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Abstract
In this paper, the analytical solutions of fuzzy fractional differential equations (FFDEs) are obtained by using the combina-

tion of fractional Sumudu transform (FST) and fuzzy calculus. In this regard, we extend the notation of FST to fuzzy fractional
Sumudu transformation (FFST) and discuss its fundamental properties for the fuzzy-valued functions. Besides, a comprehensive
study of FFST is also carried out for the different cases of Riemann-Liouville Hukuhara differentiability (H-differentiability) of
fuzzy-valued functions. Moreover, to illustrate the capability and pertinence of this transform, solutions of some FFDEs are
obtained, revealing its simplicity and efficiency.

Keywords: Fuzzy function, fractional differential equations, Sumudu transform, H-differentiability.

2010 MSC: 26A33, 34A08, 34A07.

c©2018 All rights reserved.

1. Introduction

The amalgamation of fuzzy theory [3, 11, 23, 24] with fractional calculus [2, 8, 17] has multiplied the
practicality and expediency of calculus theory. Owing to the advantageous applications, both theories
together have gained considerable attention in modeling different physical and engineering problems.
Showing great concern, many authors have made abundant theoretical descriptions of fuzzy fractional
calculus and developed numerous analytical and numerical methods for solution of FFDEs [1, 13, 14, 18,
20].

Recently, connected to Fourier, bilateral, two sided and ordinary Laplace transforms, the Sumudu
transform has begun to assert more fame for its distinct advantages and pragmatic applications. Subse-
quent to the introduction of Sumudu transform, initiated by Watugala [22], many other researchers doc-
umented valuable contributions to the theory and applications of Sumudu transform [4, 5, 12, 15, 16, 19].
The main attribute of Sumudu transform lies in its unit preserving property and duality with Laplace
transform that widens its application for solving various models of applied sciences. In addition, this
transformation is constructed in context with fractional calculus to increase its capability to solve frac-
tional differential models, as well. In this instance, several authors such as, Gupta et al. [10] proposed a

∗Corresponding author
Email addresses: njbalam@yahoo.com (Najeeb Alam Khan), oyoon.abdulrazzaq@yahoo.com (Oyoon Abdul Razzaq),
ayaz-maths@hotmail.com (Muhammad Ayaz)

doi: 10.22436/jmcs.018.01.07

Received 2016-11-25

http://dx.doi.org/10.22436/jmcs.018.01.07


N. A. Khan, O. A. Razzaq, M. Ayaz, J. Math. Computer Sci., 18 (2018), 63–73 64

new definition of fractional-order Sumudu transform for fractional differential functions, Bulut et al. [6]
described the applications of Sumudu transform method to non-homogeneous fractional ordinary differ-
ential equations, Darzi et al. [7] solved fractional diffusion-wave equation by using Sumudu transform
techniques, etc. [9, 21].

The aim of the present manuscript is to further widen the capability and applications of Sumudu
transform on fuzzy fractional models. In this connection, we reformulate fractional Sumudu transform
together with its properties using Riemann-Liouville fractional integral and H-differentiability of fuzzy
functions to investigate a transform, named as fuzzy fractional Sumudu transform (FFST), for the so-
lutions of FFDEs. Consequently, the proposed transform is applied to some examples of homogeneous
and non-homogeneous FFDEs considered under Riemann-Liouville H-differentiability and thus analytical
solutions are obtained.

2. Preliminaries

In this section, we define few preliminaries of fuzzy and fractional calculus theory which will be
frequently exercised in the remaining paper.

2.1. Fuzzy theory
Let, < be the set of real numbers and I = [0, 1], then a set ϕ with the membership function Ψϕ : <→ I,

is said to be a fuzzy number if, it is normal, convex, upper semicontinuous, and compactly supported
on <. Furthermore, ϕ can also be represented by a closed interval of lower and upper functions ϕ (ε)

and ϕ (ε), respectively, i.e., [ϕ (ε) ,ϕ (ε)] for 0 6 ε 6 1. Characteristically, ϕ (ε) and ϕ (ε) are bounded
monotonic increasing and monotonic decreasing functions, accordingly, both are left continuous on (0, 1]
and also satisfy ϕ (ε) 6 ϕ (ε). For the remaining attempts, we will notate the space of all possible
fuzzy numbers by Ef. The detailed descriptions of fuzzy set theory may also be found in [3, 11, 23, 24].
Moreover, let ρ,σ ∈ Ef, then the algebraic operations of fuzzy numbers can be defined as, for 0 6 ε 6 1,

a. addition:

