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Abstract
In this paper, we establish fixed point theorems for a new generalized α-ψ type contractive mapping in complete b-metric

spaces. As applications of our results, we obtain fixed point theorems on metric space endowed with a partial order or a graph.
We also obtain fixed point theorems for cyclic contractive mappings. Moreover, an application to integral equation is given here
to illustrate the usability of the obtained results.
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1. Introduction and preliminaries

Fixed point theorems for α-ψ type contractive mappings in metric spaces were firstly obtained in 2012
by Samet et al. [29]. In this direction several authors obtained further results (see, e.g., [3–7, 16, 18, 19, 27,
31]).

Let Ψ be family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(i) ψ is increasing;

(ii) ψ is continuous bijective;

(iii) limn→+∞ψn(t) = 0, for all t > 0, where ψn is the n-th iterate of ψ.

It is easy to see that ψ(t) < t for all t > 0 and ψ(0) = 0.
In this paper we denote G(t) = t− λsψ(t), λs ∈ (0, 1]. We easily obtain that G is increasing continuous

bijective, hence G−1 is increasing and continuous and G−1(0) = 0.

Definition 1.1. Let (X,d) be a metric space and T : X → X be a given mapping. We say that T is an α-ψ
contractive mapping if there exist two functions α : X×X→ [0,∞) and ψ ∈ Ψ such that

α(x,y)d(Tx, Ty) 6 ψ(d(x,y)), ∀x,y ∈ X.
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Clearly, any contractive mapping is an α-ψ contractive mapping with α(x,y) = 1 for all x,y ∈ X and
ψ(t) = kt, k ∈ (0, 1).

Definition 1.2. Let T : X→ X and α : X×X→ [0,∞). We say that T is an α-admissible mapping if for all
x,y ∈ X we have the following implication:

α(x,y) > 1⇒ α(Tx, Ty) > 1.

Definition 1.3. Let T : X→ X and α : X×X→ [0,∞). We say that T is a triangular α-admissible mapping
if for all x,y, z ∈ X we have

α(x,y) > 1⇒ α(Tx, Ty) > 1,

and
α(x,y) > 1,α(y, z) > 1⇒ α(x, z) > 1.

Various examples of the above mappings are presented in [16, 29] and [18].
Some results of fixed point in b-metric space have been obtained (see, e.g., [8, 9, 11, 12]). Now, we

present some definitions in b-metric space.

Definition 1.4. Let X be a nonempty set and the mapping b : X×X→ R+ satisfies:

(b1) b(x,y) = 0 if and only if x = y for all x,y ∈ X;

(b2) b(x,y) = b(y, x) for all x,y ∈ X;

(b3) there exists a real number s > 1 such that b(x,y) 6 s[b(x, z) + b(z,y)] for all x,y, z ∈ X.

Then b is called a b-metric on X and (X,b) is called a b-metric space with coefficient s.

Remark 1.5. It is clear that every metric space is a b-metric space with coefficient s = 1.

Definition 1.6. Let (X,b) be a b-metric space, then for x ∈ X and ε > 0, the b-ball with center x and radius
ε is

B(x, ε) = {y ∈ X|b(x,y) < ε}.

Definition 1.7. Let (X,b) be a b-metric space, A ⊂ X. A is said to be a closed if and only if x ∈ X and for
all ε > 0, B(x, ε)∩A 6= φ, then x ∈ A.

Definition 1.8. Let (X,b) be a b-metric space, A ⊂ X. The diameter of A is

δ(A) = sup
x,y∈A

b(x,y).

Definition 1.9 ([32]). A sequence {xn} in a b-metric space (X,b) is said to be:

(i) a Cauchy sequence if and only if for all ε > 0 there exists n(ε) ∈ N such that for each n,m > n(ε)
we have b(xn, xm) < ε;

(ii) a convergent sequence if and only if there exists x ∈ X such that for all ε > 0 there exists n(ε) ∈ N
such that for each n > n(ε) we have b(xn, x) < ε.

Definition 1.10. A b-metric space (X,b) is said to be complete if every Cauchy sequence {xn} ⊂ X con-
verges to some x ∈ X.

