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Abstract

In this paper, we will show the existence of positive semidefinite solution of Furuta type operator equation

n−1∑
j=0

AjXAn−j−1 = Y,

where Y can be expressed by a comprehensive form.
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1. Introduction and main result

A capital letter, such as T , stands for an operator on a Hilbert space H .
In 2010, T. Furuta investigated operator equation

∑n−1
j=0 A

jXAn−j−1 = Y and obtained the following
result.

Theorem 1.1 ([2]). Let m and n be natural numbers. If A and B are a positive definite operator and a positive
semidefinite operator, respectively, then there exists positive semidefinite operator solution X satisfying the following
operator equation:

n−1∑
j=0

AjXAn−j−1 = A
nr

2(m+r)

(
m∑
i=1

A
n(m−i)
m+r BA

n(i−1)
m+r

)
A

nr
2(m+r)

for r such that

{
r > 0, if n > m;
r > m−n

n−1 , if m > n > 2.
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In 2014, we extends Furuta’s result as follows.

Theorem 1.2 ([3]). Let m, n and k be positive integers. If A and B are a positive definite operator and a positive
semidefinite operator, respectively, then for each t ∈ [0, 1], there exists positive semidefinite operator solution X
which satisfies the following operator equation:

n−1∑
j=0

AjXAn−j−1 = A
nr

2[(m−t)k+r]

 k∑
i=1

m∑
j=1

A
n[2(m−t)(k−i)−t+2(m−j)]

2[(m−t)k+r] BA
n[2(j−1)−t+2(m−t)(i−1)]

2[(m−t)k+r]

A nr
2[(m−t)k+r]

for r such that

{
r > t, if (1 − t)n > (m− t)k ;
r > max{ (m−t)k−(1−t)n

n−1 , t}, if (m− t)k > (1 − t)n with n > 2 .

As a continuation, in this short note, we extend Theorem 1.2 as follows.

Theorem 1.3. Let k1,k2,k3,k4, j, j1, j2, j3, j4 be nonnegative integers. If A and B are a positive definite operator
and a positive semidefinite operator, respectively, then for t ∈ [0, 1], there exist a positive semidefinite solution X
satisfying

n−1∑
j=0

AjXAn−j−1 = A
nr
2δ

k4−1∑
j4=0

Hj4H̃Hk4−j4−1

Anr
2δ ,

where

H = A
{[(k1−t)k2+t]k3−t}n

δ , H̃ = A−nt
2δ

( k3−1∑
j3=0

Kj3K̃Kk3−j3−1
)
A−nt

2δ ,

K = A
[(k1−t)k2+t]n

δ , K̃ = A
nt
2δ

( k2−1∑
j2=0

Lj2 L̃Lk2−j2−1
)
A
nt
2δ ,

L = A
(k1−t)n

δ , L̃ = A−nt
2δ

( k1−1∑
j1=0

A
nj1
δ BA

n(k1−j1−1)
δ

)
A−nt

2δ ,

δ = {[(k1 − t)k2 + t]k3 − t}k4 + r,

r is a positive number such that{
r > t, if (1 − t)n > {[(k1 − t)k2 + t]k3 − t}k4 ;
r > max{ {[(k1−t)k2+t]k3−t}k4−(1−t)n

n−1 , t}, if {[(k1 − t)k2 + t]k3 − t}k4 > (1 − t)n with n > 2 .

In order to prove the main result above, we list a useful lemma first.

Lemma 1.4 ([1, Generalized Furuta inequality]). If A > B > 0 with A > 0, p1,p2,p3,p4 > 1, then

A1−t+r >
{
A
r
2
[
A− t

2 {A
t
2 (A− t

2Bp1A− t
2 )p2A

t
2 }p3A− t

2
]p4A

r
2

} 1−t+r
{[(p1−t)p2+t]p3−t}p4+r

holds for t ∈ [0, 1] and r > t.

2. Proof of the main result

In this section, we prove Theorem 1.3, which is the main result. We use the same method as in [2] and
[3].

