # and p = 2, we obtain

(1—«)

2

7
= IX—yI2=ﬁIX—yl2-

ocITx—TyIZ—i—(1—oc)|T2x—T2g|2 < oclx—y|2+ >

Ix —

This shows that T is (&, p)-contraction with o« + k = % < 1. Moreover, x = —1 4 /2 is the unique fixed
point of T in X.
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Theorem 3.3. Let (X, d) be a metric space and T: X — X be a («, p)-convex contraction such that (Zle ki) +
o < 1. Then, T has the AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.

Proof. We define a sequence {xn} by xn41 = Tntlxy for all n > 0 and continue the same arguments as in
Theorem 3.1, setting v = d(xo, Txo) + d(Txo, T%xp). Now, using (2.2) for x = xp and y = Txo, we obtain
(1— o) dP(T?xg, T?xg) <+ adP(Txg, T?xg) + (1 — &)dP (T?x0, T°x0)
<(kq +k2)dP (xo, Txg) + (k3 + ka)dP (Txo, T*xo + ksdP (T?xg, T>x0)
<(kq + ko + k3 + kg )vP + ksdP (T2xo, T2xp).

Therefore,

< k1 +k2+k3+k4vp

dP (T?xo, T?x0) < T—x—k =hPvP = d(T?xp, TPx0) < hw
—a—Kks

_ [ ki+ko+ks+ky . . 5 .
for hP = (W), moreover, since (Zj:1 k]) +a<1=hP<l.

Similarly, one can obtain
d(T3x0, T*xg) < hv, and d(T*x, T°xo) < h?v, and d(T°xg, Toxo) < hv.

Following similar arguments as in Theorem 3.1, we obtain d(T™xy, TmFlxg) — 0as m — oo, ie, Tis
asymptotically regular at xo. By Lemma 1.4, T has AFPP. Further, by assuming the continuity of T and the
completeness of X, the existence of a fixed point z can be proved, using similar arguments as in Theorem
3.1.

Now, we show that T has a unique fixed point in X. Let z* € X be another fixed point of T. Using (2.2)
for x =z and y = z*, we obtain

odP (Tz, Tz*) + (1 — o) dP (T2, T?2*) <k1dP(z,2*) + kodP (2, Tz) + k3dP (Tz, T?2)
+kgdP (2", T2*) + ksdP (T2*, T22*) = (1 —kq)dP(z,2*) <0,

which gives d(z,z*) = 0, a contradiction and hence, T has a unique fixed point in X. O
One can verify the validity of Theorem 3.3 with Example 3.2 taking with « = %,kl = %,kz = k3 =
ks =ks=0,and p = 2.
Theorem 3.4. Let (X, d) be a complete metric space and T: X — X be a («, p)-contraction such that 0 < k < o or
k+ o < 1. If T is asymptotically reqular at some point xo in X, then there exists a unique fixed point of T.
Proof. Let T be an asymptotically regular mapping at xg € X. Consider a sequence {T™xp} in X and for
any two non zero positive integers m,n > 1 such that m > n, let us analyze the following two situations:
Case(i). When 0 < k < «. Using the inequality (2.1), we obtain
oadP (T™x, T™xp) <aedP (T™xo, T™xg) + (1 — o) dP (T™ xg, T xg)
P
<kdP (T™ 1o, T xg) < K| A(T™ xo, T™xo) + d(T™xo, T™x0) + d(T™x0, T o) |

Taking n, m — oo and using the asymptotically regularity of T at xo, the above inequality gives

o im dP(T™xg, T™xo) <k Lim dP(T™xq, T™xg),
n—oo n—oo

that is,

(—k) Iim dP(T™xq, T™xg) < 0.

n—oo

Since 0 < k < «, it follows limy oo d(T™xg, T™xg) = 0.
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Case(ii). When 0 < k + « < 1. Using the inequality (2.1), we obtain
(1—a&)dP(T™xg, T™xg) <adP (T™ 1x, T 1xg) 4 (1 — &)dP (T™xg, T™x)
<kdP (T™ 2x, TV 2x0)
<K [AT™ 2x0, T™x0) + d(T™x0, T"x0) + d(T"x0, T 2x0)| ’
<k[d(Tm*2x0, T™Ixg) + d(T™ Ixg, T™x0)

P
+ d(TmX(), TnX()) + d(TnX(), Tn71X0) + d(Tn71X0, Tn72X0)1| .