Definition 1.11. Let (X,b) be a b-metric space and T : X → X be a mapping. T is continuous at x ∈ X, if
and only if whenever {xn} is convergent to x, then {Txn} is convergent to Tx.
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2. Main results

We introduce a new concept of generalized α-ψ contractive type mappings as follows.

Definition 2.1. Let (X,d) be a metric space and T : X → X be a given mapping. We say that T is a
generalized α-ψ contractive mapping if there exist two functions α : X × X → [0,∞), ψ ∈ Ψ, for all
x,y ∈ X such that

α(x,y)d(Tx, Ty) 6 ψ(max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}).

Remark 2.2. Since ψ is increasing, clearly every α-ψ contractive mapping is generalized α-ψ contractive
mapping.

Our results are the following.

Theorem 2.3. Let (X,b) be a complete b-metric space with coefficient s > 1 and T : X→ X be a given mapping. If
there exist a function ψ ∈ Ψ and constant λ ∈ (0, 1

s ], for all x,y ∈ X such that

α(x,y)b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)}), (2.1)

and which satisfies:

(i) T is triangular α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) > 1;

(iii) T is continuous,

then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) > 1. Take xn+1 = Txn = Tnx0 for all n ∈ N. If xn0 = xn0+1 for
some n0, then xn0 is a fixed point of T . So, we can assume that xn+1 6= xn for all n. Since T is triangular
α-admissible, we have

α(x0, x1) = α(x0, Tx0) > 1⇒ α(Tx0, Tx1) = α(x1, x2) > 1.

Moreover
α(x0, x1) > 1, α(x1, x2) > 1⇒ α(x1, x3) > 1.

Inductively, for all m,n ∈ N, n < m, we easily obtain

α(xn, xm) > 1. (2.2)

Let us denote OT (x0;n) = {x0, Tx0, · · · , Tnx0} and δOT (x0;n) denotes the diameter of OT (x0;n). From
(2.1) and (2.2), for each 1 6 i < j 6 n, i, j ∈ N, we have

b(xi, xj) = b(Txi−1, Txj−1)

6 α(xi−1, xj−1)b(Txi−1, Txj−1)

6 λψ(max{b(xi−1, xj−1),b(xi−1, xi),b(xj−1, xj),b(xi−1, xj),b(xi, xj−1)})

6 λψ(δOT (x0;n)) (2.3)
6 ψ(δOT (x0;n)). (2.4)

It is easy to see that there exists k 6 n,k ∈ N such that

b(x0, Tkx0) = δOT (x0;n). (2.5)
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Indeed, if there exists i, j 6= 0, i < j such that δOT (x0;n) = b(xi, xj), from (2.4) we have

δOT (x0;n) = b(xi, xj) 6 ψ(δOT (x0;n)) < δOT (x0;n).

It is a contradiction. Hence, by applying (2.3), (2.5) and the triangular inequality, we have

δOT (x0;n) = b(x0, Tkx0)

6 sb(x0, Tx0) + sb(Tx0, Tkx0)

6 sb(x0, Tx0) + sλψ(δOT (x0;n)),

which leads to
δOT (x0;n) − sλψ(δOT (x0;n)) 6 sb(x0, Tx0).

For G(t) = t− sλψ(t), since G−1 is increasing, then

δOT (x0;n) 6 G−1(sb(x0, Tx0)). (2.6)

Also, for all m,n ∈ N and m > n, using (2.4), it results

b(xn, xm) 6 ψ(r1), (2.7)

where
r1 = δOT (xn−1;m−n+ 1).

Now, by (2.5), there exists k1 ∈ N, k1 6 m−n+ 1 such that

r1 = δOT (xn−1;m−n+ 1) = b(xn−1, Tk1xn−1).

By using again (2.5) we have

r1 = b(xn−1, Tk1xn−1) = b(Txn−2, Tk1+1xn−2) 6 ψ(r2), (2.8)

where
r2 = δOT (xn−2;k1 + 1).

Since ψ is monotone increasing and k1 + 1 6 m−n+ 2, from (2.7) and (2.8) we obtain

b(xn, xm) 6 ψ2(δOT (xn−2;m−n+ 2)).

So, for all m,n ∈ N, and m > n, by induction, we get

b(xn, xm) 6 ψn(δOT (x0;m)).

