Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Fixed point theorems for generalized α - ψ type contractive mappings in b-metric spaces and applications

Xianbing Wu^{a,*}, Leina Zhao^b

^aDepartment of Mathematics, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China. ^bCollege of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, 400074, P. R. China.

Abstract

In this paper, we establish fixed point theorems for a new generalized α - ψ type contractive mapping in complete b-metric spaces. As applications of our results, we obtain fixed point theorems on metric space endowed with a partial order or a graph. We also obtain fixed point theorems for cyclic contractive mappings. Moreover, an application to integral equation is given here to illustrate the usability of the obtained results.

Keywords: α - ψ contractive mapping, b-metric space, fixed point theorem.

2010 MSC: 47H10, 47H09, 49J40.

©2018 All rights reserved.

1. Introduction and preliminaries

Fixed point theorems for α - ψ type contractive mappings in metric spaces were firstly obtained in 2012 by Samet et al. [29]. In this direction several authors obtained further results (see, e.g., [3–7, 16, 18, 19, 27, 31]).

Let Ψ be family of functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the following conditions:

- (i) ψ is increasing;
- (ii) ψ is continuous bijective;

(iii) $\lim_{n\to+\infty} \psi^n(t) = 0$, for all $t \ge 0$, where ψ^n is the n-th iterate of ψ .

It is easy to see that $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$.

In this paper we denote $G(t) = t - \lambda s \psi(t)$, $\lambda s \in (0, 1]$. We easily obtain that G is increasing continuous bijective, hence G^{-1} is increasing and continuous and $G^{-1}(0) = 0$.

Definition 1.1. Let (X, d) be a metric space and $T : X \to X$ be a given mapping. We say that T is an α - ψ contractive mapping if there exist two functions $\alpha : X \times X \to [0, \infty)$ and $\psi \in \Psi$ such that

 $\alpha(x,y)d(Tx,Ty) \leqslant \psi(d(x,y)), \quad \forall x,y \in X.$

*Corresponding author

Email addresses: flwxbing@163.com (Xianbing Wu), zhao_leina@163.com (Leina Zhao)

doi: 10.22436/jmcs.018.01.06

Received 2016-11-01

50

Clearly, any contractive mapping is an α - ψ contractive mapping with $\alpha(x, y) = 1$ for all $x, y \in X$ and $\psi(t) = kt$, $k \in (0, 1)$.

Definition 1.2. Let $T : X \to X$ and $\alpha : X \times X \to [0, \infty)$. We say that T is an α -admissible mapping if for all $x, y \in X$ we have the following implication:

$$\alpha(\mathbf{x},\mathbf{y}) \ge 1 \Rightarrow \alpha(\mathsf{T}\mathbf{x},\mathsf{T}\mathbf{y}) \ge 1$$

Definition 1.3. Let $T : X \to X$ and $\alpha : X \times X \to [0, \infty)$. We say that T is a triangular α -admissible mapping if for all $x, y, z \in X$ we have

$$\alpha(\mathbf{x},\mathbf{y}) \ge 1 \Rightarrow \alpha(\mathsf{T}\mathbf{x},\mathsf{T}\mathbf{y}) \ge 1,$$

and

$$\alpha(\mathbf{x},\mathbf{y}) \ge 1, \alpha(\mathbf{y},z) \ge 1 \Rightarrow \alpha(\mathbf{x},z) \ge 1.$$

Various examples of the above mappings are presented in [16, 29] and [18].

Some results of fixed point in b-metric space have been obtained (see, e.g., [8, 9, 11, 12]). Now, we present some definitions in b-metric space.

Definition 1.4. Let X be a nonempty set and the mapping $b : X \times X \to R^+$ satisfies:

(b1) b(x, y) = 0 if and only if x = y for all $x, y \in X$;

(b2) b(x, y) = b(y, x) for all $x, y \in X$;

(b3) there exists a real number $s \ge 1$ such that $b(x, y) \le s[b(x, z) + b(z, y)]$ for all $x, y, z \in X$.

Then b is called a b-metric on X and (X, b) is called a b-metric space with coefficient s.

Remark 1.5. It is clear that every metric space is a b-metric space with coefficient s = 1.

Definition 1.6. Let (X, b) be a b-metric space, then for $x \in X$ and $\varepsilon > 0$, the b-ball with center x and radius ε is

$$B(x, \epsilon) = \{y \in X | b(x, y) < \epsilon\}.$$

Definition 1.7. Let (X, b) be a b-metric space, $A \subset X$. A is said to be a closed if and only if $x \in X$ and for all $\epsilon > 0$, $B(x, \epsilon) \cap A \neq \phi$, then $x \in A$.

Definition 1.8. Let (X, b) be a b-metric space, $A \subset X$. The diameter of A is

$$\delta(A) = \sup_{x,y \in A} b(x,y).$$

Definition 1.9 ([32]). A sequence $\{x_n\}$ in a b-metric space (X, b) is said to be:

- (i) a Cauchy sequence if and only if for all $\epsilon > 0$ there exists $n(\epsilon) \in N$ such that for each $n, m \ge n(\epsilon)$ we have $b(x_n, x_m) < \epsilon$;
- (ii) a convergent sequence if and only if there exists $x \in X$ such that for all $\epsilon > 0$ there exists $n(\epsilon) \in N$ such that for each $n \ge n(\epsilon)$ we have $b(x_n, x) < \epsilon$.

Definition 1.10. A b-metric space (X, b) is said to be complete if every Cauchy sequence $\{x_n\} \subset X$ converges to some $x \in X$.

Definition 1.11. Let (X, b) be a b-metric space and $T : X \to X$ be a mapping. T is continuous at $x \in X$, if and only if whenever $\{x_n\}$ is convergent to x, then $\{Tx_n\}$ is convergent to Tx.

2. Main results

We introduce a new concept of generalized α - ψ contractive type mappings as follows.