[ρ⊕ σ]ε = [ρ]ε ⊕ [σ]ε =
[
ρ (ε) + σ (ε) , ρ (ε) + σ (ε)

]
;

b. scalar multiplication: for c ∈ <,

[cρ]ε = c [ρ]ε =


[
cρ (ε) , cρ (ε)

]
, if c > 0,

{0} , if c = 0,[
cρ (ε) , cρ (ε)

]
, if c < 0;

c. fuzzy multiplication:

[ρ� σ]ε = [r (ε) , r (ε)] ,

where

r (ε) = min
{
ρ (ε)σ (ε) , ρ (ε)σ (ε) , ρ (ε)σ (ε) , ρ (ε)σ (ε)

}
and

r (ε) = max
{
ρ (ε)σ (ε) , ρ (ε)σ (ε) , ρ (ε)σ (ε) , ρ (ε)σ (ε)

}
.

2.2. Fractional calculus
Definition 2.1. The Riemann-Liouville integral of order β > 0 for a fuzzy-valued function φ ∈ Cf [a,b]∩
Lf [a,b], where Cf [a,b] and Lf [a,b] denote the space of all continuous fuzzy-valued functions and space
of all Lebesgue integrable fuzzy-valued functions, respectively, is stated as,

Iβφ (x) =
1

Γ (β)

∫x
0
(x− ζ)β−1φ (ζ)dζ, x > 0.

Since, [φ (x; ε)] =
[
φ (x; ε) ,φ (x; ε)

]
, for 0 6 ε 6 1, then we can also define fuzzy Riemann-Liouville
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integral of φ (x) in terms of its lower and upper functions for x > 0 as,

Iβφ (x; ε) =
1

Γ (β)

∫x
0
(x− ζ)β−1φ (ζ; ε)dζ and Iβφ (x; ε) =

1
Γ (β)

∫x
0
(x− ζ)β−1φ (ζ; ε)dζ,

respectively.

Definition 2.2. A fuzzy-valued function φ ∈ Cf [a,b] ∩ Lf [a,b] is said to be Riemann-Liouville H-
differentiable of order 0 < β < 1 at x0 ∈ (a,b), if there exists an element RLDβφ (x0) ∈ Ef such that

for ϑ (x) =
1

Γ (1 −β)

∫x
a

φ (ζ)

(x− ζ)β
dζ and h > 0 sufficiently small,

i. RLDβφ (x0) = limh→0+
ϑ (x0 + h)Θϑ (x0)

h
= limh→0+

ϑ (x0)Θϑ (x0 − h)
h

;

ii. RLDβφ (x0) = limh→0+
ϑ (x0)Θϑ (x0 + h)

−h
= limh→0+

ϑ (x0 − h)Θϑ (x0)

−h
;

iii. RLDβφ (x0) = limh→0+
ϑ (x0 + h)Θϑ (x0)

h
= limh→0+

ϑ (x0 − h)Θϑ (x0)

−h
;

iv. RLDβφ (x0) = limh→0+
ϑ (x0)Θϑ (x0 + h)

−h
= limh→0+

ϑ (x0)Θϑ (x0 − h)
h

.

Let, fuzzy-valued function φ be I-differentiable if it is differentiable as in case (i) and II-differentiable if it
is differentiable as in case (ii) and so on for the other cases.

Theorem 2.3. If φ ∈ Cf [a,b]∩ Lf [a,b] is Riemann-Liouville H-differentiable of order 0 < β < 1 at x0 ∈ (a,b),
then for 0 6 ε 6 1,

i. RLDβφ (x0; ε) =
[
RLDβφ (x0; ε) ,RLDβφ (x0; ε)

]
, if φ is I-differentiable fuzzy-valued function;

ii. RLDβφ (x0; ε) =
[
RLDβφ (x0; ε) ,RLDβφ (x0; ε)

]
, if φ is II-differentiable fuzzy-valued function;

iii. RLDβφ (x0) ∈ <, if φ is III-differentiable or IV-differentiable fuzzy-valued function,

where

RLDβφ (x0; ε) =

[
1

Γ (1 −β)

d

dx

∫x
a

φ (ζ)

(x− ζ)β
dζ

]
x=x0

and

RLDβφ (x0; ε) =

[
1

Γ (1 −β)

d

dx

∫x
a

φ (ζ)

(x− ζ)β
dζ

]
x=x0

.

