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Abstract
In the present work, we consider the fermionic p-adic q-integral of p-adic gamma function and the derivative of p-adic

gamma function by using their Mahler expansions. The relationship between the p-adic gamma function and q-Changhee
numbers is obtained. A new representation is given for the p-adic Euler constant. Also, we study on the relationship between q-
Changhee polynomials and p-adic Euler constant using the fermionic p-adic q-integral techniques the idea that the q-Changhee
polynomial.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper by Zp, Qp and Cp we denote the ring of p-
adic integers, the field of p-adic numbers and the completion of the algebraic closure of Qp, respectively.
Let q be indeterminate with |1 − q|p < p−

1
p−1 . Recently, the q-calculus (Quantum Calculus) has a great

interest and has been studied by many scientists. Many generalizations of special functions with a q-
parameter recently were obtained using p-adic q-integral on Zp (see, e.g., [1, 8, 9, 11]).

For f ∈ C(Zp → Cp), the fermionic p-adic q-integral on Zp is defined by Kim to be

I−q (f) =

∫
Zp

f(x)dµ−q (x) := lim
N→∞ 1

[pN]−q

pN−1∑
j=0

f(j)qj (−1)j , (1.1)

where [x]−q = 1−(−q)x

1+q (see [5, 7, 6]). For any f ∈ C(Zp → Cp), by (1.1), the relation

qnI−q (f (x+n)) + (−1)n−1 I−q (f (x)) = [2]q

pN−1∑
j=0

f(j)qj (−1)n−1−j , (1.2)

where [x]q = 1−qx

1−q and n ∈N holds.
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The Changhee numbers and polynomials which are derived umbral calculus are defined by Kim et al.
as the generating function to be

2
t+ 2

(1 + t)x =

∞∑
n=0

Chn (x)
tn

n!
.

When x = 0, Chn (0) = Chn are called Changhee numbers see [10] for a summary. In [11], Kim et al. de-
fined the degenerate Changhee polynomials and in [12], Kim et al. considered q-Changhee polynomials,
Chn,q(x), which are given by the generating function to be

1 + q

q (1 + t) + 1
(1 + t)x =

∞∑
n=0

Chn,q (x)
tn

n!
for |t|p < p

− 1
p−1 .

When q = 1, Chn,1 (x) = Chn (x) . When x = 0, Chn,q (0) = Chn,q are called q-Changhee numbers and
when q = 1 and x = 0, Chn,1 (0) = Chn. Kim also introduced the q-Changhee numbers of the second
kind by

Ĉhn,q =

∫
Zp

(−x)ndµ−q (x) , n > 0, (see [12]),

and the q-Changhee numbers of the second kind by

Ĉhn,q (x) =

∫
Zp

(−x− y)ndµ−q (y) , n > 0.

The generating function for such polynomials is given by∑
n>0

Ĉhn,q (x)
tn

n!
=

1 + q

1 + q+ t
(1 + t)1−x . (1.3)

In [12], Kim et al. obtained the following theorems.

Theorem 1.1. Let (x)n = x (x− 1) · · · (x−n+ 1) . For n > 0,∫
Zp

(x)ndµ−q (x) = Chn,q.

Theorem 1.2. Let (x)n = x (x− 1) · · · (x−n+ 1) . For n > 0, the following relation holds:∫
Zp

(x+ y)ndµ−q (y) = Chn,q (x) .

Theorem 1.3. For n > 0, ∫
Zp

(
x

n

)
dµ−q (x) =

(
−q

1 + q

)n

.

Theorem 1.4. For n > 0

Ĉhn,q = (−1)n
2 + q

(1 + q)n
.

Theorem 1.5. For n > 0
Ĉhn,q (x) = Chn,q (1 − x) .

Note that
(
x
n

)
=

(x)n
n! .
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p-Adic numbers introduced by the German mathematician Kurt Hensel (1861–1941), are widely used
in mathematics: in number theory, algebraic geometry, representation theory, algebraic and arithmetical
dynamics, and cryptography. p-Adic numbers have been used in applied fields with successfully applying
in superfield theory of p-adic numbers by Vladimirov and Volovich. In addition, p-adic model of the
universe, p-adic quantum theory, p-adic string theory such as areas occurred in physics (for detail see
[18, 17]).