Definition 2.1. Let (X, d) be a metric space and $T : X \to X$ be a given mapping. We say that T is a generalized α - ψ contractive mapping if there exist two functions $\alpha : X \times X \to [0, \infty)$, $\psi \in \Psi$, for all $x, y \in X$ such that

 $\alpha(x,y)d(\mathsf{T}x,\mathsf{T}y) \leqslant \psi(\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\}).$

Remark 2.2. Since ψ is increasing, clearly every α - ψ contractive mapping is generalized α - ψ contractive mapping.

Our results are the following.

Theorem 2.3. Let (X, b) be a complete b-metric space with coefficient $s \ge 1$ and $T : X \to X$ be a given mapping. If there exist a function $\psi \in \Psi$ and constant $\lambda \in (0, \frac{1}{s}]$, for all $x, y \in X$ such that

$$\alpha(x,y)b(\mathsf{T}x,\mathsf{T}y) \leqslant \lambda \psi(\max\{b(x,y),b(x,\mathsf{T}x),b(y,\mathsf{T}y),b(x,\mathsf{T}y),b(y,\mathsf{T}x)\}),\tag{2.1}$$

and which satisfies:

- (i) T is triangular α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iii) T is continuous,

then T has a fixed point.

Proof. Let $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. Take $x_{n+1} = Tx_n = T^n x_0$ for all $n \in N$. If $x_{n_0} = x_{n_0+1}$ for some n_0 , then x_{n_0} is a fixed point of T. So, we can assume that $x_{n+1} \ne x_n$ for all n. Since T is triangular α -admissible, we have

$$\alpha(\mathbf{x}_0, \mathbf{x}_1) = \alpha(\mathbf{x}_0, \mathsf{T}\mathbf{x}_0) \ge 1 \Rightarrow \alpha(\mathsf{T}\mathbf{x}_0, \mathsf{T}\mathbf{x}_1) = \alpha(\mathbf{x}_1, \mathbf{x}_2) \ge 1.$$

Moreover

$$\alpha(\mathbf{x}_0, \mathbf{x}_1) \ge 1$$
, $\alpha(\mathbf{x}_1, \mathbf{x}_2) \ge 1 \Rightarrow \alpha(\mathbf{x}_1, \mathbf{x}_3) \ge 1$.

Inductively, for all $m, n \in N$, n < m, we easily obtain

$$\alpha(\mathbf{x}_{n}, \mathbf{x}_{m}) \ge 1. \tag{2.2}$$

Let us denote $O_T(x_0; n) = \{x_0, Tx_0, \dots, T^nx_0\}$ and $\delta O_T(x_0; n)$ denotes the diameter of $O_T(x_0; n)$. From (2.1) and (2.2), for each $1 \le i < j \le n$, $i, j \in N$, we have

$$b(x_{i}, x_{j}) = b(Tx_{i-1}, Tx_{j-1}) \leq \alpha(x_{i-1}, x_{j-1})b(Tx_{i-1}, Tx_{j-1}) \leq \lambda \psi(\max\{b(x_{i-1}, x_{j-1}), b(x_{i-1}, x_{i}), b(x_{j-1}, x_{j}), b(x_{i-1}, x_{j}), b(x_{i}, x_{j-1})\}) \leq \lambda \psi(\delta O_{T}(x_{0}; n))$$

$$\leq \psi(\delta O_{T}(x_{0}; n)).$$
(2.4)

It is easy to see that there exists $k \leq n, k \in N$ such that

$$b(x_0, \mathsf{T}^k x_0) = \delta \mathsf{O}_{\mathsf{T}}(x_0; \mathfrak{n}). \tag{2.5}$$

Indeed, if there exists $i, j \neq 0$, i < j such that $\delta O_T(x_0; n) = b(x_i, x_j)$, from (2.4) we have

$$\delta O_{\mathsf{T}}(\mathsf{x}_0; \mathfrak{n}) = \mathfrak{b}(\mathsf{x}_i, \mathsf{x}_i) \leqslant \psi(\delta O_{\mathsf{T}}(\mathsf{x}_0; \mathfrak{n})) < \delta O_{\mathsf{T}}(\mathsf{x}_0; \mathfrak{n})$$

It is a contradiction. Hence, by applying (2.3), (2.5) and the triangular inequality, we have

$$\begin{split} \delta O_\mathsf{T}(x_0;\mathfrak{n}) &= b(x_0,\mathsf{T}^k x_0) \\ &\leqslant s b(x_0,\mathsf{T} x_0) + s b(\mathsf{T} x_0,\mathsf{T}^k x_0) \\ &\leqslant s b(x_0,\mathsf{T} x_0) + s \lambda \psi(\delta O_\mathsf{T}(x_0;\mathfrak{n})) \end{split}$$

which leads to

$$\delta O_{\mathsf{T}}(\mathbf{x}_0; \mathfrak{n}) - s\lambda\psi(\delta O_{\mathsf{T}}(\mathbf{x}_0; \mathfrak{n})) \leqslant sb(\mathbf{x}_0, \mathsf{T}\mathbf{x}_0)$$

For $G(t) = t - s\lambda\psi(t)$, since G^{-1} is increasing, then

$$\delta O_{\mathsf{T}}(\mathsf{x}_0; \mathfrak{n}) \leqslant \mathsf{G}^{-1}(\mathsf{sb}(\mathsf{x}_0, \mathsf{T}\mathsf{x}_0)). \tag{2.6}$$

Also, for all $m, n \in N$ and m > n, using (2.4), it results

$$b(\mathbf{x}_{n},\mathbf{x}_{m}) \leqslant \psi(\mathbf{r}_{1}), \tag{2.7}$$

where

 $r_1 = \delta O_T(x_{n-1}; m - n + 1).$

Now, by (2.5), there exists $k_1 \in N$, $k_1 \leq m - n + 1$ such that

$$r_1 = \delta O_T(x_{n-1}; m-n+1) = b(x_{n-1}, T^{\kappa_1}x_{n-1}).$$

By using again (2.5) we have

$$\mathbf{r}_{1} = \mathbf{b}(\mathbf{x}_{n-1}, \mathsf{T}^{k_{1}}\mathbf{x}_{n-1}) = \mathbf{b}(\mathsf{T}\mathbf{x}_{n-2}, \mathsf{T}^{k_{1}+1}\mathbf{x}_{n-2}) \leqslant \psi(\mathbf{r}_{2}), \tag{2.8}$$

where

 $r_2 = \delta O_T(x_{n-2}; k_1 + 1).$

Since ψ is monotone increasing and $k_1 + 1 \leq m - n + 2$, from (2.7) and (2.8) we obtain