By (2.6), we get
b(xn, xm) 6 ψn(G−1(sb(x0, Tx0))). (2.9)

Letting n→∞ in (2.9), we get
b(xn, xm)→ 0. (2.10)

It implies {xn} is a Cauchy sequence, hence it is convergent. So there exists x∗ ∈ X such that

lim
n→∞b(xn, x∗) = 0. (2.11)

Next we will show that x∗ ∈ F(T). Since T is continuous, then Txn → Tx∗ as n → ∞. Using the
triangular inequality, we have

b(x∗, Tx∗) 6 sb(x∗, xn+1) + sb(Txn, Tx∗). (2.12)

Letting n→∞ in (2.12), we get b(x∗, Tx∗) = 0, which means x∗ ∈ F(T).
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Example 2.4. Let X = [0,∞), endow with the b-metric b(x,y) = (x− y)2 with s = 2 for all x,y ∈ X. Define
the mapping T : X→ X by

Tx =

{
x
4 , x ∈ [0, 1],
2x− 7

4 , x ∈ (1,∞).

We define the mapping α : X×X→ [0,∞) by

α(x,y) =
{
e|x−y|, if x,y ∈ (0, 1

4 ],
e−|x−y|, otherwise.

Clearly, T is a triangular α-admissible and generalized α-ψ contractive mapping with ψ(t) = t
4 for all

t ∈ [0,∞). In fact taking λ = 1
4 for all x,y ∈ X, we have

α(x,y)b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)}).

Moreover, there exists x0 = 1
4 ∈ X such that

α(x0, Tx0) = α(
1
4

,
1
16

) = e
3

16 > 1.

Obviously T is continuous.
Now, all the hypotheses of Theorem 2.3 are satisfied, T has a fixed point. In this example, 0 and 7

4 are
two fixed points of T .

Theorem 2.5. Let (X,b) be a complete b-metric space with coefficient s > 1 and T : X → X be a given mapping.
Suppose there exist a function ψ ∈ Ψ and constant λ ∈ (0, 1

s ], for all x,y ∈ X such that

α(x,y)b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)}), (2.13)

and which satisfies:

(i) T is triangular α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) > 1;

(iii) if {xn} is a sequence in (X,b) such that α(xn, xn+1) > 1 for all n ∈ N and xn → x∗ ∈ X as n → ∞, then
α(xn, x∗) > 1.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.3, we know that the sequence xn defined by xn+1 = Txn for all
n ∈ N, and converges to some x∗ ∈ X. By applying (2.2) and condition (iii), we obtain d(xn, x∗) > 1. So,
by (2.1) and the triangular inequality, we have

b(x∗, Tx∗) 6 sb(x∗, xn+1) + sb(Txn, Tx∗)
6 sb(x∗, xn+1) + sα(xn, x∗)b(Txn, Tx∗)
6 sb(x∗, xn+1) + sλψ(max{b(xn, x∗),b(xn, Tx∗),b(xn+1, x∗),b(x∗, Tx∗),b(xn, Txn)})
= sb(x∗, xn+1) + sλψ(M),

(2.14)

where
M = max{b(xn, x∗),b(xn, Tx∗),b(xn+1, x∗),b(x∗, Tx∗),b(xn, Txn)}.

There are three cases.

Case 1. If M = max{b(xn, x∗),b(xn+1, x∗),b(xn, xn+1)}.
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Since ψ is continuous, let n→∞ in (2.14). By (2.10) and (2.11) we get b(x∗, Tx∗) = 0.

Case 2. If M = b(x∗, Tx∗).

From (2.14), we have
b(x∗, Tx∗) − sλψ(b(x∗, Tx∗)) 6 sb(xn+1, x∗),

this implies b(x∗, Tx∗) 6 G−1(sb(xn+1, x∗)), since G−1 is continuous and G−1(0) = 0, let n→∞, by (2.11)
we obtain b(x∗, Tx∗) = 0.

Case 3. If M = b(xn, Tx∗).

Since ψ is continuous, let n→∞ in (2.14), by (2.11) we get

b(x∗, Tx∗) 6 sλψ(b(x∗, Tx∗)).

This implies b(x∗, Tx∗) = 0, or

b(x∗, Tx∗) 6 ψ(b(x∗, Tx∗)) < b(x∗, Tx∗).

