A note on the p-adic gamma function and q-Changhee polynomials

Özge Çolakoğlu Havare*, Hamza Menken
Mathematics Department, Science and Arts Faculty, Mersin University, 33343, Mersin-Turkey.

Abstract

In the present work, we consider the fermionic p-adic q-integral of p-adic gamma function and the derivative of p-adic gamma function by using their Mahler expansions. The relationship between the p-adic gamma function and q-Changhee numbers is obtained. A new representation is given for the p-adic Euler constant. Also, we study on the relationship between q Changhee polynomials and p-adic Euler constant using the fermionic p-adic q-integral techniques the idea that the q-Changhee polynomial.

Keywords: p-Adic number, p-adic gamma function, the fermionic p-adic q-integral, Mahler coefficients, p-adic Euler constant, q-Changhee Polynomials.
2010 MSC: 11S80, 05A30, 33E50, 05A19, 26C05.
(c)2018 All rights reserved.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper by $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} we denote the ring of p adic integers, the field of p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively. Let q be indeterminate with $|1-q|_{p}<p^{-\frac{1}{p-1}}$. Recently, the q-calculus (Quantum Calculus) has a great interest and has been studied by many scientists. Many generalizations of special functions with a q parameter recently were obtained using p-adic q-integral on \mathbb{Z}_{p} (see, e.g., $[1,8,9,11]$).

For $f \in C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$, the fermionic p-adic q-integral on \mathbb{Z}_{p} is defined by Kim to be

$$
\begin{equation*}
I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x):=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{j=0}^{p^{N}-1} f(j) q^{j}(-1)^{j} \tag{1.1}
\end{equation*}
$$

where $[x]_{-q}=\frac{1-(-q)^{x}}{1+q}($ see $[5,7,6])$. For any $f \in C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$, by (1.1), the relation

$$
\begin{equation*}
q^{n} I_{-q}(f(x+n))+(-1)^{n-1} I_{-q}(f(x))=[2]_{q} \sum_{j=0}^{p^{N}-1} f(j) q^{j}(-1)^{n-1-j} \tag{1.2}
\end{equation*}
$$

where $[x]_{q}=\frac{1-q^{x}}{1-q}$ and $n \in \mathbb{N}$ holds.

[^0]The Changhee numbers and polynomials which are derived umbral calculus are defined by Kim et al. as the generating function to be

$$
\frac{2}{t+2}(1+t)^{x}=\sum_{n=0}^{\infty} C h_{n}(x) \frac{t^{n}}{n!}
$$

When $x=0, C h_{n}(0)=\mathrm{Ch}_{n}$ are called Changhee numbers see [10] for a summary. In [11], Kim et al. defined the degenerate Changhee polynomials and in [12], Kim et al. considered q-Changhee polynomials, $\mathrm{Ch}_{n, q}(x)$, which are given by the generating function to be

$$
\frac{1+q}{q(1+t)+1}(1+t)^{x}=\sum_{n=0}^{\infty} C h_{n, q}(x) \frac{t^{n}}{n!} \text { for }|t|_{p}<p^{-\frac{1}{p-1}}
$$

When $\mathrm{q}=1, \mathrm{Ch}_{\mathrm{n}, 1}(\mathrm{x})=\mathrm{Ch}_{\mathrm{n}}(\mathrm{x})$. When $\mathrm{x}=0, \mathrm{Ch}_{\mathrm{n}, \mathrm{q}}(0)=\mathrm{Ch}_{\mathrm{n}, \mathrm{q}}$ are called q -Changhee numbers and when $\mathrm{q}=1$ and $x=0, \mathrm{Ch}_{\mathrm{n}, 1}(0)=\mathrm{Ch}_{\mathrm{n}}$. Kim also introduced the q -Changhee numbers of the second kind by

$$
\widehat{C h}_{n, q}=\int_{\mathbb{Z}_{p}}(-x)_{n} d \mu_{-q}(x), \quad n \geqslant 0, \quad \text { (see [12]), }
$$

and the q-Changhee numbers of the second kind by

$$
\widehat{\mathrm{Ch}}_{n, \boldsymbol{q}}(x)=\int_{\mathbb{Z}_{\mathbf{p}}}(-x-y)_{n} \mathrm{~d} \mu_{-\boldsymbol{q}}(y), \quad n \geqslant 0 .
$$

The generating function for such polynomials is given by

$$
\begin{equation*}
\sum_{n \geqslant 0} \widehat{C h}_{n, q}(x) \frac{t^{n}}{n!}=\frac{1+q}{1+q+t}(1+t)^{1-x} \tag{1.3}
\end{equation*}
$$