Equivalent theorems along with the detailed proofs of H-differentiability are found in [3, 18].

2.3. Mittag-Leffler function
The Mittag-Leffler function Eβ (z) for β > 0 and z ∈ C, where C represents the complex numbers, is

defined by the series representation,

Eβ (z) =

∞∑
k=0

zk

Γ (kβ+ 1)
,

whereas the generalized Mittag-Leffler function is expressed as,

Eβ,µ (z) =

∞∑
k=0

zk

Γ (kβ+ µ)
and Eδβ,µ (z) =

∞∑
k=0

(δ)k z
k

Γ (kβ+ µ)
,

where, (δ)0 = 1 and for k ∈ N, (δ)k = δ (δ+ 1) · · · (δ+ k− 1).
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3. Fuzzy fractional Sumudu transform

The basic description of Sumudu transform, fractional Sumudu transform, and fuzzy Laplace trans-
form together with their properties are thoroughly defined in [4, 12, 20, 22]. Here, definitions of fractional
Sumudu transform and fractional Laplace transform (FLT) under Riemann-Liouville integral with fuzzy
functions are described. Furthermore, some properties such as duality and differentiation theorems are
also investigated in fuzzy sense.

Definition 3.1. Let the fuzzy-valued function φ (x) be Riemann-Liouville integrable of order β > 0 that
disappears for negative values of x. Then the fuzzy fractional Sumudu transform of order β > 0 for
fuzzy-valued function [φ (x; ε)] =

[
φ (x; ε) ,φ (x; ε)

]
is defined as

S [φ (x; ε)] =
[
S
[
φ (x; ε)

]
, S
[
φ (x; ε)

]]
for 0 6 ε 6 1, where

S
[
φ (x; ε)

]
= lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ
(
−ζβ

)
φ (pζ; ε)dζ (3.1)

and
S
[
φ (x; ε)

]
= lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ
(
−ζβ

)
φ (pζ; ε)dζ. (3.2)

The symbol Eβ is the Mittag-Leffler function described in Section 2.3 and S and S are the FFST and FST
operators for fuzzy-valued functions and real-valued functions, respectively.

Definition 3.2. Let φ (x) be the fuzzy-valued function and a Riemann-Liouville integrable of order β > 0,
which disappears for negative values of x. Then fuzzy fractional Laplace transform (FFLT) of order β > 0
for fuzzy-valued function [φ (x; ε)] =

[
φ (x; ε) ,φ (x; ε)

]
is defined as

L [φ (x; ε)] =
[
L
[
φ (x; ε)

]
, L
[
φ (x; ε)

]]
for 0 6 ε 6 1, where

L
[
φ (x; ε)

]
= lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ

(
−(pζ)β

)
φ (ζ; ε)dζ

and
L
[
φ (x; ε)

]
= lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ

(
−(pζ)β

)
φ (ζ; ε)dζ

on the condition that integral exists, where L and L are the FFLT and FLT operators for fuzzy-valued
functions and real-valued functions, respectively.

Theorem 3.3. Let FFLT of a fuzzy-valued function φ (x) be L [φ (x)] and S [φ (x)] be its FFST, then

S [φ (x)] =
1
pβ

L [φ (x)]
=

1
p

and in case of its lower and upper functions,

S
[
φ (x; ε)

]
=

1
pβ

L
[
φ (x; ε)

]
=

1
p

and S
[
φ (x; ε)

]
=

1
pβ

L
[
φ (x; ε)

]
=

1
p

,

respectively.
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Proof. Following the description of FFST, and changing the variables of (3.1) and (3.2), i.e., pζ = ζ′ and

dζ =
dζ′

p
, we obtain

S
[
φ (x; ε)

]
=

1
pβ

lim
x→∞ 1

Γ (β)

∫x
0

(
xp− ζ′

)β−1
Eβ

(
−

(
ζ′

p

)β)
φ
(
ζ′; ε

)
dζ

and

S
[
φ (x; ε)

]
=

1
pβ

lim
x→∞ 1

Γ (β)

∫x
0

(
xp− ζ′

)β−1
Eβ

(
−

(
ζ′

p

)β)
φ
(
ζ′; ε

)
dζ.