Taking n, m — oo, we find

(1—a) lim dP(T™xp, T™x0) < k lim dP(T™xq, T™xp) = (1 —ax—k) lim dP(T™xg, T"xg) < 0.
n—oo n—o00 n—oo
Therefore, limy oo d(T™xp, T™"xp) = 0 as 0 < k+ « < 1. Consequently, {T™"xo} is a Cauchy sequence in X.
Since X is complete, it follows T™xg — z as n — oo for some z € X. Now, we show that Tz =z, ie, zis a
tixed point of T. For this, using again the inequality (2.1), we find

adP (Tz, TMxo) < adP(Tz, T™g) + (1 — o) dP (T?z, T " xg) < kdP (2, T™ xo).
As n — 0o, we obtain
adP(Tz,z) <0,

which leads to d(Tz,z) =0, that is Tz = z. Therefore, z is a fixed point of T. The uniqueness of the fixed
point follows immediately as in Theorem 3.1. O

Example 3.5. Let T: X — X, where X = [0, 1] with usual metric d(x,y) = [x —yl|. Define Tx = HTX for all

x € X. For any arbitrary xg € X, we have Txg = H% and T"xg = w, where T™ denotes the nth
iterate of T. Also, we have

) .12t —1+4x%x 2™ —14x
n n+1
nhn;o d(T™xo, TV xg) = T}1m o ol =0.

This shows that T is asymptotically regular at all points in X. Obviously, {T™x¢} is a sequence in X such
that T"xp — 1 € X as n — oo. Taking o« = %, k = %, and p = 2, then T is («, p)-contraction for all x,y € X
such that k < « or k+ o < 1. Thus, all the conditions of Theorem 3.4 are satisfied and hence, 1 is the
unique fixed point of T.

Theorem 3.6. Let (X, d) be a complete metric space and T: X — X be a a-contraction such that k < «. If there
exists an asymptotically T-reqular sequence in X, then T has a unique fixed point.

Proof. Let {x,,} be an asymptotically T-regular sequence in X. Then, for any two non zero positive integers
m, n such that m > n, we obtain

O(d(Xm, Xn) <« —d(Xm, Txm) + d(TXm/ Txn) + d(TXn/ Xn)]
=X _d(Xm, Txm) + d(Txq, Xn)] + od(Txm, Txn)

<x _d(xm, Txm) + d(TXn,Xn)] + ad(Txm, Txn) + (1 — &) d(T?%m, T?xn)

<« _d(xm, Txm) + d(TXn/Xn)] +kd(xm, Xn),
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that is,

d(xm/Xn) gﬁ d(Xm, TXm) + d(TanXn) .

Taking n, m — oo and using the fact that the sequence {x, } is asymptotically T-regular, we obtain

lim d(xm,xn) = 0.
n—oo
This shows that {x,,} is a Cauchy sequence. Since X is complete, there exists a point z € X such that
Xn —+z € Xasn — oo.
Now, we show that Tz =z, i.e., z is a fixed point of T.

ad(Tz,xn) <a|d(Tz, Txn) + d(Txn, Xn)
<axd(Tz, Txn) + (1 — ®)d(T?z, Txn) + od(Txn, Xn) < kd(z, xn) + ad(Txn, Xn).
As n — oo and since {xn,} is asymptotically T-regular, we obtain
xd(Tz,z) <0

leading to Tz = z. Therefore, z is a fixed point of T. The uniqueness of the fixed point follows immediately.
O

Example 3.7. Let T: X — X, where X = [0, 1] with usual metric d(x,y) = [x —yl|. Define Tx = 3 for all
x € X. Consider a sequence {x} in X such that x, — 0, then Tx,, — 0, i.e., [xn, — Txn| = 0 as n — oo. So,
{xn} is asymptotically T-regular in X. Setting o = 3, k = 2, then T is a-contraction for all x,y € X such
that k < «. Thus, all the conditions of Theorem 3.6 are satisfied and hence, 0 is the unique fixed point of

T.