In [12], Kim et al. obtained the following theorems.
Theorem 1.1. Let $(x)_{n}=x(x-1) \cdots(x-n+1)$. For $n \geqslant 0$,

$$
\int_{\mathbb{Z}_{\boldsymbol{p}}}(x)_{n} \mathrm{~d} \mu_{-\boldsymbol{q}}(x)=\mathrm{Ch}_{n, q} .
$$

Theorem 1.2. Let $(x)_{n}=x(x-1) \cdots(x-n+1)$. For $n \geqslant 0$, the following relation holds:

$$
\int_{\mathbb{Z}_{\mathfrak{p}}}(x+y)_{n} d \mu_{-q}(y)=C h_{n, q}(x)
$$

Theorem 1.3. For $n \geqslant 0$,

$$
\int_{\mathbb{Z}_{\mathfrak{p}}}\binom{x}{n} d \mu_{-q}(x)=\left(\frac{-q}{1+q}\right)^{n} .
$$

Theorem 1.4. For $n \geqslant 0$

$$
\widehat{\mathrm{Ch}}_{n, \mathrm{q}}=(-1)^{n} \frac{2+\mathrm{q}}{(1+q)^{n}}
$$

Theorem 1.5. For $n \geqslant 0$

$$
\widehat{\mathrm{Ch}}_{n, q}(x)=\mathrm{Ch}_{n, q}(1-x) .
$$

Note that $\binom{x}{n}=\frac{(x)_{n}}{n!}$.
p-Adic numbers introduced by the German mathematician Kurt Hensel (1861-1941), are widely used in mathematics: in number theory, algebraic geometry, representation theory, algebraic and arithmetical dynamics, and cryptography. p-Adic numbers have been used in applied fields with successfully applying in superfield theory of p-adic numbers by Vladimirov and Volovich. In addition, p-adic model of the universe, p -adic quantum theory, p -adic string theory such as areas occurred in physics (for detail see [18, 17]).

In 1975, Morita [14] defined the p-adic gamma function Γ_{p} by the formula

$$
\Gamma_{\mathfrak{p}}(x)=\lim _{n \rightarrow x}(-1)^{n} \prod_{\substack{1 \leq j \leq n \\(p, j)=1}} \mathfrak{j}
$$

for $x \in \mathbb{Z}_{\mathfrak{p}}$, where n approaches x through positive integers. The p-adic gamma function Γ_{p} is analytic on \mathbb{Z}_{p} and satisfies the functional relation

$$
\Gamma_{\mathfrak{p}}(x+1)= \begin{cases}-x \Gamma_{\mathfrak{p}}(x), & |x|_{p}=1 \\ -\Gamma_{\mathfrak{p}}(x), & |x|_{p}<1 .\end{cases}
$$

The p-adic Euler constant γ_{p} is defined by the formula

$$
\begin{equation*}
\gamma_{p}:=-\frac{\Gamma_{p}^{\prime}(1)}{\Gamma_{p}(1)}=\Gamma_{p}^{\prime}(1)=-\Gamma_{p}^{\prime}(0) . \tag{1.4}
\end{equation*}
$$

The p-adic gamma function $\Gamma_{p}(x)$ has a great interest and has been studied by Barsky (1981) [2], Diamond (1977) [3], Dwork (1983) [4] and others.

For $x \in \mathbb{Z}_{p}$, the symbol $\binom{x}{n}$ is defined by $\binom{x}{0}=1$ and

$$
\binom{x}{n}:=\frac{x(x-1) \ldots(x-n+1)}{n!}, \quad(n=1,2, \cdots)
$$

The functions $x \rightarrow\binom{x}{n}\left(x \in \mathbb{Z}_{\mathfrak{p}}, n \in \mathbb{N}\right)$ form an orthonormal base of the space $C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$ with respect the norm $\|\cdot\|_{\infty}$. This orthonormal base has the following property:

$$
\begin{equation*}
\binom{x}{n}^{\prime}=\sum_{j=0}^{n-1} \frac{(-1)^{n-j-1}}{n-j}\binom{x}{j}, \quad(\text { see },[16, p .168]) \tag{1.5}
\end{equation*}
$$

In 1958, Mahler introduced an expansion for continuous functions of a p-adic variable using special polynomials as binomial coefficient polynomial [13]. It means that for any $f \in \mathcal{C}\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$, there exist unique elements a_{0}, a_{1}, \ldots of C_{p} such that

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n} \quad\left(x \in \mathbb{Z}_{p}\right) .
$$

The base $\left\{\binom{*}{n}: n \in \mathbb{N}\right\}$ is called Mahler base of the space $C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$, and the elements $\left\{a_{n}: n \in \mathbb{N}\right\}$ in $f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}$ are called Mahler coefficients of $f \in C\left(\mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right)$.