 $\mathfrak{b}(\mathfrak{x}_n,\mathfrak{x}_m)\leqslant \psi^2(\delta O_T(\mathfrak{x}_{n-2};m-n+2)).$

So, for all $m, n \in N$, and m > n, by induction, we get

$$b(\mathbf{x}_{n},\mathbf{x}_{m}) \leq \psi^{n}(\delta O_{\mathsf{T}}(\mathbf{x}_{0};m)).$$

By (2.6), we get

$$b(x_n, x_m) \leq \psi^n(G^{-1}(sb(x_0, Tx_0))).$$
 (2.9)

Letting $n \to \infty$ in (2.9), we get

$$b(\mathbf{x}_{n}, \mathbf{x}_{m}) \to 0. \tag{2.10}$$

It implies $\{x_n\}$ is a Cauchy sequence, hence it is convergent. So there exists $x^* \in X$ such that

$$\lim_{n \to \infty} b(x_n, x^*) = 0.$$
(2.11)

Next we will show that $x^* \in F(T)$. Since T is continuous, then $Tx_n \to Tx^*$ as $n \to \infty$. Using the triangular inequality, we have

$$b(x^*, Tx^*) \leq sb(x^*, x_{n+1}) + sb(Tx_n, Tx^*).$$
 (2.12)

Letting $n \to \infty$ in (2.12), we get $b(x^*, Tx^*) = 0$, which means $x^* \in F(T)$.

Example 2.4. Let $X = [0, \infty)$, endow with the b-metric $b(x, y) = (x - y)^2$ with s = 2 for all $x, y \in X$. Define the mapping $T : X \to X$ by

$$\mathsf{Tx} = \begin{cases} \frac{x}{4}, & x \in [0,1], \\ 2x - \frac{7}{4}, & x \in (1,\infty). \end{cases}$$

We define the mapping $\alpha : X \times X \rightarrow [0, \infty)$ by

$$\alpha(\mathbf{x},\mathbf{y}) = \begin{cases} e^{|\mathbf{x}-\mathbf{y}|}, & \text{if } \mathbf{x},\mathbf{y} \in (0,\frac{1}{4}], \\ e^{-|\mathbf{x}-\mathbf{y}|}, & \text{otherwise.} \end{cases}$$

Clearly, T is a triangular α -admissible and generalized α - ψ contractive mapping with $\psi(t) = \frac{t}{4}$ for all $t \in [0, \infty)$. In fact taking $\lambda = \frac{1}{4}$ for all $x, y \in X$, we have

$$\alpha(x,y)b(\mathsf{T}x,\mathsf{T}y) \leqslant \lambda \psi(\max\{b(x,y),b(x,\mathsf{T}x),b(y,\mathsf{T}y),b(x,\mathsf{T}y),b(y,\mathsf{T}x)\}).$$

Moreover, there exists $x_0 = \frac{1}{4} \in X$ such that

$$\alpha(x_0, Tx_0) = \alpha(\frac{1}{4}, \frac{1}{16}) = e^{\frac{3}{16}} \ge 1.$$

Obviously T is continuous.

Now, all the hypotheses of Theorem 2.3 are satisfied, T has a fixed point. In this example, 0 and $\frac{7}{4}$ are two fixed points of T.

Theorem 2.5. Let (X, b) be a complete b-metric space with coefficient $s \ge 1$ and $T : X \to X$ be a given mapping. Suppose there exist a function $\psi \in \Psi$ and constant $\lambda \in (0, \frac{1}{s}]$, for all $x, y \in X$ such that

$$\alpha(x,y)b(\mathsf{T}x,\mathsf{T}y) \leqslant \lambda\psi(\max\{b(x,y),b(x,\mathsf{T}x),b(y,\mathsf{T}y),b(x,\mathsf{T}y),b(y,\mathsf{T}x)\}), \tag{2.13}$$

and which satisfies:

- (i) T is triangular α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iii) if $\{x_n\}$ is a sequence in (X, b) such that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in N$ and $x_n \to x^* \in X$ as $n \to \infty$, then $\alpha(x_n, x^*) \ge 1$.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.3, we know that the sequence x_n defined by $x_{n+1} = Tx_n$ for all $n \in N$, and converges to some $x^* \in X$. By applying (2.2) and condition (iii), we obtain $d(x_n, x^*) \ge 1$. So, by (2.1) and the triangular inequality, we have

$$b(x^*, Tx^*) \leq sb(x^*, x_{n+1}) + sb(Tx_n, Tx^*)$$

$$\leq sb(x^*, x_{n+1}) + s\alpha(x_n, x^*)b(Tx_n, Tx^*)$$

$$\leq sb(x^*, x_{n+1}) + s\lambda\psi(\max\{b(x_n, x^*), b(x_n, Tx^*), b(x_{n+1}, x^*), b(x^*, Tx^*), b(x_n, Tx_n)\})$$

$$= sb(x^*, x_{n+1}) + s\lambda\psi(M),$$
(2.14)

where

$$M = \max\{b(x_n, x^*), b(x_n, Tx^*), b(x_{n+1}, x^*), b(x^*, Tx^*), b(x_n, Tx_n)\}.$$

There are three cases.

Case 1. If $M = \max\{b(x_n, x^*), b(x_{n+1}, x^*), b(x_n, x_{n+1})\}$.

Since ψ is continuous, let $n \to \infty$ in (2.14). By (2.10) and (2.11) we get $b(x^*, Tx^*) = 0$.

Case 2. If $M = b(x^*, Tx^*)$.

