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Abstract 
This paper gives an estimate for the initial-boundary value problem of wave equations by using the 

Fictitious Time Integration Method (FTIM) previously developed by Liu and Atluri [1]. Given examples  

confirm that FTIM is highly efficient approach to find the true solutions. It is interesting that the FTIM 

can easily treat the boundary value problems without any iteration and has high efficiency and high 

accuracy.  
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1. Introduction 

Partial differential equations (PDEs) are first divided into two categories: non-evolutionary and 

evolutionary. Then, the latter is further classified into as parabolic and hyperbolic types according to the 

number of real characteristic lines. A non-evolutionary PDE is usually named elliptic type PDE because it 

exists no real characteristic line. Our task is to develop a non-iterative algorithm having the advantages of 

easy to numerical implementation, and a great flexibility applying to the most parabolic type boundary 

value problems (BVPs) without resorting on special treatments. This paper is motivated by using the 

evolutionary property of parabolic type PDE and the accurcay of numerical time integrators, and proposes 

a natural and mathematical equivalent approach to transform the underlying equation into a parabolic 

PDE without destroying the original structure. 

In this paper, firstly by transforming the dependent variable ),( txu into a new one by 

),()1(:),,( txuttyxv   such that the original equation is naturally and mathematically equivalently 

written as a quasilinear parabolic equation, we use the method of line for semi-discretization of wave 
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equation and then we apply the GPS, which firstly derived by Liu [2]. GPS uses the Cayley 

transformation and the Pade´ approximations in the augmented space, namely Minkowski. After that, Liu 

[3] applied the GPS for backward heat conduction problems, which is an ill-posed problem and 

considered its stability and showed that obtained results is better than the Galerkin solutions. Lee et al. [4] 

for solving the initial value problems of stiff ordinary differential equations have proposed a modified 

GPS. Abbasbandy and Hashemi have developed a combination of method of line and GPS to obtain the 

solution of a severely ill-posed Laplace equation [5]. Also a combination of GPS and Lie symmetries are 

introduced by Hashemi et.al in [6]. The dynamic behavior of a single-mass, two degree of freedom 

bilinear oscillator has considered by Liu [7], by using the GPS. Estimation of the temperature-dependent 

thermal conductivity of a one-dimensional inverse heat conduction problem has studied by one-step GPS 

in [8].  

    One of the most imortant hyperbolic second-order equations is the wave equation  

 0,=2

xxtt ucu   (1) 

where x  signifies the spatial variable, t  the time variable, ),(= txuu  the unknown function and c  is a 

given positive constant. The wave equation describes vibrations of a string. Physically ),( txu  represents 

the value of the normal displacement of a particle at position x  and time t .  

Our task is to develop a non-iterative algorithm having the advantages of easy to numerical 

implementation, and a great flexibility applying to the most hyperbolic type BVPs without resorting on 

special treatments. Let us begin with a discussion of the following quasilinear hyperbolic equation:  

 ,),(),,,,,,(=),(  txuuutxFtxu tx   (2) 

  ,),(),,(=),( txtxHtxu  (3) 

 where 
2

2
2

2

2

:
x

c
t 







 ,  is the boundary of the problem domain  , and F  and H  are given 

functions. It is known that for the evolutionary type PDEs a semi-discretization of the spatial coordinates 

together with numerical time integrators for initial value problems (IVPs) can help us to find numerical 

solutions effectively. 

2. A fictitious time integration approach 

 First we propose the following transformation:  

 ),()(1=),,( txutxv   , (4) 

 and introduce a viscosity damping coefficient   in Eq. (1):  

 ).,,,,,(=0 tx uuutxFu    (5) 

 Multiplying the above equation by 1  and using Eq. (5) we have  
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 ).,,,,,()(1=0 tx uuutxFv    (6) 

 Recalling that ),(= txu
v




 by Eq. (5), and adding it on both the sides of the above equation we obtain  

 .),,,,,()(1= uuuutxFv
v

tx 






 (7) 

 Finally by using )/(1= tvu  , )/(1= tvu xx   and )/(1= tvu tt  , etc. we can change Eqs. (1) and (2) 

into a parabolic type PDE:  

 ,),(),
1

,
1

,
1

,,()(1= 






tx

vvv
txFv

v tx 





 (8) 

  .),(),,()(1=),,(  txtxHtxv   (9) 

There is maybe another selection of Eq. (5) by using ),()(=),,( txuqtxv  , where we require 

that q(0) = 1. However, when )(q  is more complex than 1  the resulting PDE is more complex than 

Eq. (9), and there seems no good reason to select a more complex )(q . The above idea has been 

proposed and used by Liu and his coworkers in [9-15], whose numerical results are very well and 

satisfactory. 