It is a contradiction.
From the above three cases, we all obtain b(x∗, Tx∗) = 0, hence x∗ is a fixed point of T .

Example 2.6. Let X = R, endow with the b-metric b(x,y) = (x− y)2 with s = 2 for all x,y ∈ X. Define the
mapping T : X→ X by

Tx =

{
x
4 , x ∈ Q,
x2 − 1, x ∈ R−Q.

We define the mapping α : X×X→ [0,∞) by

α(x,y) =
{

1, if x,y ∈ Q,
0, x ∈ R−Q.

Clearly, T is a triangular α-admissible and generalized α-ψ contractive mapping with ψ(t) = t
4 for all

t ∈ [0,∞). In fact, taking λ = 1
4 for all x,y ∈ X, we have

α(x,y)b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)}).

Moreover, there exists x0 = 1
4 ∈ X such that

α(x0, Tx0) = α(
1
4

,
1

16
) = 1.

Take xn = Tnx0. We easily obtain

α(xn, xn+1) = α(
1

4n
,

1
4n+1 ) = 1,

and as n→∞, we have

xn =
1

4n
→ x = 0 ∈ X.

So
α(xn, x) = α(

1
4n

, 0) = 1.

Now, all the hypotheses of Theorem 2.5 are satisfied, T has a fixed point. In this example, 0, 1+
√

5
2 and

1−
√

5
2 are three fixed points of T .
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(H) For all x,y ∈ F(T), there exists z ∈ X such that α(x, z) > 1 and α(y, z) > 1.

Theorem 2.7. Adding condition (H) to Theorem 2.3 (resp., Theorem 2.5), then that x∗ is the unique fixed point of
T .

Proof. Let that x∗,y∗ ∈ F(T). By condition (H), there exists z ∈ X such that

α(x∗, z) > 1, α(y∗, z) > 1.

Since T is α-admissible, from the above inequalities, for all n ∈ N, we obtain

α(x∗, Tnz) > 1, α(y∗, Tnz) > 1.

So

b(x∗, Tnz) 6 α(x∗, Tn−1z)b(Tnx∗, Tnz)

6 λψ(max{b(x∗, Tn−1z),b(Tn−1z, Tnz),d(x∗, Tx∗),b(x∗, Tnz),b(x∗, Tn−1z)})

= λψ(N)

6 ψ(N),

(2.15)

where
N = max{b(x∗, Tn−1z),b(Tn−1z, Tnz),b(x∗, Tx∗),b(x∗, Tnz),b(x∗, Tn−1z)}.

There are four cases.

Case 1. If N = b(x∗, Tx∗).

It implies for all n ∈ N, we have b(x∗, Tnz) = 0.

Case 2. If N = b(x∗, Tn−1z).

It results
b(x∗, Tnz) 6 ψ(b(x∗, Tn−1z)),

recursively, we obtain
b(x∗, Tnz) 6 ψn(b(x∗, z)).

Letting n→∞, we have
lim
n→∞b(x∗, Tnz) = 0.

Case 3. If N = b(x∗, Tnz).

We get
b(x∗, Tnz) 6 ψ(b(x∗, Tnz)).

It implies for all n ∈ N, we have b(x∗, Tnz) = 0.

Case 4. If N = b(Tn−1z, Tnz).

Let n→∞ in (2.15). From (2.10) we obtain

lim
n→∞b(x∗, Tnz) = 0.

From the above four cases, we all obtain

lim
n→∞b(x∗, Tnz) = 0.

Similarly, we can get
lim
n→∞b(y∗, Tnz) = 0.

Using the triangular inequality, we have

b(x∗,y∗) 6 sb(x∗, Tnz) + sb(y∗, Tnz).

Letting n→∞, we get b(x∗,y∗) = 0, i.e., x∗ = y∗. Hence T has the unique fixed point.
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3. Applications

Next, we will show that some results can be deduced easily from our Theorem 2.7.