From (2.14), we have

 $b(x^*, \mathsf{T}x^*) - s\lambda\psi(b(x^*, \mathsf{T}x^*)) \leqslant sb(x_{n+1}, x^*),$

this implies $b(x^*, Tx^*) \leq G^{-1}(sb(x_{n+1}, x^*))$, since G^{-1} is continuous and $G^{-1}(0) = 0$, let $n \to \infty$, by (2.11) we obtain $b(x^*, Tx^*) = 0$.

Case 3. If $M = b(x_n, Tx^*)$.

Since ψ is continuous, let $n \to \infty$ in (2.14), by (2.11) we get

$$b(x^*, Tx^*) \leqslant s\lambda\psi(b(x^*, Tx^*)).$$

This implies $b(x^*, Tx^*) = 0$, or

$$b(x^*, \mathsf{T} x^*) \leqslant \psi(b(x^*, \mathsf{T} x^*)) < b(x^*, \mathsf{T} x^*).$$

It is a contradiction.

From the above three cases, we all obtain $b(x^*, Tx^*) = 0$, hence x^* is a fixed point of T.

Example 2.6. Let X = R, endow with the b-metric $b(x, y) = (x - y)^2$ with s = 2 for all $x, y \in X$. Define the mapping $T : X \to X$ by

$$\mathsf{T} \mathsf{x} = \begin{cases} \frac{\mathsf{x}}{4}, & \mathsf{x} \in \mathsf{Q}, \\ \mathsf{x}^2 - \mathsf{1}, & \mathsf{x} \in \mathsf{R} - \mathsf{Q} \end{cases}$$

We define the mapping $\alpha : X \times X \rightarrow [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1, & \text{if } x, y \in Q, \\ 0, & x \in R - Q. \end{cases}$$

Clearly, T is a triangular α -admissible and generalized α - ψ contractive mapping with $\psi(t) = \frac{t}{4}$ for all $t \in [0, \infty)$. In fact, taking $\lambda = \frac{1}{4}$ for all $x, y \in X$, we have

$$\alpha(x, y)b(\mathsf{T}x, \mathsf{T}y) \leq \lambda \psi(\max\{b(x, y), b(x, \mathsf{T}x), b(y, \mathsf{T}y), b(x, \mathsf{T}y), b(y, \mathsf{T}x)\}).$$

Moreover, there exists $x_0 = \frac{1}{4} \in X$ such that

$$\alpha(x_0, Tx_0) = \alpha(\frac{1}{4}, \frac{1}{16}) = 1.$$

Take $x_n = T^n x_0$. We easily obtain

$$\alpha(x_n, x_{n+1}) = \alpha(\frac{1}{4^n}, \frac{1}{4^{n+1}}) = 1,$$

and as $n \to \infty$, we have

$$x_n = \frac{1}{4^n} \to x = 0 \in X.$$

So

$$\alpha(\mathbf{x}_n,\mathbf{x}) = \alpha(\frac{1}{4^n},0) = 1.$$

Now, all the hypotheses of Theorem 2.5 are satisfied, T has a fixed point. In this example, $0, \frac{1+\sqrt{5}}{2}$ and $\frac{1-\sqrt{5}}{2}$ are three fixed points of T.

(H) For all $x, y \in F(T)$, there exists $z \in X$ such that $\alpha(x, z) \ge 1$ and $\alpha(y, z) \ge 1$.

Theorem 2.7. Adding condition (H) to Theorem 2.3 (resp., Theorem 2.5), then that x^* is the unique fixed point of T.

Proof. Let that $x^*, y^* \in F(T)$. By condition (H), there exists $z \in X$ such that

$$\alpha(x^*, z) \ge 1$$
, $\alpha(y^*, z) \ge 1$.

Since T is α -admissible, from the above inequalities, for all $n \in N$, we obtain

 $\alpha(x^*, T^n z) \ge 1, \quad \alpha(y^*, T^n z) \ge 1.$

So

$$b(x^{*}, T^{n}z) \leq \alpha(x^{*}, T^{n-1}z)b(T^{n}x^{*}, T^{n}z) \leq \lambda \psi(\max\{b(x^{*}, T^{n-1}z), b(T^{n-1}z, T^{n}z), d(x^{*}, Tx^{*}), b(x^{*}, T^{n}z), b(x^{*}, T^{n-1}z)\}) = \lambda \psi(N) \leq \psi(N),$$
(2.15)

where

$$N = \max\{b(x^*, T^{n-1}z), b(T^{n-1}z, T^nz), b(x^*, Tx^*), b(x^*, T^nz), b(x^*, T^{n-1}z)\}$$

There are four cases.

Case 1. If $N = b(x^*, Tx^*)$.

It implies for all $n \in N$, we have $b(x^*, T^n z) = 0$.

Case 2. If $N = b(x^*, T^{n-1}z)$.

It results

 $b(\mathbf{x}^*, \mathsf{T}^n z) \leqslant \psi(b(\mathbf{x}^*, \mathsf{T}^{n-1} z)),$

recursively, we obtain

 $\mathbf{b}(\mathbf{x}^*,\mathsf{T}^{\mathbf{n}}z)\leqslant\psi^{\mathbf{n}}(\mathbf{b}(\mathbf{x}^*,z)).$

Letting $n \to \infty$, we have

 $\lim_{n\to\infty} b(x^*,\mathsf{T}^n z) = 0.$

Case 3. If $N = b(x^*, T^n z)$.

We get

 $b(x^*, T^n z) \leqslant \psi(b(x^*, T^n z)).$

It implies for all $n \in N$, we have $b(x^*, T^n z) = 0$.

Case 4. If $N = b(T^{n-1}z, T^nz)$.

Let $n \to \infty$ in (2.15). From (2.10) we obtain

$$\lim_{n\to\infty} b(x^*, \mathsf{T}^n z) = 0$$

From the above four cases, we all obtain

$$\lim_{n\to\infty} b(x^*, \mathsf{T}^n z) = 0$$

Similarly, we can get

$$\lim_{n\to\infty} b(y^*, \mathsf{T}^n z) = 0$$

Using the triangular inequality, we have

$$b(\mathbf{x}^*,\mathbf{y}^*) \leqslant sb(\mathbf{x}^*,\mathsf{T}^n z) + sb(\mathbf{y}^*,\mathsf{T}^n z).$$

Letting $n \to \infty$, we get $b(x^*, y^*) = 0$, i.e., $x^* = y^*$. Hence T has the unique fixed point.