In 1975, Morita [14] defined the p-adic gamma function Γp by the formula

Γp (x) = lim
n→x

(−1)n
∏

16j<n
(p,j)=1

j,

for x ∈ Zp, where n approaches x through positive integers. The p-adic gamma function Γp is analytic on
Zp and satisfies the functional relation

Γp(x+ 1) =
{

−xΓp(x), |x|p = 1,
−Γp(x), |x|p < 1.

The p-adic Euler constant γp is defined by the formula

γp := −
Γ
′
p(1)
Γp(1)

= Γ
′
p(1) = −Γ

′
p(0). (1.4)

The p-adic gamma function Γp(x) has a great interest and has been studied by Barsky (1981) [2],
Diamond (1977) [3], Dwork (1983) [4] and others.

For x ∈ Zp, the symbol
(
x
n

)
is defined by

(
x
0

)
= 1 and(

x

n

)
:=
x(x− 1) . . . (x−n+ 1)

n!
, (n = 1, 2, · · · ).

The functions x→
(
x
n

)
(x ∈ Zp,n ∈N) form an orthonormal base of the space C(Zp → Cp) with respect

the norm ‖·‖∞. This orthonormal base has the following property:

(
x

n

)′
=

n−1∑
j=0

(−1)n−j−1

n− j

(
x

j

)
, (see, [16, p.168]). (1.5)

In 1958, Mahler introduced an expansion for continuous functions of a p-adic variable using special
polynomials as binomial coefficient polynomial [13]. It means that for any f ∈ C(Zp → Cp), there exist
unique elements a0,a1, . . . of Cp such that

f(x) =

∞∑
n=0

an

(
x

n

)
(x ∈ Zp).

The base
{(∗

n

)
: n ∈N

}
is called Mahler base of the space C(Zp → Cp), and the elements {an : n ∈N} in

f(x) =
∞∑

n=0
an
(
x
n

)
are called Mahler coefficients of f ∈ C(Zp → Cp).

The Mahler expansion of the p-adic gamma function Γp and its Mahler coefficients are determined by
the following proposition.

Proposition 1.6 ([15, 16]). Let

Γp(x+ 1) =
∞∑

n=0

an

(
x

n

)
, (x ∈ Zp),
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and

exp
(
x+

xp

p

)
1 − xp

1 − x
=

∞∑
n=0

bnx
n, (x ∈ E).

Then, an = (−1)n+1n!bn for all n, where E is the region of convergence of the power series
∑

xn

n! .

2. Main results

In this paper, we consider p-adic gamma function with the fermionic p-adic q-integral. We derive the
relationship between q-Changee polynomials and p-adic gamma function. We obtain the fermionic p-adic
q-integral of p-adic gamma function and the derivative of p-adic gamma function. For the p-adic Euler
constant. A new representation is obtained. Also, we study on the Changhee polynomials and p-adic
Euler constant.

In what follows, we indicate the fermionic p-adic q-integral with Mahler coefficients of p-adic gamma
function.

Theorem 2.1. For x ∈ Zp, the following equality holds:∫
Zp

Γp(x+ 1)dµ−q (x) =

∞∑
n=0

an
Chn,q

n!
,

where an is defined by Proposition 1.6.

Proof. Let x ∈ Zp. We have∫
Zp

Γp(x+ 1)dµ−q (x) =

∫
Zp

∞∑
n=0

an

(
x

n

)
dµ−q (x) =

∞∑
n=0

an

∫
Zp

(
x

n

)
dµ−q (x) . (2.1)

Note that
(
x
n

)
=

(x)n
n! . From Theorem 1.1, we get∫

Zp

Γp(x+ 1)dµ−q (x) =

∞∑
n=0

an

n!
Chn,q.

Using Theorem 1.3 we can rewrite (2.1) and we have the following corollary.

Corollary 2.2. For n ∈N, ∫
Zp

Γp(x+ 1)dµ−q (x) =

∞∑
n=0

an

(
−q

1 + q

)n

,

where an is defined by Proposition 1.6.

Under condition of Proposition 1.6 and using (1.5), derivative of p-adic gamma functions, Γ
′
p is ob-

tained as

Γ
′
p(x+ 1) =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1

n− j

(
x

j

)
, (2.2)

where an is defined by Proposition 1.6.

Theorem 2.3. The relationship between the q-Changhee polynomials and the p-adic Euler constant is given by

γp =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j

(n− j) j!