Theorem 3.8. Let (X, d) be a complete metric space and T: X — X be a o-contraction such that k + o < 1. If there
exists an asymptotically T?-regular sequence in X, then T has a unique fixed point.

Proof. Let {xn}be an asymptotically T?-regular sequence in X. Then, for any two non zero positive integers
m, n such that m > n, we obtain

(1 - (X)d(Xm, Xn) <(1 - 0‘) d(xm/ szm) + d(szm/ TZXTL) + d(TZan Xn)}

=(1— &) [dxm, Txm) + AT, x0) | + (1= 00 d(Txm, Txn)

<(1—«) _d(xm, TXm) + d(szn,xn)} + od(Txm, Txn) + (1 — ) d(T?Xm, T2xn)

<(1— ) [dltm, Txm) + AT, %n) | + Kd i, %),

that is,

1—«

d(Xm, <—
(Xm,Xn) 1 —o—k

[d(xm, szm) + d(szn,xn) .

Since {xn} is asymptotically T?-regular sequence, by taking n, m — oo, we obtain

Iim d(xm,xn) =0,
n—o0
which proves that {x,} is a Cauchy sequence. Since, X is complete, there exists a point z € X such that
Xn =z € Xasn — oo.
In order to show that z is a fixed point of T in X, we make several steps.
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First, we show that T2z = z. Using inequality (2.1), we obtain

(1— oc)d(T2z, xn) <(1—«) d(T2z, szn) + d(szn,xn)]
<ad(Tz, Txn) + (1 — ®)d(T?z, Txn ) + (1 — o) d(T*Xn, Xn)
<kd(z, %n) + (1 — ) A(T*Xp, Xn )-

Taking n — oo, and using the asymptotically T?-regularity of the sequence {x,,}, we obtain
(1-)d(T?z,2) <0,

which gives T2z = z. Therefore, one can obtain inductively that Tz =zand Tz =Tz forn > 1.
We show that Tz = z, i.e., z is a fixed point of T.
Using the inequality(2.1), we obtain

(1—)d(z,Tz) = (1 — «)d(T?z, T32) < «d(Tz, T?2) + (1 — «)d(T%z, T32) < kd(z, Tz),
that is,
(1—a—k)d(z,Tz) <0

a contradiction, if Tz # z. Therefore, z is a fixed point of T. Using the inequality (2.1), one can obtain the
uniqueness of fixed point. O

Example 3.9. Let T: X — X, where X = {0,1,2} and A = {0,1} C X with usual metric d(x,y) = |x —y|.
Define

1, x¢A,
Tx =
0, xeA.

Consider a sequence {xn} in X such that x,, — 0, then Tx,, — 1 and T%2x,, — 0 as n — oo. Consequently,

Xn — T?xn| — 0 as n — oco. So, {xn} is asymptotically Tz—regular in X. Setting & = k = %, then T is
a-contraction for all x,y € X such that k 4+ & < 1. Thus, all the conditions of Theorem 3.8 are satisfied and

hence, 0 is the unique fixed point of T.
The following Theorems 3.10 and 3.12 are motivated by Theorems 3.1 and 3.4 of Khan and Jhade [11].

Theorem 3.10. Let (X, d) be a complete metric space and T: X — X be an «-convex contraction such that 0 <
ki1 +a < 1and u,h < 1, where u = max{ o(ff:;iky aigiks‘} and h = max{llfofff%, 154;7]‘]5(5 L. If there exists an

asymptotically (T, T?)-reqular sequence in X, then T has a unique fixed point.