3. Applications

Next, we will show that some results can be deduced easily from our Theorem 2.7.

3.1. Standard fixed point theorems

Letting s = 1 in Theorem 2.7, we may get the following fixed point theorem.

Corollary 3.1. *Let* (X, d) *be a complete metric space and* $T : X \to X$ *be a mapping. If there exists a function* $\psi \in \Psi$ *for all* $x, y \in X$ *such that*

 $\alpha(x,y)d(\mathsf{T}x,\mathsf{T}y) \leqslant \psi(\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\}),$

and which satisfies:

- (i) T is triangular α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iii) T is continuous or if $\{x_n\}$ is a sequence in (X, d) such that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in N$ and $x_n \to x^* \in X$ as $n \to \infty$, then $\alpha(x_n, x^*) \ge 1$,

then

- (1) T has a fixed point;
- (2) if the condition (H) is satisfied, T has a unique fixed point.

Letting $\alpha(x, y) = 1$ in Theorem 2.7, for all $x, y \in X$, we get the following fixed point theorem.

Corollary 3.2. Let (X, b) be a complete b-metric space with coefficient $s \ge 1$ and $T : X \to X$ be a mapping. If there exist a function $\psi \in \Psi$ and constant $\lambda \in (0, \frac{1}{s}]$, for all $x, y \in X$ such that

 $b(Tx,Ty) \leqslant \lambda \psi(\max\{b(x,y),b(x,Tx),b(y,Ty),b(x,Ty),b(y,Tx)\}),$

then T has a unique fixed point.

Corollary 3.3. *Let* (X, d) *be a complete metric space and* $T : X \to X$ *be a mapping. If there exists a function* $\psi \in \Psi$ *, for all* $x, y \in X$ *such that*

$$d(\mathsf{T}x,\mathsf{T}y) \leq \psi(\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\}),$$

then T has a unique fixed point.

Corollary 3.4. *Let* (X, d) *be a complete metric space and* $T : X \to X$ *be a mapping. If there exist a function* $\psi \in \Psi$ *and constant* $k \in (0, 1)$ *, for all* $x, y \in X$ *such that*

 $d(\mathsf{T}x,\mathsf{T}y) \leqslant k\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\},\$

then T has a unique fixed point.

3.2. Fixed point theorem on b-metric spaces endowed with a partial order

Many exciting fixed point theorems on metric space with a partial have been obtained (see, e.g., [1, 13, 20, 24, 25, 28]). According to our Theorem 2.7, we will deduce fixed point theorems on metric space with a partial, and know that those exciting theorems will be obtained easily by our result. At first, we present some concepts.

Definition 3.5. Let (X, \preceq) be a partially ordered set, $T : X \to X$ be a mapping. We say that T is increasing with respect to \preceq , if for all $x, y \in X$

$$x \preceq y \Rightarrow Tx \preceq Ty.$$

Definition 3.6. Let (X, \preceq) be a partially ordered set. A sequence $\{x_n\} \subset X$ is said to be increasing with respect to \preceq , if $x_n \preceq x_{n+1}$ for all n.

Definition 3.7. Let (X, \leq, d) be partially ordered metric space. We say that (X, \leq, d) is regular if for every increasing sequence $\{x_n\} \subset X$ such that $x_n \to x \in X$ as $n \to \infty$, there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $x_{n(k)} \leq x$ for all k.

We obtain the following result.

Corollary 3.8. Let (X, \leq, b) be complete partially ordered b-metric space with coefficient $s \ge 1$ and $T : X \to X$ be an increasing mapping with respect to \leq . Suppose there exist a function $\psi \in \Psi$ and constant $\lambda \in (0, \frac{1}{s}]$ such that

 $d(Tx, Ty) \leq \lambda \psi(\max\{b(x, y), b(x, Tx), b(y, Ty), b(x, Ty), b(y, Tx)\})$

for all $x, y \in X$ with $x \succeq y$ and suppose the following conditions are satisfied:

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$.
- (ii) T is continuous or (X, \leq, b) is regular.

Then T has a fixed point. And, suppose for all $x, y \in X$ there exists $z \in X$ such that $x \leq y$ and $y \leq z$, therefore the fixed point is unique.

Proof. Define the mapping $\alpha : X \times X \rightarrow [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} 1, & \text{if } x \leq y & \text{or } x \succeq y, \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to see that T is a generalized α - ψ contractive mapping, that is,

 $\alpha(x,y)b(\mathsf{T}x,\mathsf{T}y) \leq \lambda \psi(\max\{b(x,y),b(x,\mathsf{T}x),b(y,\mathsf{T}y),b(x,\mathsf{T}y),b(y,\mathsf{T}x)\})$

for all $x, y \in X$. From condition (i), we have $\alpha(x_0, Tx_0) \ge 1$. Moreover, for all $x, y \in X$, from the monotone property of T, we have

$$\alpha(x,y) \ge 1 \Rightarrow x \preceq y \quad \text{or} \quad x \succeq y \Rightarrow \mathsf{T}x \succeq \mathsf{T}y \quad \text{or} \quad \mathsf{T}x \preceq \mathsf{T}y \Rightarrow \alpha(\mathsf{T}x,\mathsf{T}y) \ge 1,$$

and

$$\alpha(\mathbf{x},\mathbf{y}) \geqslant 1, \alpha(\mathbf{y},z) \geqslant 1 \Rightarrow \mathbf{x} \preceq \mathbf{y} \preceq z \quad \text{or} \quad \mathbf{x} \succeq \mathbf{y} \succeq z \Rightarrow \alpha(\mathbf{y},z) \geqslant 1.$$

Thus T is triangular α -admissible. One the case that if T is continuous, then all the hypotheses of Theorem 2.3 are satisfied, so T has a fixed point. The other case if that (X, \leq, b) is regular. Take $Tx_n = x_n$, we may obtain $\alpha(x_n, x_{n+1}) \ge 1$, that is, $x_n \le x_{n+1}$ for all n and $x_n \to x \in X$. Then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $x_{n(k)} \le x$ for all k. This implies that $\alpha(x_{n(k)}, x) \ge 1$ for all k. Then all the hypotheses of Theorem 2.5 are satisfied. So T has a fixed point. Next, we show the uniqueness. By hypothesis for $x, y \in X$, there exists $z \in X$ such that $x \le y$ and $y \le z$. So we get $\alpha(x, z) \ge 1$ and $\alpha(y, z) \ge 1$. Hence the uniqueness of the fixed point is obtained from Theorem 2.7.