(
qChj,q +Chj,q (−1)

)
[2]q

.
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Proof. When f (x) = Γ
′
p (x) and n = 1 in (1.2), we get

q

∫
Zp

Γ
′
p (x+ 1)dµ−q (x) +

∫
Zp

Γ
′
p (x)dµ−q (x) = [2]q Γ

′
p (0) .

From (2.2) and (1.4), we can write

q

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1

n− j

∫
Zp

(
x

j

)
dµ−q (x) +

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1

n− j

∫
Zp

(
x− 1
j

)
dµ−q (x) = − [2]q γp. (2.3)

Using Theorem 1.1 and Theorem 1.2 we can rewrite (2.3) as

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1

(n− j) j!
(
qChj,q +Chj,q (−1)

)
= − [2]q γp.

Theorem 2.4. The p-adic Euler constant has the expansion

γp =

∞∑
n=1

n−1∑
j=0

an
(−1)n

(n− j) [2]q

(
qj+1

(1 + q)j
+

j∑
i=0

1

(1 + q)i (j− i)!

)
,

where an is defined by Proposition 1.6.

Proof. Firstly, we compute Chn,q (−1) . From Theorem 1.5, we have Ĉhn,q (2) = Chn,q (1 − 2) . From (1.3)∑
n>0

Ĉhn,q (x)
tn

n!
=

1 + q

1 + q+ t

∑
n>0

(
1 − x

n

)
tn =

∑
n>0

(−1)n tn

(1 + q)n
∑
n>0

(
1 − x

n

)
tn,

or ∑
n>0

Ĉhn,q (x)
tn

n!
=
∑
n>0

n∑
i=0

(
−1

1 + q

)i(1 − x

n− i

)
tn.

Then, we have

Ĉhn,q (x) = n!
n∑

i=0

(
−1

1 + q

)i(1 − x

n− i

)
.

Note that xn = (−1)n (−x)n.

Ĉhn,q (x) = n!
n∑

i=0

(−1)i

(1 + q)i
(1 − x)n−i

(n− i)!
,

or

Ĉhn,q (x) = n!
n∑

i=0

(−1)i

(1 + q)i
(−1 + x)n−i (−1)n−i

(n− i)!
,

or

Chn,q (1 − x) = Ĉhn,q (x) = n!
n∑

i=0

(−1)n

(1 + q)i
(−1 + x)n−i

(n− i)!
. (2.4)

When x = 2 in (2.4) we have Chn,q (−1) = n!
n∑

i=0

(−1)n

(1+q)i(n−i)!
. Using Theorem 1.3, Theorem 1.1 and value

of Chn,q (−1) we can rewrite Theorem 2.3 as the following

γp =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j

(n− j) j!

(
q
(

−q
1+q

)j
j! + j!

j∑
i=0

(−1)j

(1+q)i(j−i)!

)
[2]q

.

The proof of theorem is completed with a little calculations.
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Theorem 2.5. The following relation holds∫
Zp

Γp(x+ s)dµ−q (x) =

∞∑
n=0

an
Chn,q (s− 1)

n!
,

where an is defined by Proposition 1.6.

Proof. Let x ∈ Zp. We have∫
Zp

Γp(x+ s)dµ−q (x) =

∞∑
n=0

an

∫
Zp

(x+ s− 1)n
n!

dµ−q (x) .

By using Theorem 1.2 we can write∫
Zp

Γp(x+ s)dµ−q (x) =

∞∑
n=0

an
Chn,q (s− 1)

n!
.

Theorem 2.6. For x, s ∈ Zp, we have∫
Zp

Γ
′
p (x+ s)dµ−q (x) =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1Chj,q (s− 1)

(n− j) j!
.

Proof. Let x, s ∈ Zp. From (2.2), we have∫
Zp

Γ
′
p (x+ s)dµ−q (x) =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1

n− j

∫
Zp

(
x+ s− 1

j

)
dµ−q (x) .

By using Theorem 1.2 we can write∫
Zp

Γ
′
p (x+ s)dµ−q (x) =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1Chj,q (s− 1)

(n− j) j!
.

In the case s = 1 in Theorem 2.6 we obtain the following conclusion.

Corollary 2.7. For x ∈ Zp, we have∫
Zp

Γ
′
p (x)dµ−q (x) =

∞∑
n=1

n−1∑
j=0

an
(−1)n−j−1Chj,q

(n− j) j!
,

where Chn,q are q-Changhee numbers.
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