3.1. Standard fixed point theorems
Letting s = 1 in Theorem 2.7, we may get the following fixed point theorem.

Corollary 3.1. Let (X,d) be a complete metric space and T : X→ X be a mapping. If there exists a function ψ ∈ Ψ
for all x,y ∈ X such that

α(x,y)d(Tx, Ty) 6 ψ(max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}),

and which satisfies:

(i) T is triangular α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) > 1;

(iii) T is continuous or if {xn} is a sequence in (X,d) such that α(xn, xn+1) > 1 for all n ∈ N and xn → x∗ ∈ X
as n→∞, then α(xn, x∗) > 1,

then

(1) T has a fixed point;

(2) if the condition (H) is satisfied, T has a unique fixed point.

Letting α(x,y) = 1 in Theorem 2.7, for all x,y ∈ X, we get the following fixed point theorem.

Corollary 3.2. Let (X,b) be a complete b-metric space with coefficient s > 1 and T : X→ X be a mapping. If there
exist a function ψ ∈ Ψ and constant λ ∈ (0, 1

s ], for all x,y ∈ X such that

b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)}),

then T has a unique fixed point.

Corollary 3.3. Let (X,d) be a complete metric space and T : X→ X be a mapping. If there exists a function ψ ∈ Ψ,
for all x,y ∈ X such that

d(Tx, Ty) 6 ψ(max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}),

then T has a unique fixed point.

Corollary 3.4. Let (X,d) be a complete metric space and T : X→ X be a mapping. If there exist a function ψ ∈ Ψ
and constant k ∈ (0, 1), for all x,y ∈ X such that

d(Tx, Ty) 6 kmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)},

then T has a unique fixed point.

3.2. Fixed point theorem on b-metric spaces endowed with a partial order
Many exciting fixed point theorems on metric space with a partial have been obtained (see, e.g.,

[1, 13, 20, 24, 25, 28]). According to our Theorem 2.7, we will deduce fixed point theorems on metric space
with a partial, and know that those exciting theorems will be obtained easily by our result. At first, we
present some concepts.

Definition 3.5. Let (X,�) be a partially ordered set, T : X→ X be a mapping. We say that T is increasing
with respect to �, if for all x,y ∈ X

x � y⇒ Tx � Ty.
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Definition 3.6. Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be increasing with
respect to �, if xn � xn+1 for all n.

Definition 3.7. Let (X,�,d) be partially ordered metric space. We say that (X,�,d) is regular if for every
increasing sequence {xn} ⊂ X such that xn → x ∈ X as n → ∞, there exists a subsequence {xn(k)} of {xn}
such that xn(k) � x for all k.

We obtain the following result.

Corollary 3.8. Let (X,�,b) be complete partially ordered b-metric space with coefficient s > 1 and T : X → X be
an increasing mapping with respect to �. Suppose there exist a function ψ ∈ Ψ and constant λ ∈ (0, 1

s ] such that

d(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)})

for all x,y ∈ X with x � y and suppose the following conditions are satisfied:

(i) there exists x0 ∈ X such that x0 � Tx0.

(ii) T is continuous or (X,�,b) is regular.

Then T has a fixed point. And, suppose for all x,y ∈ X there exists z ∈ X such that x � y and y � z, therefore the
fixed point is unique.

Proof. Define the mapping α : X×X→ [0,∞) by

α(x,y) =
{

1, if x � y or x � y,
0, otherwise.

It is easy to see that T is a generalized α-ψ contractive mapping, that is,

α(x,y)b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)})

for all x,y ∈ X. From condition (i), we have α(x0, Tx0) > 1. Moreover, for all x,y ∈ X, from the monotone
property of T , we have

α(x,y) > 1⇒ x � y or x � y⇒ Tx � Ty or Tx � Ty⇒ α(Tx, Ty) > 1,

and
α(x,y) > 1,α(y, z) > 1⇒ x � y � z or x � y � z ⇒ α(y, z) > 1.

Thus T is triangular α-admissible. One the case that if T is continuous, then all the hypotheses of Theorem
2.3 are satisfied, so T has a fixed point. The other case if that (X,�,b) is regular. Take Txn = xn, we may
obtain α(xn, xn+1) > 1, that is, xn � xn+1 for all n and xn → x ∈ X. Then there exists a subsequence
{xn(k)} of {xn} such that xn(k) � x for all k. This implies that α(xn(k), x) > 1 for all k. Then all the
hypotheses of Theorem 2.5 are satisfied. So T has a fixed point. Next, we show the uniqueness. By
hypothesis for x,y ∈ X, there exists z ∈ X such that x � y and y � z. So we get α(x, z) > 1 and α(y, z) > 1.
Hence the uniqueness of the fixed point is obtained from Theorem 2.7.