Corollary 3.9. Let (X, \leq, d) be complete partially ordered metric space. Let $T : X \to X$ be an increasing mapping with respect to \leq . Suppose there exists a function $\psi \in \Psi$ such that

 $d(\mathsf{T}x,\mathsf{T}y) \leqslant \psi(\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\})$

for all $x, y \in X$ with $x \succeq y$. Suppose the following conditions are satisfied:

(i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$.

(ii) T is continuous or (X, \leq, d) is regular.

Then T has a fixed point. And, suppose for all $x, y \in X$ there exists $z \in X$ such that $x \leq y$ and $y \leq z$, so the fixed point is unique.

Corollary 3.10. Let (X, \leq, d) be complete partially ordered metric space. Let $T : X \to X$ be an increasing mapping with respect to \leq . Suppose there exists a constant $k \in (0, 1)$ such that

 $d(\mathsf{T}x,\mathsf{T}y) \leq k\max\{d(x,y), d(x,\mathsf{T}x), d(y,\mathsf{T}y), d(x,\mathsf{T}y), d(y,\mathsf{T}x)\}$

for all $x, y \in X$ with $x \succeq y$. Suppose the following conditions are satisfied:

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$.
- (ii) T is continuous or (X, \leq, d) is regular.

Then T has a fixed point. And, suppose for all $x, y \in X$ there exists $z \in X$ such that $x \leq y$ and $y \leq z$, so the fixed point is unique.

3.3. Fixed point theorems for cyclic contractive mappings

Some fixed point theorems for cyclic contractive mappings are obtained (see, e.g., [15, 17, 22, 23, 26, 32]). Next, we will show that some fixed point theorems for cyclic contractive mappings are obtained by our Corollary 3.2.

Corollary 3.11. Let $\{A_i\}_{i=1}^2$ be nonempty closed subsets of complete b-metric space (X, b) with coefficient $s \ge 1$ and $T : Y \to Y$ be a given mapping, where $Y = A_1 \cup A_2$. Suppose that the following conditions hold:

- (i) $T(A_1) \subseteq A_2$ and $T(A_2) \subseteq A_1$;
- (ii) there exist a function $\psi \in \Psi$ and constant $\lambda \in (0, \frac{1}{s}]$, for all $(x, y) \in A_1 \times A_2$ such that

 $b(Tx, Ty) \leq \lambda \psi(\max\{b(x, y), b(x, Tx), b(y, Ty), b(x, Ty), b(y, Tx)\}).$

Then T *has a unique fixed point that belongs to* $A_1 \cap A_2$ *.*

Proof. Since A_1 and A_2 are closed subsets in the complete b-metric space (X, b), then (Y, b) is complete. So, all the conditions of Corollary 3.2 are satisfied. Thus we may get that T has a unique fixed point, and it belongs to $A_1 \cap A_2$ (from (i)).

Corollary 3.12. Let $\{A_i\}_{i=1}^2$ be nonempty closed subsets of complete metric space $(X, d), T : Y \to Y$ be a mapping, where $Y = A_1 \cup A_2$. Suppose that the following conditions hold:

- (i) $T(A_1) \subseteq A_2$ and $T(A_2) \subseteq A_1$;
- (ii) there exists a function $\psi \in \Psi$, for all $(x, y) \in A_1 \times A_2$ such that

 $d(\mathsf{T}x,\mathsf{T}y) \leqslant \psi(\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\}).$

Then T *has a unique fixed point that belongs to* $A_1 \cap A_2$ *.*

Corollary 3.13. Let $\{A_i\}_{i=1}^2$ be nonempty closed subsets of complete metric space $(X, d), T : Y \to Y$ be a mapping, where $Y = A_1 \cup A_2$. Suppose that the following conditions hold:

- (i) $T(A_1) \subseteq A_2$ and $T(A_2) \subseteq A_1$;
- (ii) there exists constant $k \in (0, 1)$, for all $(x, y) \in A_1 \times A_2$ such that

 $d(\mathsf{T}x,\mathsf{T}y) \leqslant k\max\{d(x,y), d(x,\mathsf{T}x), d(y,\mathsf{T}y), d(x,\mathsf{T}y), d(y,\mathsf{T}x)\}.$

Then T *has a unique fixed point that belongs to* $A_1 \cap A_2$ *.*

3.4. Fixed point theorem on metric spaces endowed with a graph

Recently, Jachymski [14] obtained fixed point theorems on a metric space with a graph. Following the paper [14], some fixed point theorems on a metric space with a graph have appeared (see, e.g., [10, 21, 30]). At first, we need to introduce some concepts.

Let (X, d) be a metric space and Δ be the diagonal of $X \times X$. Let G be a directed graph such that the set V(G) of its vertices coincides with X and $\Delta \subseteq E(G)$, E(G) being the set of the edges of the graph. Assuming that G has no parallel edges, we will suppose that G can be identified with the (V(G), E(G)).

If x and y are vertices of G, then a path in G from x to y of length $k \in N$ is a finite sequence $(x_i)_0^k$ of vertices such that $x_0 = x, x_k = y$ and $(x_{i-1}, x_i) \in E(G)$, for $i \in \{1, 2, \dots, k\}$.