Proof. Let {xn}be an asymptotically (T, T?)-regular sequence in X. Then, for any non zero positive integers
m, n such that m > n, we obtain

(1 - (X)d(Xm, Xn) <(1 - OC) _d(xm/ TZXm) + d(T2Xm/ szn) + d(TZXTLI Xn):|
=(1—«) _d(xm, TXm) + d(szn,xn)} + (1 — o) d(T?X1m, szn)

<(1— o) [dlxm, Txm) + d(szn,xn)} + od(Txom, Txn) + (1= ) d(T2xm, T2

<(1— ) [dlxm, Txm) + d(Txn, %0 |
+k1d(xm, xn) + kad(xm, Txm) + k3d(Txm, szm) +kad(xn, Txn) + ksd(Txn, TZXTL)/
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that is,

(1— ot —kq)d(xm, %n) <(1— &) [d(xm, T*xm) + d(T*%n, xn)
+kod(xm, Txm) + k3d(Txm, T?Xm) + kad(xn, Txn) + ksd(Txn, T%Xn ).

Since, {xn} is asymptotically (T, TZ)-regular sequence. Letting n,m — oo and using Lemma 2.10, we
obtain limy o d(Xn,Xm) = 0. This shows that {x,} is a Cauchy sequence in X. Since, X is complete, there
exists a point z € X such that x, — z € X as n — co. Now, we show that z is a fixed point of T in X. For
this, first we show that T?z = z. Using inequality (2.1), we obtain

(1— 0)d(T?2, xn) <(1— oc)[ d(T%2, T2xn) + d(T xn,xn)}
< [(xd Tz, Txn) + (1 — &)d(T?z, szn)} + (1= ) d(T?%1, xn)
<k1d(z,%n) + kod(z, Tz) + k3d(Tz, T?2)
+ kgd(xn, Txn) + ksd(Txn, Txn) + (1 — a)d(T?xp, Xn )
<kid(z, xn) +kod(z, Tz) + kg[ (Tz,xn) + d(TZZ,Xn)}
+kad(xn, Txn) + ksd(Txn, T2%n) + (1 — &) d(T*%n, X ),
that is,
(1—a—k3)d(T?z,xn) <kid(z,xn) + kod(z, Tz) 4+ k3d(Tz, xn)
+ kgd(xn, Txn) + ksd(Txn, Txn) + (1 — ) d(T?xp, Xn)-
Taking n — oo and using Lemma 2.10, we obtain
(1— 0 —k3)d(T?z,z) <(kz +k3)d(z,Tz),
that is,

ko + k3

T2 2) <2179
d(T°z,z) 1—ox—ks

d(Tz,z).

Similarly, by symmetry of the o-convex contraction, one can obtain

kg + ks

d(T%z,z) <————
( ZZ) 1—oc—k5

d(Tz, z).

Since, h = max{lkz;r k13<3' 154;1‘]5%} < 1. This shows that d(T%z,z) < hd(Tz, z).

Now, we show that Tz =z, i.e,, z is a fixed point of T.

oxd(Tz, xn) <oc[d(Tz, Txn) + d(Txn,xn)} +(1—x)d(T?z, T?xy,)
=ad(Tz, Txn) + (1 — &)d(T?2, T?xn) + &d(Txn, Xn)
<k1d(z,xn) + kod(z, Tz) + k3d(Tz, T?2)
+ kad(xr, Txn) + k5d(Txn, T?xn) 4+ od(Txn, Xn )
<kid(z,xn) + kod(z,Tz) + k3d(Tz, 2)
+ k3d(T%z, z) + kad(xn, Txn) + ksd(Txn, T2xn) + xd(Txn, Xn ).

As n — oo, we obtain

ad(Tz, z) <(kp 4+ k3)d(Tz, z) + k3d(T?z, z),
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that is,

k.
d(Tz,z) < 5 d(T?z,z2).