The Mahler expansion of the p -adic gamma function Γ_{p} and its Mahler coefficients are determined by the following proposition.

Proposition 1.6 ([15, 16]). Let

$$
\Gamma_{\mathfrak{p}}(x+1)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}, \quad\left(x \in \mathbb{Z}_{\mathfrak{p}}\right)
$$

and

$$
\exp \left(x+\frac{x^{p}}{p}\right) \frac{1-x^{p}}{1-x}=\sum_{n=0}^{\infty} b_{n} x^{n}, \quad(x \in E) .
$$

Then, $a_{n}=(-1)^{n+1} n!b_{n}$ for all n, where E is the region of convergence of the power series $\sum \frac{x^{n}}{n!}$.

2. Main results

In this paper, we consider p-adic gamma function with the fermionic p-adic q-integral. We derive the relationship between q-Changee polynomials and p-adic gamma function. We obtain the fermionic p-adic q-integral of p-adic gamma function and the derivative of p-adic gamma function. For the p-adic Euler constant. A new representation is obtained. Also, we study on the Changhee polynomials and p-adic Euler constant.

In what follows, we indicate the fermionic p-adic q-integral with Mahler coefficients of p-adic gamma function.

Theorem 2.1. For $x \in \mathbb{Z}_{\mathfrak{p}}$, the following equality holds:

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(x+1) d \mu_{-q}(x)=\sum_{n=0}^{\infty} a_{n} \frac{C h_{n, q}}{n!},
$$

where a_{n} is defined by Proposition 1.6.
Proof. Let $x \in \mathbb{Z}_{p}$. We have

$$
\begin{equation*}
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}(x+1) d \mu_{-\boldsymbol{q}}(x)=\int_{\mathbb{Z}_{\mathbf{p}}} \sum_{n=0}^{\infty} a_{n}\binom{x}{n} d \mu_{-\boldsymbol{q}}(x)=\sum_{n=0}^{\infty} a_{n} \int_{\mathbb{Z}_{\mathfrak{p}}}\binom{x}{n} d \mu_{-\boldsymbol{q}}(x) . \tag{2.1}
\end{equation*}
$$

Note that $\binom{x}{n}=\frac{(x)_{n}}{n!}$. From Theorem 1.1, we get

$$
\int_{\mathbb{Z}_{p}} \Gamma_{p}(x+1) d \mu_{-q}(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} C h_{n, q} .
$$

Using Theorem 1.3 we can rewrite (2.1) and we have the following corollary.
Corollary 2.2. For $\mathrm{n} \in \mathbb{N}$,

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}(x+1) d \mu_{-\boldsymbol{q}}(x)=\sum_{n=0}^{\infty} a_{n}\left(\frac{-q}{1+q}\right)^{n}
$$

where a_{n} is defined by Proposition 1.6.
Under condition of Proposition 1.6 and using (1.5), derivative of p-adic gamma functions, Γ_{p}^{\prime} is obtained as

$$
\begin{equation*}
\Gamma_{p}^{\prime}(x+1)=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{n-j}\binom{x}{j}, \tag{2.2}
\end{equation*}
$$

where a_{n} is defined by Proposition 1.6.
Theorem 2.3. The relationship between the q-Changhee polynomials and the p-adic Euler constant is given by

$$
\gamma_{p}=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j}}{(n-j) j!} \frac{\left(q C h_{j, q}+C h_{j, q}(-1)\right)}{[2]_{q}} .
$$

Proof. When $\mathrm{f}(\mathrm{x})=\Gamma_{\mathrm{p}}^{\prime}(\mathrm{x})$ and $\mathrm{n}=1$ in (1.2), we get

$$
\mathfrak{q} \int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{p}^{\prime}(x+1) d \mu_{-q}(x)+\int_{\mathbb{Z}_{p}} \Gamma_{p}^{\prime}(x) d \mu_{-q}(x)=[2]_{q} \Gamma_{p}^{\prime}(0)
$$

