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Abstract 
A general approach is presented for proving existence of multiple solutions of the second-order 

nonlinear differential equation  

  ,0,10,=))(()(  xxufxu ''
 

subject to given boundary conditions: 1 2(0) = , (1) =u B u B  or 
1 2(0) = , (1) =' 'u B u B . The proof is 

constructive in nature, and could be used for numerical generation of the solution or closed-form 

analytical solution by introducing some special functions. The only restriction is about )(uf , where it is 

supposed to be differentiable function with continuous derivative. It is proved the problem may admit no 

solution, may admit unique solution or may admit multiple solutions.  

Keywords: Closed-form solution; exact analytical solution; special function; unique solution; multiple 

solutions. 

2000 Mathematics Subject Classification. 34B15, 35G30, 35G60. 

1. Introduction 

We consider here the challenge of proving existence of unique or multiple solutions to the second 

order nonlinear two-point boundary value problems of the type  

 0,=))(()(:Problem1 xufxu ''   (1) 

                         .=(1),=(0) 21 BuBu  (2) 
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 0,=))(()(:Problem2 xufxu ''   (3) 

                         .=(1),=(0) 21 BuBu ''
 (4) 

 where 1B , 
'B1  and 2B  are finite real numbers and the function )(uf  is continuous. Our method, to 

prove existence of multiple solutions, can be applied to generate all branches of solutions as closed-form 

by introducing some special functions in the resolution process. Our work is motivated by two factors. 

The first is the frequent occurrence of specific instances of (1)-(2) and (3)-(4) in problems of interest. To 

illustrate this factor, consider the following set of sample problems:   

1.  The strongly nonlinear Bratu’s problem [1-5]  

 (0,1)0,=)(exp  xuu ''
 (5) 

 0.=(1)=(0) uu  (6) 

2.  The nonlinear problem arising in heat transfer [5-10]  

 (0,1)0,=12

2

2

  x
dx

d n


 (7) 

 1.=(1)0,=(0) 


dx

d
 (8) 

 where   is the convective-conductive parameter,   is temperature profile, and n  which is real positive 

or negative depends on the heat transfer mode.  

3.  The nonlinear two-point so-called Troesch’s boundary value problem [11-13]  

 (0,1)),(sinh= xuu ''   (9) 

 1.=(1)0,=(0) uu  (10) 

 where   is a positive constant  

4.  The problem of catalytic reaction in a flat particle [14-17]  

 0,=
)(11

)(1
exp

d

d
2

2















y

y
y

x

y




  (11) 

 1,=(1)0,=(0)
d

d
u

x

y
 (12) 

 where y  is dimensionless concentration, x  is dimensionless coordinate ( 10  x ),   is the square of 

Thiele modulus,   is a dimensionless energy of activation, and   is a dimensionless parameter 

describing heat evolution. The readers are refered to [18-25] to see more problems. 
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All these are instances of the problem (1)-(2) or (3)-(4). The second factor motivating our work is the lack 

of theoretical framework capable of obtaining solutions. The great numbers of methods which involve 

upper and lower solutions being based on fixed-point theory [26-37] illustrate only the existence of some 

classes of solution without providing a real procedure to obtain them. Of course this is difficult task and 

sometimes impossible, however the present paper gives a proof, which is constructive in nature, for 

existence of multiple solutions of the problems (1)-(2) and (3)-(4), and obtain all branches of solutions (if 

they exist) at the same time.  

2. Existence and uniqueness results for corresponding initial value problem 
 Consider corresponding initial value problem of (1)-(2) or (3)-(4), which is  

 0,=))(()( xufxu ''   (13) 

 .=(0),=(0) 11

'' BuBu  (14) 

 It can be reformulated as a system of two first-order equations by introducing  

 ).(=)(),(=)( 21 xuxyxuxy '
 (15) 

 Then equivalent initial value problem for a system of first-order equations is  

 





 .=(0)))((=)(

=(0))(=)(

1212

1121

''

'

Byxyfxy

Byxyxy
 (16) 

Definition 2.1 Consider a two dimensional vector-valued function F  defined for ),( yx  in some 

set S  ( x  real, y  in 
2

). We say that F  satisfies a Lipschitz condition on 
3S   if there exists a 

constant 0>K  such that  

 ( , ) ( , )x y x z K y z  F F  (17) 

 for all ),( yx , ),( zx  in S , where   denotes 1L -norm defined by 1 2=| | | |y y y .  

Lemma 2.2 Suppose F  is a two dimensional vector-valued function as  

   ,)(,=),( 12

T
yfyyx F  (18) 

 defined for ),( yx  on a set S  of the form  

 | |< , < .x a y   (19) 

 If 
'f  exits, and it is continuous on , then F  satisfies a Lipschitz condition on S .  