Recalling Definition 3.2, above equations reduce to

S [φ (x; ε)] =
[
S
[
φ (x; ε)

]
, S
[
φ (x; ε)

]]
=

 1
pβ

L
[
φ (x; ε)

]
=

1
p

,
1
pβ

L
[
φ (x; ε)

]
=

1
p

 =
1
pβ

L [φ (x)]
=

1
p

.

Formula 3.4. For any constant c,

S
[
φ (cx; ε)

]
= S

[
φ (x; ε)

]
=cp

, S
[
φ (cx; ε)

]
= S

[
φ (x; ε)

]
=cp

.

Proof. By means of Definition 3.1, taking FST of φ (cx; ε) and φ (cx; ε), we get

S
[
φ (cx; ε)

]
=

1
pβ

lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ
(
−ζβ

)
φ (pcζ; ε)dζ

and
S
[
φ (cx; ε)

]
=

1
pβ

lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ
(
−ζβ

)
φ (pcζ; ε)dζ,

which implies
S
[
φ (cx; ε) ,φ (cx; ε)

]
= S

[
φ (x; ε) ,φ (x; ε)

]
=cp

.

Formula 3.5.

S
[
Eβ
(
−cβxβ

)
φ (x; ε)

]
=

1

(1 + cp)β
S
[
φ (x; ε)

]
=

p

1 + cp

,

S
[
Eβ
(
−cβxβ

)
φ (x; ε)

]
=

1

(1 + cp)β
S
[
φ (x; ε)

]
=

p

1 + cp

.

Proof. Applying FST on Eβ
(
−cβxβ

)
φ (x; ε) and Eβ

(
−cβxβ

)
φ (x; ε), we attain

S
[
Eβ
(
−cβxβ

)
φ (x; ε)

]
= lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ
(
−ζβ

)
Eβ

(
−cβ (pζ)β

)
φ (pζ; ε)dζ,

S
[
Eβ
(
−cβxβ

)
φ (x; ε)

]
= lim
x→∞ 1

Γ (β)

∫x
0
(x− ζ)β−1

Eβ
(
−ζβ

)
Eβ

(
−cβ (pζ)β

)
φ (pζ; ε)dζ.

Let (1 + cp) ζ = ζ′ and (1 + cp)dζ = dζ′, re-assuming Definition 3.1, we reach to the following equations,

S
[
Eβ
(
−cβxβ

)
φ (x; ε)

]
=

1

(1 + cp)β
S
[
φ (x; ε)

]
=

p

1 + cp
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and
S
[
Eβ
(
−cβxβ

)
φ (x; ε)

]
=

1

(1 + cp)β
S
[
φ (x; ε)

]
=

p

1 + cp

.

Theorem 3.6. Let S [φ (x)] be the FFST of φ ∈ Cf [a,b] ∩ Lf [a,b], then the FFST of the Riemann-Liouville
H-derivative of order n− 1 6 β < n of fuzzy-valued function φ (x) is articulated as

S
[
RLDβa+φ (x)

]
=

S [φ (x)]

pβ
Θ
RLDβ−1

a+ φ (0)
p

,

if φ (x) is I-differentiable and

S
[
RLDβa+φ (x)

]
= −

RLDβ−1
a+ φ (0)
p

Θ

(
−

S [φ (x)]

pβ

)
,

if φ (x) is II-differentiable.

Proof. Let φ (x) be I-differentiable for ε ∈ [0, 1], then we have

S [φ (x)]

pβ
Θ
RLDβ−1

a+ φ (0)
p

=

[
S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

,
S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

]
, (3.3)

since
RLDβa+φ (x) =

[
RLDβa+φ (x; ε) , RLDβa+φ (x; ε)

]
=
[
RLDβa+φ (x; ε) ,RLDβa+φ (x; ε)

]
. (3.4)

Taking FST of lower and upper functions in (3.4) we get

S
[
RLDβa+φ (x; ε)

]
= S

[
RLDβa+φ (x; ε)

]
=

S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

(3.5)

and

S
[
RLDβa+φ (x; ε)

]
= S

[
RLDβa+φ (x; ε)

]
=

S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

, (3.6)

respectively. Thus, substituting (3.5) and (3.6) in (3.3), it reduces to

S [φ (x)]

pβ
Θ
RLDβ−1

a+ φ (0)
p

=
[
S
[
RLDβa+φ (x; ε)

]
, S
[
RLDβa+φ (x; ε)

]]
as S is linear, so

S [φ (x)]

pβ
Θ
RLDβ−1

a+ φ (0)
p

= S
[
RLDβa+φ (x; ε) ,RLDβa+φ (x; ε)

]
.