Let us denote by \tilde{G} the undirected graph obtained from G by ignoring the direction of edges. Notice that a graph G is connected if there is a path between any two vertices and it is weakly connected if \tilde{G} is connected.

The following results are obtained by Corollary 3.1.

Corollary 3.14. *Let* (X, d) *be a metric space and* G *be a directed graph and* $T : X \to X$ *be a given mapping. Suppose there exists a function* $\psi \in \Psi$ *, for all* $x, y \in E(G)$ *such that*

 $d(\mathsf{T}x,\mathsf{T}y) \leqslant \psi(\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\}),$

and which satisfies:

- (i) $(x,y) \in E(G) \Rightarrow (Tx,Ty) \in E(G)$, and $(x,y) \in E(G)$, $(y,z) \in E(G) \Rightarrow (x,z) \in E(G)$;
- (ii) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$;
- (iii) T is continuous or if $\{x_n\}$ is a sequence in (X, d) such that $(x_n, x_{n+1}) \in E(G)$ for all $n \in N$ and $x_n \to x^* \in X$ as $n \to \infty$, then $(x_n, x^*) \in E(G)$.

Then

- (1) T has a fixed point;
- (2) if $x, y \in F(T)$, there exists $z \in X$ such that $(x, y) \in E(G)$, $(y, z) \in E(G)$, T has a unique fixed point.

Proof. Define the mapping $\alpha : X \times X \rightarrow [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1, & \text{if } x, y \in E(G), \\ 0, & \text{otherwise,} \end{cases}$$

which means all the hypotheses of Corollary 3.1 are satisfied. So we can deduce that T has a unique fixed point. $\hfill \Box$

Corollary 3.15. Let (X, d) be a metric space and G be a directed graph and $T : X \to X$ be a given mapping. Suppose there exists a constant $k \in (0, 1)$ for all $x, y \in E(G)$ such that

$$d(\mathsf{T}x,\mathsf{T}y) \leqslant k\max\{d(x,y),d(x,\mathsf{T}x),d(y,\mathsf{T}y),d(x,\mathsf{T}y),d(y,\mathsf{T}x)\},$$

and which satisfies:

- (i) $(x,y) \in E(G) \Rightarrow (Tx,Ty) \in E(G)$, and $(x,y) \in E(G), (y,z) \in E(G) \Rightarrow (x,z) \in E(G)$;
- (ii) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$;
- (iii) T is continuous or if $\{x_n\}$ is a sequence in (X, d) such that $(x_n, x_{n+1}) \in E(G)$ for all $n \in N$ and $x_n \to x^* \in X$ as $n \to \infty$, then $(x_n, x^*) \in E(G)$.

Then

- (1) T has a fixed point;
- (2) *if* $x, y \in F(T)$, there exists $z \in X$ such that $(x, y) \in E(G)$, $(y, z) \in E(G)$, T has a unique fixed point.

3.5. Application to integral equations

Here, we are concerned with the nonlinear quadratic integral equation

$$x(t) = h(t) + \theta \int_0^t k(t,s) f(s,x(s)) ds, \quad t \in [0,T], \ T > 0.$$
(3.1)

Let X = C([0, T]) be the set of continuous functions in [0, T] and

$$b(x,y) = \sup_{t \in [0,T]} |x(t) - y(t)|^p, x, y \in C([0,T]).$$

It is easy to see that (X, b) is the complete b-metric space with $s = 2^{p-1}$, $p \ge 1$ [2]. We consider (3.1) under the following assumptions:

- (i) $h: [0,T] \rightarrow R$ is continuous;
- (ii) $f:[0,T] \rightarrow R$ is continuous and for all $t \in [0,T]$, if $x \leq y$, we have

$$f(t,x) \leq f(t,y), \quad |f(t,x) - f(t,y)| \leq L|x-y|,$$

where L > 0 is a constant;

(iii) $k : [0,T] \times [0,T] \rightarrow [0,\infty)$ is continuous and there exists a constant K > 0 such that

$$\int_0^t k(t,s)|x(s)-y(s)|ds \leqslant K, \quad t \in [0,T];$$

(iv) there exists $x_0 \in X$ such that

$$x_0(t) = h(t) + \theta \int_0^t k(t,s) f(s,x_0(s)) ds, \quad t \in [0,T], \ T > 0.$$

We have the following theorem.

Theorem 3.16. Suppose the above conditions (i)–(iv) are satisfied. If $\theta LKT < \frac{1}{2^{p-1}}$, then the integral equation (3.1) has a unique continuous solution $x^* \in C[0, T]$.

Proof. We consider the operator $T : X \to X$ defined by

$$Tx(t) = h(t) + \theta \int_0^t k(t,s)f(s,x(s))ds, \quad t \in [0,T], \quad T > 0.$$
(3.2)

We show that T is an α - ψ generalized contractive mapping in b-metric spaces, that is,

$$\alpha(x,y)b(\mathsf{T}x(t),\mathsf{T}y(t)) \leqslant \lambda \psi(\mathsf{M}(x,y)), \tag{3.3}$$

where $M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$.

Now we let the function $\alpha : X \times X \to R$ defined by

$$\alpha(x,y) = \begin{cases} 1, & \text{if } x(t) \leq y(t), & t \in [0,T], \\ 0, & \text{otherwise,} \end{cases}$$

and the function $\psi : [0, \infty) \to [0, \infty)$ defined by

$$\psi(t) = (\theta K L T)^{p-1} t, \quad t \in [0,\infty).$$

Obviously, $\psi \in \Psi$.

$$b(Tx(t), Ty(t)) = \sup_{t \in [0,T]} |Tx(t) - Ty(t)|^{p}.$$
(3.4)