 Proof. Let ),( yx , ),( zx  be fixed points in S , and define the vector-valued function F  for real 

s , 10  s , by  

 ( ) = ( , ( ))F s x z s y z F  
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 
2 2 2

1 1 1

( )
=

( )

z s y z

f z s y z

  
 
   

 (20) 

 This is a well-defined function since the points ))(,( zyszx   are in S  for 10  s . Clearly ax |<| , 

and if  

 < , < ,y z   

then  

 ( ) (1 ) < ,z s y z s z s y z y         (21) 

 We now have  

  2 2( ) = , ( ) ,
T'F s y z q s  (22) 

 where  

  )()(=)( 11111 zyszfzysq '   

 .  (23) 

 Using continuity of f  and 
'f  on , there exists M   such that Mtf |<)(|  and Mtf ' |<)(|  

with |<| t , then  

 |,||)(| 11 zyMsq   

 therefore  

 2 2( ) =| | | ( ) |'F s y z q s   

 |||| 1122 zyMzy   

 KzyKzy |||| 1122   

 = .K y z  (24) 

 with ,1}{= MmaxK . Thus, since  

 
1

0
( , ) ( , ) = (1) (0) = ( )d ,'x y x z F F F s s  F F  (25) 

 we have  

 ( , ) ( , ) ,x y x z K y z  F F  (26) 

 which was to be proved. 
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Suppose 
T'BBy ),(= 110  and consider a successive approximations )(0 x , )(1 x , )(2 x ,..., 

where  

 ,=)( 00 yx  

 .0,1,2,=,d))(,(=)(
0

01 ktttyx k

x

k   F  (27) 

 Now since ),( yxF  defined by (18) is continuous on  

 : | |< , < ,S x a y   (28) 

 it is bounded there, that is, there is a positive constant M  such that  

 ( , ) .x y MF  

On the other hands, Lemma 1 reveals that F  satisfies a Lipschitz condition on S . All these confirm that 

the hypotheses of the following theorem hold.  

Theorem 2.3 Let ),( yxF  be a real-valued continuous function on S  defined by (28) such that  

 ( , ) .x y MF  

Suppose there exists a constant 0>K  such that  

 ( , ) ( , ) ,x y x z K y z  F F  (29) 

 for all ),( yx  and ),( zx  in S . Then the successive sequence (27) converges to )(x  as the solution of  

 ),,(= yxy'
F  

on the S , which satisfies 00 =)( yx . Moreover, this solution is unique.  

 Proof. Please see the Ref. [38].                                                                                   

Therefore, we conclude that there exists one, and only one, solution for the initial valve problem 

(13)-(14). The same results hold for initial value problem corresponding to (1)-(2) and (3)-(4).  

3. Existence of multiple solutions for the boundary value problem 
 Consider the boundary value problems (1)-(2) and (3)-(4) and define function Ef :   as  

 ,
)(2

d
=),);(;(Ef

2

2
1

21






Fz
zzFz

z

z 
  (30) 

 where )(F  is given continuous functions from  to  and more, 1z  and 2z  are constants. We now 

give two theorems which discuss about multiplicity of solutions of the problems (1)-(2) and (3)-(4).  
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Theorem 3.1 Consider the boundary value problem (1)-(2) and suppose that 
'f  exits, and it is 

continuous on R . Moreover, define ttfuF
u

B
d)(=)(

1
1  . If there exists the number of n  real roots for the 

equation  

 1,=),);(;(Ef 112  BFB  (31) 

 while it is solved respect to   with (0)= 'u , then the problem (1)-(2) admits exactly the number of n  

solutions.  

 Proof. One easily sees equation(1) admits the first integral by multiplying 
'u  to the both sides as 

follows  

 ,=)(
2

1
11

2
CuFu'   (32) 

 where 1C  is a constant of integration which should be determined. Since )(tf  is continuous then )(1 uF  

is well-defined. Taking into account 0=)( 11 BF , the boundary conditions at 0=x  give for the 

integration constant 1C  the value  

 ,
2

1
= 2

1 C  (33) 

 So, Eq. (32) is converted to the following  

 0.=
2

1

2

1
)( 22

1  'uuF  (34) 

 after simplification Eq. (34) becomes  

 .
)(2

d
=d

1

2 uF

u
x


 (35) 

 Using 1=(0) Bu  and by integration of (35), we can derive the following relation between x  and u   

 
)(2

d
=

1

2
1 



F
x

u

B 
  (36) 

 Now, by definition (30) the above equation becomes  

 ).,);(;(Ef= 11  BFux  (37) 

 Applying the boundary condition (2) at 1=x  i.e. 2=(1) Bu , yields  

 ).,);(;(Ef=1 112  BFB  (38) 
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 Since 
'f  exits, and it is continuous on , therefore by Lemma 1 and Theorem 1 the corresponding 

initial value problem has one, and only one solution. Then, we conclude that the number of solutions of 

the problem (1)-(2) equals to the number of real roots of Eq. (38) when it is solved with respect to  , and 

then the proof is completed.   

Theorem 3.2 Consider the boundary value problem (3)-(4) and suppose that 
'f  exits, and it is 

continuous on . Moreover, define ttfuF
u

d)(=);(2   with unknown but fixed  . If there exists the 

number of n  real roots for the equation  

 1,=),);;(;(Ef 122

'BFB   (39) 

 while it is solved with respect to   with (0)= u , then the problem (3)-(4) admits exactly the number 

of n  solutions.  