From (2.2) and (1.4), we can write

$$
\begin{equation*}
q \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{n-j} \int_{\mathbb{Z}_{p}}\binom{x}{j} d \mu_{-q}(x)+\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{n-j} \int_{\mathbb{Z}_{p}}\binom{x-1}{j} d \mu_{-q}(x)=-[2]_{q} \gamma_{p} . \tag{2.3}
\end{equation*}
$$

Using Theorem 1.1 and Theorem 1.2 we can rewrite (2.3) as

$$
\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{(n-j) j!}\left(q C h_{j, q}+C h_{j, q}(-1)\right)=-[2]_{q} \gamma_{p}
$$

Theorem 2.4. The p-adic Euler constant has the expansion

$$
\gamma_{p}=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n}}{(n-j)[2]_{q}}\left(\frac{q^{j+1}}{(1+q)^{j}}+\sum_{i=0}^{j} \frac{1}{(1+q)^{i}(j-i)!}\right),
$$

where a_{n} is defined by Proposition 1.6.
Proof. Firstly, we compute $\mathrm{Ch}_{n, \mathrm{q}}(-1)$. From Theorem 1.5, we have $\widehat{\mathrm{Ch}}_{n, \mathrm{q}}(2)=\mathrm{Ch}_{n, \mathrm{q}}(1-2)$. From (1.3)

$$
\sum_{n \geqslant 0} \widehat{C h}_{n, q}(x) \frac{t^{n}}{n!}=\frac{1+q}{1+q+t} \sum_{n \geqslant 0}\binom{1-x}{n} t^{n}=\sum_{n \geqslant 0} \frac{(-1)^{n} t^{n}}{(1+q)^{n}} \sum_{n \geqslant 0}\binom{1-x}{n} t^{n}
$$

or

$$
\sum_{n \geqslant 0} \widehat{C h}_{n, q}(x) \frac{t^{n}}{n!}=\sum_{n \geqslant 0} \sum_{i=0}^{n}\left(\frac{-1}{1+q}\right)^{i}\binom{1-x}{n-i} t^{n} .
$$

Then, we have

$$
\widehat{\mathrm{Ch}}_{n, \mathrm{q}}(x)=n!\sum_{i=0}^{n}\left(\frac{-1}{1+q}\right)^{i}\binom{1-x}{n-i} .
$$

Note that $x^{n}=(-1)^{n}(-x)_{n}$.

$$
\widehat{\mathrm{Ch}}_{n, q}(x)=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{(1+q)^{i}} \frac{(1-x)_{n-i}}{(n-i)!},
$$

or

$$
\widehat{\mathrm{Ch}}_{n, \mathrm{q}}(x)=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{(1+q)^{i}} \frac{(-1+x)^{n-i}(-1)^{n-i}}{(n-i)!},
$$

or

$$
\begin{equation*}
\mathrm{Ch}_{n, \mathrm{q}}(1-x)=\widehat{\mathrm{Ch}}_{n, q}(x)=n!\sum_{i=0}^{n} \frac{(-1)^{n}}{(1+q)^{i}} \frac{(-1+x)^{n-i}}{(n-i)!} \tag{2.4}
\end{equation*}
$$

When $x=2$ in (2.4) we have $\mathrm{Ch}_{\mathrm{n}, \mathrm{q}}(-1)=n!\sum_{i=0}^{n} \frac{(-1)^{n}}{(1+\mathrm{q})^{\mathrm{i}}(\mathrm{n}-\mathrm{i})!}$. Using Theorem 1.3, Theorem 1.1 and value of $\mathrm{Ch}_{n, \mathrm{q}}(-1)$ we can rewrite Theorem 2.3 as the following

$$
\gamma_{p}=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j}}{(n-j) j!} \frac{\left(q\left(\frac{-q}{1+q}\right)^{j} j!+j!\sum_{i=0}^{j} \frac{(-1)^{j}}{(1+q)^{i}(j-i)!}\right)}{[2]_{q}} .
$$

The proof of theorem is completed with a little calculations.