Corollary 3.9. Let (X,�,d) be complete partially ordered metric space. Let T : X → X be an increasing mapping
with respect to �. Suppose there exists a function ψ ∈ Ψ such that

d(Tx, Ty) 6 ψ(max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)})

for all x,y ∈ X with x � y. Suppose the following conditions are satisfied:

(i) there exists x0 ∈ X such that x0 � Tx0.
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(ii) T is continuous or (X,�,d) is regular.

Then T has a fixed point. And, suppose for all x,y ∈ X there exists z ∈ X such that x � y and y � z, so the fixed
point is unique.

Corollary 3.10. Let (X,�,d) be complete partially ordered metric space. Let T : X→ X be an increasing mapping
with respect to �. Suppose there exists a constant k ∈ (0, 1) such that

d(Tx, Ty) 6 kmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}

for all x,y ∈ X with x � y. Suppose the following conditions are satisfied:

(i) there exists x0 ∈ X such that x0 � Tx0.

(ii) T is continuous or (X,�,d) is regular.

Then T has a fixed point. And, suppose for all x,y ∈ X there exists z ∈ X such that x � y and y � z, so the fixed
point is unique.

3.3. Fixed point theorems for cyclic contractive mappings
Some fixed point theorems for cyclic contractive mappings are obtained (see, e.g., [15, 17, 22, 23, 26,

32]). Next, we will show that some fixed point theorems for cyclic contractive mappings are obtained by
our Corollary 3.2.

Corollary 3.11. Let {Ai}
2
i=1 be nonempty closed subsets of complete b-metric space (X,b) with coefficient s > 1

and T : Y → Y be a given mapping, where Y = A1 ∪A2. Suppose that the following conditions hold:

(i) T(A1) ⊆ A2 and T(A2) ⊆ A1;

(ii) there exist a function ψ ∈ Ψ and constant λ ∈ (0, 1
s ], for all (x,y) ∈ A1 ×A2 such that

b(Tx, Ty) 6 λψ(max{b(x,y),b(x, Tx),b(y, Ty),b(x, Ty),b(y, Tx)}).

Then T has a unique fixed point that belongs to A1 ∩A2.

Proof. Since A1 and A2 are closed subsets in the complete b-metric space (X,b), then (Y,b) is complete.
So, all the conditions of Corollary 3.2 are satisfied. Thus we may get that T has a unique fixed point, and
it belongs to A1 ∩A2 (from (i)).

Corollary 3.12. Let {Ai}
2
i=1 be nonempty closed subsets of complete metric space (X,d), T : Y → Y be a mapping,

where Y = A1 ∪A2. Suppose that the following conditions hold:

(i) T(A1) ⊆ A2 and T(A2) ⊆ A1;

(ii) there exists a function ψ ∈ Ψ, for all (x,y) ∈ A1 ×A2 such that

d(Tx, Ty) 6 ψ(max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}).

Then T has a unique fixed point that belongs to A1 ∩A2.

Corollary 3.13. Let {Ai}
2
i=1 be nonempty closed subsets of complete metric space (X,d), T : Y → Y be a mapping,

where Y = A1 ∪A2. Suppose that the following conditions hold:

(i) T(A1) ⊆ A2 and T(A2) ⊆ A1;

(ii) there exists constant k ∈ (0, 1), for all (x,y) ∈ A1 ×A2 such that

d(Tx, Ty) 6 kmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}.

Then T has a unique fixed point that belongs to A1 ∩A2.
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3.4. Fixed point theorem on metric spaces endowed with a graph
Recently, Jachymski [14] obtained fixed point theorems on a metric space with a graph. Following the

paper [14], some fixed point theorems on a metric space with a graph have appeared (see, e.g., [10, 21, 30]).
At first, we need to introduce some concepts.

Let (X,d) be a metric space and ∆ be the diagonal of X× X. Let G be a directed graph such that the
set V(G) of its vertices coincides with X and ∆ ⊆ E(G), E(G) being the set of the edges of the graph.
Assuming that G has no parallel edges, we will suppose that G can be identified with the (V(G),E(G)).