\(X—kz—kg

Similarly, based on the symmetry of x-convex contractions, one can prove

T <—————d(T?z,2).
d(Tz,z) oc—k4—k5d( z,2)
Since p = max{;— kz o k4 T } < 1, we find
d(Tz,z) < pd(T%z,z) < hud(Tz,z),

that is,
(1—hw)d(Tz,z) <0

leading to d(Tz,z) = 0 as hu < 1. Therefore, z is a fixed point of T. For uniqueness, let z* € X be another
tixed point of T. Using (2.1) for x = z and y = z*, we obtain

ad(Tz, Tz*) + (1 — )d(T%z, T?2*) < k1d(z,2*) + kod(z, Tz) + k3d(Tz, T?2) + kad (2", Tz*) + ksd(T2*, T?2*),
that is,
(1-k1)d(z,2") <O,
which in turn gives d(z,z*) = 0 and hence, T has a unique fixed point in X. O

Example 3.11. Let T: X — X, where X = [0, 1]. Define Tx = PTTX for all x € X. Consider a sequence {xn }
in X such that x,, — % as n — oo. Consequently, Txn, T2xn — % as n — oo. Therefore, the sequence {xn}
is asymptotically (T, T?)-regular in X. Setting o = 3,k; = 3%,](.2 = k3 = kg = ks =0, then T is a-convex
contraction such that k1 + «x <1, u =0 < 1 and h = 0 < 1. Thus, all the conditions of Theorem 3.10 are
satisfied and hence, % is the unique fixed point of T.

Theorem 3.12. Let (X, d) be a complete metric space and T:X —> X be a o-convex contraction such that k1 < «
or, 0 < k1 +a < 1land wh < 1, where u = max{oC kz o k4 T tand h = max{1k2:k§3, 15“;_“{;5 CIfTis
asymptotically reqular at some point xo in X, then there exists a unique ﬁxed point of T.

Proof. Let T be an asymptotically regular mapping at xo € X. Consider a sequence {T™xp} and for any two
non zero positive integers m,n > 1 such that m > n.
We analyze the following cases.

Case (i). When k; < «. We obtain

od(T™xg, T™x0) <oed(T™xg, T™x0) + (1 — o) d(T™F 1xg, T xg)
<kd(T™ xg, TV Ixg) + ko d(T™ 1o, T™x0)
+k3d(T™xo, T™ x0) + kad(T™ xo, T x0) + ksd(T™xo, T 1xg)
<kq [d(Tm_lxo, T™xg) + d(T™xg, T™xo)
+d(T™x0, T Ix) | +kad(T™ xg, T™xo)
+k3d(T™x0, T™ x0) + kad(T™ Ixg, T™0) + ksd(T™xo, T" T1x0),
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that is,

(o —kq)d(T™xg, T™x0) <(kq + ko) d(T™ xg, T™xg)
+ (k1 + ka)A(T™ xg, T™0) + k3d(T™x0, T™ x0) + ksd(T™xg, T xg).

Taking n, m — oo and using the asymptotically regularity of T at xo, we obtain

Iim d(T™xg, T™xg) = 0.

n—o0

Case (ii). When 0 < k1 + « < 1, we obtain

(1—o)d(T™xo, T™xg) <axd(T™ Ixg, TV Ixg) + (1 — &) d(T™mxg, T™x)
<kid(T™ 2x0, TV 2xq) + kod(T™ 2x0, T™ x0)
+ kad(T™ xg, T™xg) + kad (T™ 2x0, T Ixg) + ksd(T™ Ixg, T™xg)
<k [d(Tmfzxo, T™lxg) + d(T™ Ixg, T™xp)
+d(T™xg, T™0) + d(T™xo, T™ 'xq)
AT 1, Tnfzxo)] T+ kad(T™ xg, T™x0)
+ kad(T™xg, T™ xg) + kad (T™ Ixg, T™xg) + ksd(T™x0, T 1xg).

Taking n, m — oo, we obtain

(1—a—k) lim d(T™ x, T 1xg) <0,

which gives limp 0o d(T™ 1xg, THF1xo) = 0.
In both cases it follows that {T™xg} is a Cauchy sequence in X. Since X is complete, so T"xg — z as

n — oo for some z € X. Thus, by following the same argument as in Theorem 3.10, one can obtain the
unique fixed point of T. O

One can check the validity of Theorem 3.12 with Example 3.5 setting with & = %, ki = &,k = k3 =
ks =ks =0,and p = 1.

Corollary 3.13. Let (X, d) be a metric space and T: X — X be a two-sided convex contraction mapping. Then, T
has AFPP. Further, if (X, d) is a complete metric space, then T has a unique fixed point.
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