Theorem 2.5. The following relation holds

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}(x+s) d \mu_{-\boldsymbol{q}}(x)=\sum_{n=0}^{\infty} a_{n} \frac{C h_{n, q}(s-1)}{n!}
$$

where a_{n} is defined by Proposition 1.6.
Proof. Let $x \in \mathbb{Z}_{p}$. We have

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}(x+s) d \mu_{-\boldsymbol{q}}(x)=\sum_{n=0}^{\infty} a_{n} \int_{\mathbb{Z}_{\mathfrak{p}}} \frac{(x+s-1)_{n}}{n!} d \mu_{-q}(x)
$$

By using Theorem 1.2 we can write

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}(x+s) d \mu_{-\boldsymbol{q}}(x)=\sum_{n=0}^{\infty} a_{n} \frac{C h_{n, \boldsymbol{q}}(s-1)}{n!}
$$

Theorem 2.6. For $x, s \in \mathbb{Z}_{p}$, we have

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}^{\prime}(x+s) d \mu_{-q}(x)=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} \mathrm{Ch}_{j, q}(s-1)}{(n-j) j!} .
$$

Proof. Let $x, s \in \mathbb{Z}_{p}$. From (2.2), we have

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}^{\prime}(x+s) d \mu_{-\boldsymbol{q}}(x)=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1}}{n-j} \int_{\mathbb{Z}_{\mathfrak{p}}}\binom{x+s-1}{j} d \mu_{-q}(x) .
$$

By using Theorem 1.2 we can write

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}^{\prime}(x+s) d \mu_{-q}(x)=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} C h_{j, \mathfrak{q}}(s-1)}{(n-j) j!} .
$$

In the case $s=1$ in Theorem 2.6 we obtain the following conclusion.
Corollary 2.7. For $x \in \mathbb{Z}_{p}$, we have

$$
\int_{\mathbb{Z}_{\mathfrak{p}}} \Gamma_{\mathfrak{p}}^{\prime}(x) d \mu_{-q}(x)=\sum_{n=1}^{\infty} \sum_{j=0}^{n-1} a_{n} \frac{(-1)^{n-j-1} C h_{j, q}}{(n-j) j!}
$$

where $\mathrm{Ch}_{\mathrm{n}, \mathrm{q}}$ are q -Changhee numbers.

Acknowledgment

This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK).

References

[1] S. Araci, D. Erdal, J. J. Seo, A study on the fermionic p-adic q-integral representation on \mathbb{Z}_{p} associated with weighted q-Bernstein and q-Genocchi polynomials, Abstr. Appl. Anal., 2011 (2011), 10 pages. 1
[2] D. Barsky, On Morita's p-adic gamma function, Math. Proc. Cambridge Philos. Soc., 89 (1981), 23-27. 1
[3] J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc., 233 (1977), 321-337. 1
[4] B. Dwork, A note on the p-adic gamma function, Study group on ultrametric analysis, 9th year: 1981/82, Marseille, (1982), Inst. Henri Poincaré, Paris, (1983), 10 pages. 1
[5] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), 288-299. 1
[6] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), 15-27. 1
[7] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p -adic integral on $\mathbb{Z}_{\mathfrak{p}}$, Russ. J. Math. Phys., 16 (2009), 484-491. 1
[8] T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on $\mathbb{Z}_{\mathfrak{p}}$, Russ. J. Math. Phys., 16 (2009), 93-96. 1
[9] D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci. (Ruse), 7 (2013), 5969-5976. 1
[10] T. Kim, D. S. Kim, T. Mansour, S.-H. Rim, M. Schork, Umbral calculus and Sheffer sequences of polynomials, J. Math. Phys., 54 (2013), 15 pages. 1
[11] T. Kim, H.-I. Kwon, J. J. Seo, Degenerate q-Changhee polynomials, J. Nonlinear Sci. Appl., 9 (2016), 2389-2393. 1, 1
[12] T. Kim, T. Mansour, S.-H. Rim, J. J. Seo, A note on q-Changhee Polynomials and Numbers, Adv. Studies Theor. Phys., 8 (2014), 35-41. 1, 1
[13] K. Mahler, An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math., 199 (1958), 23-34. 1
[14] Y. Morita, A p-adic analogue of the 「-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 255-266. 1
[15] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, Springer-Verlag, New York, (2000). 1.6
[16] W. H. Schikhof, Ultrametric calculus, An introduction to p-adic analysis, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, (1984). 1.5, 1.6
[17] V. S. Vladimirov, I. V. Volovich, Superanalysis, I, Differential calculus, (Russian) Teoret. Mat. Fiz., 59 (1984), 3-27. 1
[18] I. V. Volovich, Number theory as the ultimate physical theory, p-Adic Numbers Ultrametric Anal. Appl., 2 (2010), 77-87. 1

[^0]: *Corresponding author
 Email addresses: ozgecolakoglu@mersin.edu.tr (Özge Çolakoğlu Havare), hmenken@mersin.edu.tr (Hamza Menken)
 doi: 10.22436/jmcs.018.01.02