If x and y are vertices of G, then a path in G from x to y of length k ∈ N is a finite sequence (xi)
k
0 of

vertices such that x0 = x, xk = y and (xi−1, xi) ∈ E(G), for i ∈ {1, 2, · · · ,k}.
Let us denote by G̃ the undirected graph obtained from G by ignoring the direction of edges. Notice

that a graph G is connected if there is a path between any two vertices and it is weakly connected if G̃ is
connected.

The following results are obtained by Corollary 3.1.

Corollary 3.14. Let (X,d) be a metric space and G be a directed graph and T : X→ X be a given mapping. Suppose
there exists a function ψ ∈ Ψ, for all x,y ∈ E(G) such that

d(Tx, Ty) 6 ψ(max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}),

and which satisfies:

(i) (x,y) ∈ E(G)⇒ (Tx, Ty) ∈ E(G), and (x,y) ∈ E(G), (y, z) ∈ E(G)⇒ (x, z) ∈ E(G);

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G);

(iii) T is continuous or if {xn} is a sequence in (X,d) such that (xn, xn+1) ∈ E(G) for all n ∈ N and xn → x∗ ∈ X
as n→∞, then (xn, x∗) ∈ E(G).

Then

(1) T has a fixed point;

(2) if x,y ∈ F(T), there exists z ∈ X such that (x,y) ∈ E(G), (y, z) ∈ E(G), T has a unique fixed point.

Proof. Define the mapping α : X×X→ [0,∞) by

α(x,y) =
{

1, if x,y ∈ E(G),
0, otherwise,

which means all the hypotheses of Corollary 3.1 are satisfied. So we can deduce that T has a unique fixed
point.

Corollary 3.15. Let (X,d) be a metric space and G be a directed graph and T : X→ X be a given mapping. Suppose
there exists a constant k ∈ (0, 1) for all x,y ∈ E(G) such that

d(Tx, Ty) 6 kmax{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)},

and which satisfies:

(i) (x,y) ∈ E(G)⇒ (Tx, Ty) ∈ E(G), and (x,y) ∈ E(G), (y, z) ∈ E(G)⇒ (x, z) ∈ E(G);

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G);

(iii) T is continuous or if {xn} is a sequence in (X,d) such that (xn, xn+1) ∈ E(G) for all n ∈ N and xn → x∗ ∈ X
as n→∞, then (xn, x∗) ∈ E(G).

Then

(1) T has a fixed point;

(2) if x,y ∈ F(T), there exists z ∈ X such that (x,y) ∈ E(G), (y, z) ∈ E(G), T has a unique fixed point.
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3.5. Application to integral equations
Here, we are concerned with the nonlinear quadratic integral equation

x(t) = h(t) + θ

∫t
0
k(t, s)f(s, x(s))ds, t ∈ [0, T ], T > 0. (3.1)

Let X = C([0, T ]) be the set of continuous functions in [0, T ] and

b(x,y) = sup
t∈[0,T ]

|x(t) − y(t)|p, x,y ∈ C([0, T ]).

It is easy to see that (X,b) is the complete b-metric space with s = 2p−1, p > 1 [2].
We consider (3.1) under the following assumptions:

(i) h : [0, T ]→ R is continuous;

(ii) f : [0, T ]→ R is continuous and for all t ∈ [0, T ], if x 6 y, we have

f(t, x) 6 f(t,y), |f(t, x) − f(t,y)| 6 L|x− y|,

where L > 0 is a constant;

(iii) k : [0, T ]× [0, T ]→ [0,∞) is continuous and there exists a constant K > 0 such that∫t
0
k(t, s)|x(s) − y(s)|ds 6 K, t ∈ [0, T ];

(iv) there exists x0 ∈ X such that

x0(t) = h(t) + θ

∫t
0
k(t, s)f(s, x0(s))ds, t ∈ [0, T ], T > 0.

We have the following theorem.

Theorem 3.16. Suppose the above conditions (i)–(iv) are satisfied. If θLKT < 1
2p−1 , then the integral equation (3.1)

has a unique continuous solution x∗ ∈ C[0, T ].