Proof of Theorem 1.3. For A+ xB > A > 0, x > 0, A−1 > (A+ xB)−1 > 0.
Replacing A by A−1, B by (A+ xB)−1 in generalized Furuta inequality, then

A−(1−t+r) >
{
A− r

2
[
A
t
2 {A− t

2 (A
t
2 (A+ xB)−p1A

t
2 )p2A− t

2 }p3A
t
2
]p4A− r

2

} 1−t+r
{[(p1−t)p2+t]p3−t}p4+r . (2.1)
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Let p1 = k1, p2 = k2, p3 = k3, p4 = k4 in (2.1), take reverse and apply Löwner-Heinz inequality for
α ∈ [0, 1], we have{

A
r
2
[
A− t

2 {A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 }k3A− t

2
]k4A

r
2

} 1−t+r
δ α

> A(1−t+r)α, (2.2)

where δ = {[(k1 − t)k2 + t]k3 − t}k4 + r.
Let δ

(1−t+r)α be some a positive integer n, i.e., δ
(1−t+r)α = n. Because α = δ

(1−t+r)n ∈ [0, 1], then

r > {[(k1−t)k2+t]k3−t}k4−(1−t)n
n−1 if {[(k1 − t)k2 + t]k3 − t}k4 > (1 − t)n.

Put F(x) =
{
A
r
2
[
A− t

2 {A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 }k3A− t

2
]k4A

r
2

} 1
n

. Together with (2.2) we can obtain
that

F(x) > F(0) = A(1−t+r)α = A
δ
n

holds for any x > 0. Thus F ′(x)
∣∣∣
x=0

> 0.

Differentiate Fn(x) = A
r
2
[
A− t

2 {A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 }k3A− t

2
]k4A

r
2 , and take x = 0, we have

d

dx
[Fn(x)]

∣∣∣∣
x=0

=
d

dx

{
A
r
2
[
A− t

2 {A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 }k3A− t

2
]k4A

r
2

}∣∣∣∣
x=0

=A
r
2

{ d
dx

[
A− t

2 {A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 }k3A− t

2
]k4

∣∣∣∣
x=0

}
A
r
2

=A
r
2

{ k4−1∑
j4=0

Hj4(x)H ′(x)Hk4−j4−1(x)

∣∣∣∣
x=0

}
A
r
2 ,

(2.3)

where
H(x) = A− t

2 {A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 }k3A− t

2 . (2.4)

It is easy to obtain that
H(0) = A[(k1−t)k2+t]k3−t (2.5)

and

H ′(0) =
d

dx
[H(x)]

∣∣∣∣
x=0

=A− t
2

{ k3−1∑
j3=0

Kj3(x)K ′(x)Kk3−j3−1(x)

∣∣∣∣
x=0

}
A− t

2 ,
(2.6)

where

K(x) = A
t
2 (A− t

2 (A+ xB)k1A− t
2 )k2A

t
2 . (2.7)

It is easy to show that

K(0) = A(k1−t)k2+t (2.8)

and

K ′(0) =
d

dx
[K(x)]

∣∣∣∣
x=0

=A
t
2

{ k2−1∑
j2=0

Lj2(x)L ′(x)Lk2−j2−1(x)

∣∣∣∣
x=0

}
A
t
2 ,

(2.9)
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where

L(x) = A− t
2 (A+ xB)k1A− t

2 . (2.10)

Similarly,

L(0) = Ak1−t (2.11)

and

L ′(0) =
d

dx
[L(x)]

∣∣∣∣
x=0

=A− t
2

{ k1−1∑
j1=0

(A+ xB)j1(A+ xB) ′(A+ xB)k1−j1−1
∣∣∣∣
x=0

}
A− t

2

=A− t
2

{ k1−1∑
j1=0

Aj1BAk1−j1−1
}
A− t

2 .

(2.12)

Notice that

d

dx
[Fn(x)]

∣∣∣∣
x=0

=

n−1∑
j=0

Fj(x)F ′(x)Fn−j−1(x)

∣∣∣∣
x=0

=

n−1∑
j=0

Fj(0)F ′(0)Fn−j−1(0) (2.13)

and F(0) = A
δ
n .

Let X = F ′(0), therefore,
n−1∑
j=0

A
δj
n XA

δ(n−j−1)
n =

d

dx
[Fn(x)]

∣∣∣∣
x=0

. (2.14)

Replacing A by A
n
δ in (2.3)-(2.14), and letting H = H(0), H̃ = H ′(0), K = K(0), K̃ = K ′(0), L = L(0),

L̃ = L ′(0), then we finish the proof.
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