Using the equality (3.4) on the right hand side, we get the required equation as

S [φ (x)]

pβ
Θ
RLDβ−1

a+ φ (0)
p

= S
[
RLDβa+φ (x)

]
.

Now, assume that φ (x) is II-differentiable, then for ε ∈ [0, 1] we have

−
RLDβ−1

a+ φ (0)
p

Θ

(
−

S [φ (x)]

pβ

)
=

[
−
RLDβ−1

a+ φ (0; ε)
p

+
S
[
φ (x; ε)

]
pβ

,−
RLDβ−1

a+ φ (0; ε)
p

+
S
[
φ (x; ε)

]
pβ

]
, (3.7)

since
RLDβa+φ (x) =

[
RLDβa+φ (x; ε) , RLDβa+φ (x; ε)

]
=
[
RLDβa+φ (x; ε) ,RLDβa+φ (x; ε)

]
. (3.8)
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Taking FST of lower and upper functions in (3.8) and on substituting the transformed functions in (3.7)
we attain

−
RLDβ−1

a+ φ (0)
p

Θ

(
−

S [φ (x)]

pβ

)
=
[
S
[
RLDβa+φ (x; ε)

]
, S
[
RLDβa+φ (x; ε)

]]
.

Consequently, we come up with the following expression

−
RLDβ−1

a+ φ (0)
p

Θ

(
−

S [φ (x)]

pβ

)
= S

[
RLDβa+φ (x)

]
.

4. Fuzzy fractional differential equations

Consider the following initial value problem of fractional order 0 < β < 1 of fuzzy-valued function
φ ∈ Cf [a,b]∩ Lf [a,b],

RLDβa+φ (x) = g (x,φ (x)) , (4.1)

subjected to
RLDβ−1

a+ φ (x0) =
RL φ

(β−1)
0 ∈ Ef, (4.2)

where g (x,φ (x)) is linear fuzzy-valued function. In order to solve the above FFDE, together with all cases
of Riemann-Liouville H-differentiability, we apply FFST on both sides of (4.1), that is

S
[
RLDβa+φ (x)

]
= S [g (x,φ (x))] . (4.3)

Consider φ (x) is an I-differentiable function and let (4.2) be expanded to its lower and upper functions,
then, for 0 6 ε 6 1

S
[
g
(
x,φ (x; ε)

)]
=

S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

, (4.4)

S
[
g
(
x,φ (x; ε)

)]
=

S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

, (4.5)

where
g
(
x,φ (x; ε)

)
= min

{
(x,υ) |υ ∈

[
φ (x; ε) ,φ (x; ε)

]}
(4.6)

and
g
(
x,φ (x; ε)

)
= max

{
(x,υ) |υ ∈

[
φ (x; ε) ,φ (x; ε)

]}
. (4.7)

Let
S
[
φ (x; ε)

]
= Q1 (p; ε) , S

[
φ (x; ε)

]
= T1 (p; ε) ,

where Q1 (p; ε) and T1 (p; ε) are solutions of (4.4) and (4.5), respectively. Then, on using inverse FST,
φ (x; ε) and φ (x; ε) are figured out as

φ (x; ε) = S−1 [Q1 (p; ε)] , φ (x; ε) = S−1 [T1 (p; ε)] .

Now, let φ (x) be a II-differential function, then, for 0 6 ε 6 1, (4.3) expands to

S
[
g
(
x,φ (x; ε)

)]
=

S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

, (4.8)

S
[
g
(
x,φ (x; ε)

)]
=

S
[
φ (x; ε)

]
pβ

−
RLDβ−1

a+ φ (0; ε)
p

, (4.9)



N. A. Khan, O. A. Razzaq, M. Ayaz, J. Math. Computer Sci., 18 (2018), 63–73 70

where g
(
x,φ (x; ε)

)
and g

(
x,φ (x; ε)

)
are same as in (4.6) and (4.7). Let

S
[
φ (x; ε)

]
= Q2 (p; ε) , S

[
φ (x; ε)

]
= T2 (p; ε) ,

where, Q1 (p; ε) and T1 (p; ε) are solutions of (4.8) and (4.9), respectively. Then, on using inverse FST,
φ (x; ε) and φ (x; ε) are figured out as

φ (x; ε) = S−1 [Q2 (p; ε)] , φ (x; ε) = S−1 [T2 (p; ε)] .