Proof. We consider the operator T : X→ X defined by

Tx(t) = h(t) + θ

∫t
0
k(t, s)f(s, x(s))ds, t ∈ [0, T ], T > 0. (3.2)

We show that T is an α-ψ generalized contractive mapping in b-metric spaces, that is,

α(x,y)b(Tx(t), Ty(t)) 6 λψ(M(x,y)), (3.3)

where M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty),d(x, Ty),d(y, Tx)}.
Now we let the function α : X×X→ R defined by

α(x,y) =
{

1, if x(t) 6 y(t), t ∈ [0, T ],
0, otherwise,

and the function ψ : [0,∞)→ [0,∞) defined by

ψ(t) = (θKLT)p−1t, t ∈ [0,∞).
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Obviously, ψ ∈ Ψ.

b(Tx(t), Ty(t)) = sup
t∈[0,T ]

|Tx(t) − Ty(t)|p. (3.4)

Also, if x(t) 6 y(t) is not satisfied, then the inequality (3.3) holds immediately. So we may suppose
x(t) 6 y(t), t ∈ [0, T ]. From conditions (ii), (iii) and (3.2), we have

|Tx(t) − Ty(t)| = |h(t) + θ

∫t
0
k(t, s)f(s, x(s))ds− h(t) − θ

∫t
0
k(t, s)f(s,y(s))ds|

6 θ
∫t

0
k(t, s)|f(s, x(s)) − f(s,y(s))|ds

6 θ
∫t

0
k(t, s)L|x(s)) − y(s)|ds

6 θKLT |x(s)) − y(s)|.

So, from (3.4), we get
b(Tx(t), Ty(t)) 6 (θKLT)pb(x,y) 6 (θKLT)pM(x,y). (3.5)

Taking λ = θKLT and by (3.5) we obtain

α(x,y)b(Tx(t), Ty(t)) 6 λψ(M(x,y)).

So, T is an α-ψ generalized contractive mapping in b-metric spaces.
Take xn = Tnx0, n ∈ N. From condition (iv), we get α(x0, Tx0) = 1. And from condition (ii) we may

obtain
α(x,y) = 1⇒ α(Tx, Ty) = 1.

So by induction, we get easily α(xn, xn+1) = 1. Also from the proof of Theorem 2.3, we know that
xn → x∗ ∈ X, then α(xn, x∗) = 1. Hence all assumptions of Theorem 2.5 are satisfied. So, according to
Theorem 2.5 we can deduce that x∗ is a fixed point of T , that is, x∗ is a solution to the integral equation
(3.1).

Also, take z(t) = max{x(t),y(t)}, t ∈ [0, T ]. Then for all x,y ∈ X, there exists z ∈ X such that
α(x, z) = α(y, z) = 1. From Theorem 2.7, we know that x∗ is the unique solution to the integral equation
(3.1).
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[24] A. Petruşel, I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134 (2006), 411–418. 3.2
[25] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations,

Proc. Amer. Math. Soc., 132 (2004), 1435–1443. 3.2
[26] I. A. Rus, Cyclic representations and fixed points, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 3

(2015), 171–178. 3.3
[27] P. Salimi, N. Hussain, A. Latif, Modified α-ψ-contractive mappings with applications, Fixed Point Theory Appl., 2013

(2013), 19 pages. 1
[28] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Non-

linear Anal., 72 (2010), 4508–4517. 3.2
[29] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012),

2154–2165. 1, 1
[30] S. Shukla, Fixed point theorems of G-fuzzy contractions in fuzzy metric spaces endowed with a graph, Commun. Math.,

22 (2014), 1–12. 3.4
[31] X.-B. Wu, Generalized α−ψ contractive mappings in partial b-metric spaces and related fixed point theorems, J. Nonlinear

Sci. Appl., 9 (2016), 3255–3278. 1
[32] X.-B. Wu, L.-N. Zhao, Viscosity approximation methods for multivalued nonexpansive mappings, Mediterr. J. Math., 13

(2016), 2645–2657. 1.9, 3.3


	Introduction and preliminaries
	Main results
	Applications
	Standard fixed point theorems
	Fixed point theorem on b-metric spaces endowed with a partial order
	Fixed point theorems for cyclic contractive mappings
	Fixed point theorem on metric spaces endowed with a graph
	Application to integral equations