 Proof. One easily sees that equation (3) admits the first integral  

 ,=);(
2

1
12

2
DuFu'   (40) 

 where ttfuF
u

d)(=);(2   and 1D  is an integral constant. Since )(tf  is continuous then );(2 uF  is 

well-defined. Using 0=);(2 F , the boundary conditions at 0=x  gives for the integration constant 

1D  the value  

 .
2

1
=

2

11

'BD  (41) 

 Eq. (40) can be rewritten as  

 0,=
2

1

2

1
);(

2

1

2

2

'' BuuF   (42) 

 and after some simplifications Eq. (42) becomes  

 .

);(2

d
=d

2

2

1 uFB

u
x

' 

 (43) 

 Using =(0)u  and by integration of (43), we can obtain the following relation between x  and u   

 .

);(2

d
=

2

2

1 




FB

x
'

u


  (44) 

 Now, by definition (30) the above equation becomes  

 ).,);;(;(Ef= 12

'BFux   (45) 
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 Applying the boundary condition (4) at 1=x  i.e. 2=(1) Bu , yields  

 ).,);;(;(Ef=1 122

'BFB   (46) 

 Since 
'f  exits, and it is continuous on , therefore by Lemma 1 and Theorem 1 the corresponding 

initial value problem has one, and only one solution. Then, we conclude that the number of solutions of 

the problem (3)-(4) equals to the number of real roots of Eq. (46) when it is solved with respect to  , and 

then the proof is completed.  

It is worth mentioning here that the theorems 3 and 4 not only give important results about 

multiplicity of the solutions of the boundary value problems (1)-(2) and (3)-(4) but also provide closed-

form solutions for them. In fact, as soon as   and   are obtained from (38) and (46), the exact closed-

form solutions are presented in the implicit form by  

 ),,);(;(Ef= 11  BFux  (47) 

 and  

 ).,);;(;(Ef= 12

'BFux   (48) 

 for the problems (1)-(2) and (3)-(4), respectively. The main advantage of the exact analytical solutions 

(47) and (48) is this fact that today well-performing computer software programs like Mathemtamagica 

and Maple are available both for symbolic and numerical calculations involving in general the function 

),,);(;(Ef 21 zzAFz  .  

4. Illustrative example 
 Consider a straight fin of length L  with a uniform cross-section area A . The fin surface is 

exposed to a convective environment at temperature aT  and the local heat transfer coefficient along the 

fin surface is assumed to exhibit a power-law-type dependence on the local temperature difference 

between the fin and the ambient fluid as  

 
n

aTTh )(=   (49) 

 where a  is a dimensional constant defined by physical properties of the surrounding medium, T is the 

local temperature on the fin surface, and the exponent n  depends on the heat transfer mode. The value of 

n  can vary in a wide range between 4  and 5 . For example, the exponent n  may take the values 

2,0,0.25,4,   and 3,  indicating the fin subject to transition boiling, laminar film boiling or 

condensation, convection, nucleate boiling, and radiation into free space at zero absolute temperature, 

respectively. For one-dimensional steady state heat conduction, the equation in terms of dimensionless 

variables  

 
ab

a

TT

TT
h

L

X
x




=,=  (50) 

 can be written as  
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 0=12

2

2
 nN

dx

d



 (51) 

 where the axial distance x  is measured from the fin tip, bT is the fin base temperature, and N  is the 

convective- conductive parameter of the fin defined as  

 
2

1
22

1
2

)(== 















 n

ab
b TT

kA

aPL

kA

PLh
h  (52) 

 In the above equation bh , P  and k  represent the heat transfer coefficient at fin base, the periphery of fin 

cross-section, and the conductivity of the fin, respectively. For simplicity, assume the fin tip is insulated 

and the boundary conditions to Eq. (51) can be expressed as  

     1=10,=0 


dx

d
 (53) 

 The Eq. (51) with boundary conditions (53) has been considered by the first author and Abbasbandy in 

Ref. [9] and given the exact analytical solutions for all values of n  ( 54  n  ) and N  by the 

method discussed in the section 3. Moreover, they have shown the problem may admit no solution, may 

admit unique solution or may admit dual solutions.  

5. Conclusions 
  There are many problems in engineering and physical sciences which can be modeled by such second-

order nonlinear two-point boundary value problems as (1)-(2) and (3)-(4). Therefore, that is very 

consequential to know that how many solutions these problems admit and to obtain them simultaneously. 

Based on this regard, a general approach has been presented for proving existence of multiple solutions of 

these problems. The presented proof, which is constructive in nature, can be used for numerical 

generation of the solution or closed-form analytical solution by introducing some special functions. The 

only restriction in our problems is about )(uf , where it is supposed to be differentiable function with 

continuous derivative. It has been proved the problems may admit no solution, may admit unique solution 

or may admit multiple solutions. 
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