5. Illustrative examples

In this section, explanatory examples of FFDEs considered under Riemann-Liouville H-differentiability
are presented and analyzed using the proposed transform.

Example 5.1. Consider the following FFDE

RLDβ0+y (x) = λy (x) , (5.1)

subjected to
RLDβ−1

0+ y (0) =RL yβ−1
0 ∈ Ef, (5.2)

where, y (x) ∈ Cf [a,b]∩ Lf [a,b] and λ ∈ <. Now, for the case (i), let y (x) be I-differentiable and λ ∈ <+,
then applying FFST on both sides of (5.1) we obtain

S
[
RLDβ0+y (x)

]
= λS [y (x)] . (5.3)

Using Theorem 3.6, we get

S
[
y (x; ε)

]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= λS
[
y (x; ε)

]
,

S [y (x; ε)]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= λS [y (x; ε)] ,

which implies

S
[
y (x; ε)

] [ 1
pβ

− λ

]
=
RLDβ−1

0+ y (0; ε)
p

, S [y (x; ε)]
[

1
pβ

− λ

]
=
RLDβ−1

0+ y (0; ε)
p

,

simplifying and on applying inverse FST, we attain

y (x; ε) =RL Dβ−1
0+ y (0; ε) S−1

[
pβ−1

1 − λpβ

]
, y (x; ε) =RL Dβ−1

0+ y (0; ε) S−1
[
pβ−1

1 − λpβ

]
,

using (5.2) and the subsequent equality [7],

S−1
[
uγ−1

1 −ωuβ

]
= xγ−1Eδβ,γ

(
ωxβ

)
, (5.4)

we come up with the following solutions of the aforementioned FFDE,

y (x; ε) =RL yβ−1
0

(
xβ−1Eβ,β

(
λxβ

))
,y (x; ε) =RL yβ−1

0

(
xβ−1Eβ,β

(
λxβ

))
. (5.5)

In addition, if λ ∈ <−, then (5.3) expands to its lower and upper functions as

S
[
y (x; ε)

]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= λS [y (x; ε)] ,
S [y (x; ε)]

pβ
−
RLDβ−1

0+ y (0; ε)
p

= λS
[
y (x; ε)

]
.
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Hence, following the above simplifications, the solutions for the negative λ can be expressed as

y (x; ε) =RL yβ−1
0

(
xβ−1E2β,β

(
λ2x2β))+ λRLyβ−1

0

(
x2β−1E2β,2β

(
λ2x2β)) ,

y (x; ε) =RL yβ−1
0

(
xβ−1E2β,β

(
λ2x2β))+ λRLyβ−1

0

(
x2β−1E2β,2β

(
λ2x2β)) .

(5.6)

In case of II-differentiability of y (x), the solutions determined are similar to (5.5) and (5.6) for λ ∈ <−

and λ ∈ <+, respectively. Besides, let RLDβ−1
0+ y (0) = [1 + ε, 3 − ε] and λ = 1, then (5.5) becomes

y (x; ε) = (1 + ε)
(
xβ−1Eβ,β

(
xβ
))

,y (x; ε) = (3 − ε)
(
xβ−1Eβ,β

(
xβ
))

,

whereas, for λ = −1, (5.6) becomes

y (x; ε) = (1 + ε)
(
xβ−1E2β,β

(
x2β))− (3 − ε)

(
x2β−1E2β,2β

(
x2β)) ,

y (x; ε) = (3 − ε)
(
xβ−1E2β,β

(
x2β))− (1 + ε)

(
x2β−1E2β,2β

(
x2β)) .

Example 5.2. Consider the following FFDE,

RLDβ0+y (x) = −y (x) +
2

Γ (3 −β)
x2−β −

1
Γ (2 −β)

x1−β + x2 − x, (5.7)

subjected to
RLDβ−1

0+ y (0) =RL yβ−1
0 ∈ Ef. (5.8)

Suppose y (x) is I-differentiable fuzzy-valued function, then applying FFST on both sides of (5.7), we
obtain

S
[
RLDβ0+y (x)

]
= S

[
−y (x) +

2
Γ (3 −β)

x2−β −
1

Γ (2 −β)
x1−β + x2 − x

]
and in terms of lower and upper functions, for 0 6 ε 6 1,

S
[
RLDβ0+y (x; ε)

]
= −S [y (x; ε)] +

2
Γ (3 −β)

S
[
x2−β]− 1

Γ (2 −β)
S
[
x1−β]+ S

[
x2]− S [x] ,

S
[
RLDβ0+y (x; ε)

]
= −S

[
y (x; ε)

]
+

2
Γ (3 −β)

S
[
x2−β]− 1

Γ (2 −β)
S
[
x1−β]+ S

[
x2]− S [x] .