2.1. Semi-discretization 

 Let ),,(:=)(,  jiji txvv  be a numerical value of v  at the grid point ),( ji tx , and at the 

fictitious variable  . Applying a semi-discrete procedure on the Eq. (8), yields a coupled system of 

ordinary differential equations (ODEs):  

 ]2[
)(

]2[
)(

= 1,,1,21,,1,2,  






jijijijijijiji vvv

t
vvv

x
v


 

 ),,
)2(1

,
)2(1

,
1

,,()(1
1

1,1,1,1,,, 
t

vv

x

vvv
txF

v jijijijiji

ji

ji





















 (10) 

 where x  and t  are uniform spatial grid lengths in x  and t  directions, and m  is the number of 

subintervals in each direction, assuming the same. 

In this section we have transformed the boundary value problem of the one-order hyperbolic PDE 

in Eq. (1) to an evolutionary problem of a parabolic PDE in Eq. (8), and finally arrived to an initial value 

problem in the n-dimensional ODE system (10) with dimensions 
2= mn . The initial value of Eq. (10) is 

given through a guess because the true initial condition of ),(=,0),( txutxv  is not known a priori; 

however, when ),( ji tx  is located on the boundary, the boundary condition (9) has to be satisfied. 
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3. GPS for differential equations system 

 Upon letting 
T

mmvvvv ),,,(= ,1,21,1   and f  denoting a vector with the ij -th component being 

the right-hand side of Eq. (10) we can write it as a vector form:  

 RRvvfv n   ,),,(=  (11) 

 where n  is the number of total grid points inside the domain  . GPS can preserve the internal 

symmetry group of the considered ODE system. Although we do not know previously the symmetry 

group of differential equations system, Liu [2] has embedded it into an augmented differential system, 

which concerns with not only the evolution of state variables themselves but also the evolution of the 

magnitude of the state variables vector. We note that  

 ,.=||=|| vvvvv T
 (12) 

 where the superscript T signifies the transpose, and the dot between two n-dimensional vectors denotes 

their inner product. Taking the derivatives of both the sides of Eq. (12) with respect to t, we have  

 .
)(

=
||||

vv

vv

dt

vd

T

T
 (13) 

 Then, by using Eqs. (11) and (13) we can derive  

 .
||||

=
||||

v

vf

dt

vd T

 (14) 

 It is interesting that Eqs. (11) and (14) can be combined together into a simple matrix equation:  

 .

0
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),(
0

= 






























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




v

v

v

vf

v

vf

v

v

d

d
T

nn






 (15) 

 It is obvious that the first row in Eq. (15) is the same as the original equation (11), but the inclusion of 

the second row in Eq. (15) gives us a Minkowskian structure of the augmented state variables of 
TT vvX ||)||,(:= , which satisfies the cone condition:  

0,=gXX T
                                                                              (16) 

 where  

.
10

0
=

1

1














n

nnI
g  (17) 
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 is a Minkowski metric, and nI  is the identity matrix of order n . In terms of ||)||,( vv , Eq. (16) becomes  

 0.=||||||=||||||.= 222 vvvvvgXX T   (18) 

 It follows from the definition given in Eq. (12), and thus Eq. (16) is a natural result. Consequently, we 

have an 1n  dimensional augmented system:  

 AXX =  (19) 

 with a constraint (17), where  

 









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
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


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0
),(

),(
0

:=

v

vf

v

vf

A t

nn





 (20) 

 satisfying  

 0,=gAgAT   (21) 

 is a Lie algebra ,1)(nso  of the proper orthochronous Lorentz group ,1)(nSOo . This fact prompts us to 

devise the group-preserving scheme (GPS), whose discretized mapping G  must exactly preserve the 

following properties: 

i: ggGGT = , 

ii: 1=detG ,  

iii: 0>0

0G ,  

where 
0

0G  is the 00-th component of G . Although the dimension of the new system is raised one more, it 

has been shown that the new system permits a GPS given as follows: 