Also, if $x(t) \le y(t)$ is not satisfied, then the inequality (3.3) holds immediately. So we may suppose $x(t) \le y(t), t \in [0, T]$. From conditions (ii), (iii) and (3.2), we have

$$\begin{aligned} |\mathsf{T}x(t) - \mathsf{T}y(t)| &= |\mathsf{h}(t) + \theta \int_0^t \mathsf{k}(t,s) \mathsf{f}(s,x(s)) ds - \mathsf{h}(t) - \theta \int_0^t \mathsf{k}(t,s) \mathsf{f}(s,y(s)) ds | \\ &\leqslant \theta \int_0^t \mathsf{k}(t,s) |\mathsf{f}(s,x(s)) - \mathsf{f}(s,y(s))| ds \\ &\leqslant \theta \int_0^t \mathsf{k}(t,s) \mathsf{L}|x(s)) - \mathsf{y}(s) | ds \\ &\leqslant \theta \mathsf{K}\mathsf{L}\mathsf{T}|x(s)) - \mathsf{y}(s) |. \end{aligned}$$

So, from (3.4), we get

$$b(Tx(t), Ty(t)) \leq (\theta KLT)^{p} b(x, y) \leq (\theta KLT)^{p} M(x, y).$$
(3.5)

Taking $\lambda = \theta KLT$ and by (3.5) we obtain

$$\alpha(x,y)b(Tx(t),Ty(t)) \leq \lambda \psi(M(x,y)).$$

So, T is an α - ψ generalized contractive mapping in b-metric spaces.

Take $x_n = T^n x_0$, $n \in N$. From condition (iv), we get $\alpha(x_0, Tx_0) = 1$. And from condition (ii) we may obtain

$$\alpha(\mathbf{x},\mathbf{y}) = 1 \Rightarrow \alpha(\mathsf{T}\mathbf{x},\mathsf{T}\mathbf{y}) = 1.$$

So by induction, we get easily $\alpha(x_n, x_{n+1}) = 1$. Also from the proof of Theorem 2.3, we know that $x_n \rightarrow x^* \in X$, then $\alpha(x_n, x^*) = 1$. Hence all assumptions of Theorem 2.5 are satisfied. So, according to Theorem 2.5 we can deduce that x^* is a fixed point of T, that is, x^* is a solution to the integral equation (3.1).

Also, take $z(t) = \max\{x(t), y(t)\}$, $t \in [0, T]$. Then for all $x, y \in X$, there exists $z \in X$ such that $\alpha(x, z) = \alpha(y, z) = 1$. From Theorem 2.7, we know that x^* is the unique solution to the integral equation (3.1).

Acknowledgment

The first author is supported by the Educational Science Foundation of Chongqing, Chongqing of China (KG111309). The second author is supported by Chongqing City Board of Education (KJ1705136)

References

- R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109–116. 3.2
- [2] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941–960. 3.5
- [3] H. Alikhani, V. Rakočević, S. Rezapour, N. Shahzad, *Fixed points of proximinal valued* β-ψ-contractive multifunctions, J. Nonlinear Convex Anal., 16 (2015), 2491–2497. 1
- [4] H. H. Alsulami, S. Chandok, M. A. Taoudi, İ. M. Erhan, Some fixed point theorems for (α, ψ)-rational type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 12 pages.
- [5] P. Amiri, S. Rezapour, N. Shahzad, *Fixed points of generalized α-ψ-contractions*, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, **108** (2014), 519–526.

- [6] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 6 pages.
- [7] M. Berzig, E. Karapınar, Note on "Modified α-ψ-contractive mappings with applications, Thai J. Math., 13 (2015), 147–152. 1
- [8] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babe-Bolyai Math., 54 (2009), 3–14.
- [9] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4 (2009), 285–301. 1
- [10] C. Chifu, G. Petruşel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl., 2012 (2012), 9 pages. 3.4
- [11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. 1
- [12] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276. 1
- [13] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71 (2009), 3403–3410. 3.2
- [14] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. 3.4
- [15] E. Karapınar, Fixed point theory for cyclic weak ϕ -contraction, Appl. Math. Lett., 24 (2011), 822–825. 3.3
- [16] E. Karapınar, B. Samet, Generalized α - ψ contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., **2012** (2012), 11 pages. 1, 1
- [17] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79–89. 3.3
- [18] A. Latif, M. Eshaghi Gordji, E. Karapınar, W. Sintunavarat, *Fixed point results for generalized* (α, ψ) -*Meir-Keeler contractive mappings and applications*, J. Inequal. Appl., **2014** (2014), 11 pages. 1, 1
- [19] B. Mohammadi, S. Rezapour, On modified α - ϕ -contractions, J. Adv. Math. Stud., 6 (2013), 162–166.
- [20] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. 3.2
- [21] M. Öztürk, E. Girgin, On some fixed-point theorems for ψ-contraction on metric space involving a graph, J. Inequal. Appl., **2014** (2014), 10 pages. 3.4
- [22] M. Păcurar, I. A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010), 1181–1187. 3.3
- [23] M. A. Petric, *Some results concerning cyclical contractive mappings*, Gen. Math., **18** (2010), 213–226. 3.3
- [24] A. Petruşel, I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134 (2006), 411–418. 3.2
- [25] A. C. M. Ran, M. C. B. Reurings, *A fixed point theorem in partially ordered sets and some applications to matrix equations,* Proc. Amer. Math. Soc., **132** (2004), 1435–1443. 3.2
- [26] I. A. Rus, Cyclic representations and fixed points, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 3 (2015), 171–178. 3.3
- [27] P. Salimi, N. Hussain, A. Latif, Modified α-ψ-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 19 pages. 1
- [28] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., 72 (2010), 4508–4517. 3.2
- [29] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. 1, 1
- [30] S. Shukla, Fixed point theorems of G-fuzzy contractions in fuzzy metric spaces endowed with a graph, Commun. Math., 22 (2014), 1–12. 3.4
- [31] X.-B. Wu, Generalized $\alpha \psi$ contractive mappings in partial b-metric spaces and related fixed point theorems, J. Nonlinear Sci. Appl., **9** (2016), 3255–3278. 1
- [32] X.-B. Wu, L.-N. Zhao, Viscosity approximation methods for multivalued nonexpansive mappings, Mediterr. J. Math., 13 (2016), 2645–2657. 1.9, 3.3