Using Theorem 3.6, we get

S
[
y (x; ε)

]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= −S [y (x; ε)] + 2p2−β − p1−β + 2p2 − p,

S [y (x; ε)]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= −S
[
y (x; ε)

]
+ 2p2−β − p1−β + 2p2 − p.

(5.9)

On undergoing some manipulations and using the initial condition specified in (5.8), we acquire

S
[
y (x; ε)

]
=RL yβ−1

0

[
pβ−1

1 − p2β

]
−RL yβ−1

0

[
p2β−1

1 − p2β

]
+ 2p2 − p,

S [y (x; ε)] =RL yβ−1
0

[
pβ−1

1 − p2β

]
−RL yβ−1

0

[
p2β−1

1 − p2β

]
+ 2p2 − p.

Finally, using (5.4) and inverse FST, we get the solutions as

y (x; ε) =RL yβ−1
0

(
xβ−1E2β,β

(
x2β))− RLyβ−1

0

(
x2β−1E2β,2β

(
x2β))+ x2 − x,

y (x; ε) =RL yβ−1
0

(
xβ−1E2β,β

(
x2β))− RLyβ−1

0

(
x2β−1E2β,2β

(
x2β))+ x2 − x.

(5.10)
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Whereas, in case of II-differentiability of y (x), (5.9) changes to,

S [y (x; ε)]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= −S [y (x; ε)] + 2p2−β − p1−β + 2p2 − p,

S
[
y (x; ε)

]
pβ

−
RLDβ−1

0+ y (0; ε)
p

= −S
[
y (x; ε)

]
+ 2p2−β − p1−β + 2p2 − p.

Hence, following the above simplifications, the solutions in this case can be constructed as

y (x; ε) =RL yβ−1
0

(
xβ−1Eβ,β

(
−xβ

))
+ x2 − x,

y (x; ε) =RL yβ−1
0

(
xβ−1Eβ,β

(
−xβ

))
+ x2 − x.

(5.11)

Moreover, let RLDβ−1
0+ y (0) = [1 + ε, 3 − ε], then (5.10) becomes

y (x; ε) = (1 + ε)
(
xβ−1E2β,β

(
x2β))− (3 − ε)

(
x2β−1E2β,2β

(
x2β))+ x2 − x,

y (x; ε) = (3 − ε)
(
xβ−1E2β,β

(
x2β))− (1 + ε)

(
x2β−1E2β,2β

(
x2β))+ x2 − x,

while, (5.11) becomes

y (x; ε) = (1 + ε)
(
xβ−1Eβ,β

(
−xβ

))
+ x2 − x, y (x; ε) = (3 − ε)

(
xβ−1Eβ,β

(
−xβ

))
+ x2 − x.

6. Conclusion

In this description, discovering comprehensive importance of analytical solutions of FFDEs in physics
and engineer fields, we proposed FFST as a combination of FST and fuzzy theory. Illustratively, the
solutions of some homogeneous and non-homogeneous FFDEs were determined. Thus, the whole study
can be wrapped up with the following results.

• After constructing the properties of FFST for fuzzy-valued functions, its unit preserving property
remained unchanged that verifies its appropriateness for the transformation of fuzzy-valued func-
tions.

• The Riemann-Liouville Hukuhara-derivatives of fuzzy-valued functions has a pragmatic importance
in fuzzy calculus and constructive in giving better solutions of the functions that reflects the real-
world problems. Therefore, elucidations of FFST of these derivatives added a useful contribution to
this theory.

• The analytical solutions of FFDEs, obtained by FFST, for different cases of Riemann-Liouville H-
differentiability of fuzzy-valued functions were found to be exactly same as the solutions in [20],
which further shows the effectiveness of FFST for FFDEs.

As a result, FFST is concluded to be an efficient, appropriate, and easy computational tool for analytical
solutions of FFDEs. For future studies, we are seeking to reveal many other interesting properties and
applications of fuzzy fractional Sumudu transform.
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