 ,)(=1 ll XlGX   (22) 

 where lX  denotes the numerical value of X  at l , and ,1)()( 0 nSOlG   is the group value of G  at l

.  The Lie group can be generated from ,1)(nsoA  by an exponential mapping,  

 ,
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=)]([
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 where  

 ),
||||

||||
(:=

l

l
l

v

f
cosha


 (24) 

 ).
||||

||||
(:=

l

l
l

v

f
sinhb


 (25) 

 Substituting Eq. (23) for )(lG  into Eq. (22), we obtain  

 ,=1 llll fvv   (26) 

where 

.
.1)(

=
2

l

llllll

l

f

fvvf 



 

 

4. Numerical procedure 

 Starting from an initial value of jiv ,  which can be guessed in a rather free way, we employ the 

above GPS to integrate Eq. (11) from 0=  to a selected final time f . In the numerical integration 

process we can check the convergence of jiv ,  at the l  and 1l -steps by  

 ,][ 2

,

1

,

1=,

 l

ji

l

ji

m

ji

vv  (28) 

 where   is a selected convergent criterion. If at a time f 0  the above criterion is satisfied, then the 

solution of u  is given by  

 .
1

)(
=

0

0,

,






ji

ji

v
u  (29) 

 In practice, if a suitable f  is selected we find that the numerical solution is also approached very well to 

the true solution, even the above convergent criterion is not satisfied. The viscosity coefficient  introduced 

in Eq. (5) can increase the stability of numerical integration. In particular we would emphasize that the 

present method is very stable and effectively without needing of any iteration. Below we give numerical 

examples to display some advantages of the present FTIM.  

5. Numerical examples 

In this section, we consider two examples of wave equation to exhibit the efficiency and power of FTIM.  
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Example 1. We first consider a wave equation as follows: 















,1),(,1),0(

),cos()0,(,)0,(

,

tutu

xxuxxu

uu

xx

t

xxtt



                                                                                                

(30) 

 The domain is given by  

 ,},00|),{(=   txtx  (31) 

and analytical solution is:  

 txxtxu sincos=),(  . 

 The boundary data of ),( txH  in FTIM can be written as  

 ),sin)((1=)(,sin)(1=)( 1,0, jjmjj tvtv     

 imiii xvxtv )(1=)(,)(1=)( 1,,0    . 

We fix 
m

tx
1

==   with 50=m ,which the number of equations in Eq. (10) will be 4949•= n .  We 

start by an initial value of 1=, jiv  and integrate Eq. (30) by using the GPS with a time stepsize 

0.001=  The final time is 10=f . The values 0.1=  and 0.0001=  are selected in this 

equation. Fig. 1. shows that obtained approximate solution is an accurate solution. 

 

Figure  1: Plotting the numerical and Exact solution of Example 1 for a Wave equation.  
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Example 2. Consider 















,1),(,1),0(

),sin()0,(,0)0,(

,

tutu

xxuxu

uu

t

xxtt



                                                                                                            

(32) 

with analytical solution  

 txtxu sinsin=),( ,  

 In the given domain  

 }.,00|),{(=   yxtx   

 The boundary data ),( txH  can be written as:  

 0,=)(0,=)( 1,0,  jmj vv   

 0=)(0,=)( 1,,0 mii vtv . 

We fix 
m

tx
1

==   with 50=m , and the number of equations in Eq. (10) is 4949•= n . We start by 

an initial value of 1=, jiv  for the interior nodes and integrate Eq. (32) by using the GPS with a time 

stepsize 0.0001=  and final time 10=f . Under a given 0.3=  and 0.0001=  the convergence 

is performed within the range of f <  = 10. Finally, accuracy and powern of FTIM can be seen from 

the Fig. 2. 
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Figure  2: Plotting the numerical and Exact solution of Example 2 for a Wave equation.  

 

6.  Conclusion 

In the present paper, the original quasilinear elliptic equation is mathematically transformed into a 

parabolic type evolutionary equation by in troducing a fictitious time coordinate, and adding a viscous 

damping coefficient to enhance the stability of numerical integration of the discretized equations by using 

a group preserving scheme. We must stress that the resulting parabolic equation is mathematically 

equivalent to the original equation, and no approximation is made. Hence, the present FTIM can work 

very effectively and accurately for the solution of boundary value problem of quasilinear elliptic equation. 

Because no iteration is required, the present method is very time saving and power of method is shown 

graphically.  
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