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Abstract 
Many problems in sciences and industry such as signal optimization, traffic 
assignment, economic market,… have been modeled, or their mathematical models 
can be approximated, by linear bilevel programming (LBLP) problems, where in each 
level one must optimize some objective functions. 
In this paper, we use fuzzy set theory and fuzzy programming to convert the multi-
objective linear bilevel programming (MOLBLP) problem to a linear bilevel 
programming problem, then we extend the Kth-best method to solve the final LBLP 
problem. The existence of optimal solution, and the convergence of this approach, are 
important issues that are considered in this article. A numerical example is illustrated 
to show the efficiency of the new approach.  
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       There are some methods for finding the global optimum of a bilevel programming problem in which 
both level’s have just one objective function to be optimized. The majority of  researchs on bilevel 
programming problems have been  centered on the linear version of the problems such as Penalty 
function approach [1], Genetic algorithm [2,3], Grid-search algorithm [4] and the Kth-best algorithm [5]. 
The intent of this paper is to provide a new approach for solving multi-objective linear bilevel 
programming problems, so as mentioned, since we know some methods for solving BLP problems, we 
apply fuzzy set theory and fuzzy programming to convert our problem to a BLP problem, then we extened 
the classical Kth-best method, to find the global optimum solution of the achieved BLP problem. This 
algorithm computes global solution of linear BLP problems by enumerating extreme points of constraint 
region. We do not  use the classical  Kth-best algorithm [6] because of its deficiency, that is, it could not 
well solve LBLP problem when the upper level’s constraints are in arbitrary linear form [7].  
  

2. Converting the multi-objective linear bilevel programming problem to a single-
objective LBLP problem 
        Consider a model  in general as the following form: 

 

Xx
Max


        ( xc
t

1  , xc
t

2  , … , xc
t

k ) 

s.t             111 byBxA   

Yy
Max


        ( yd

t

1 , yd
t

2  , … , yd
t

k ' )                                                                                            (1) 

s.t            222 byBxA   

                       0,0  yx  

 

        where 2211 ,,,,,,,...,2,1,,,...,1, BABARYyRXxkjRdkiRc mnm

j

n

i   are 

appropriate matrices. The upper level  and the lower level are called leader and follower, respectively. x  
is the leader’s decision variable  and y  is the follower’s decision variable. 

         To change the MOLBLP problem (1)  to a BLP problem,  first find an upper and also lower bounds for 

any objective function in the first and second level of the MOLBLP problem (1). One may call U

iZ and L

iZ , 

respectively as upper and lower bounds of  kixc t

i ,...,2,1;  (objective functions of the first level) and 
U

jz and L

jz respectively as  upper and the lower bounds of kjyd t

j
 ,...,2,1, ( objective functions of the 

follower). To find these bounds, one  may  solve the following  BLP  problems (use the method explained 
in [8]). 
 

   (LP) i              ( ki ,...,1 )                        
Xx

Max


           xc
t

i  

                                                              s.t            111 byBxA   

   (LP) j              ( kj  ,...,1 )                     
Yy

Max


            yd
t

j
                                                                 (2) 

                                                              s.t            222 byBxA   

                                                                                    0,0  yx . 

 

        Let ),(),...,,(
***

1

*

1 kk yxyx  and ),(),...,,(
***
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1 kk yxyx 
  be the solutions of the first and second level 

respectively. Define the following matrices: 
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         The maximum and minimum values in each column of  A  denoted respectively by  U

iZ and L

iZ ,  

( ki ,...,1 ) , also the maximum and minimum values in each column of  B  denoted respectively by 
U

jz and L

jz ,  ( kj  ,...,1 ) .  The differences   
L

i

U

i ZZ      and     
L

j

U

j zz     are  the constants of 

admissible violations. Now we can define a  membership function corresponding to each level (leader and 
follower) for any fuzzy goal, as the following: 
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          Since   membership  functions  are  the  degrees  of   satisfaction,  they   must  be  maximized.  So  if   

we consider },...,min{ 11 k     and   },...,min{ 12 k   ,  then  the MOLBLP  problem  (1)  now 

changes to the LBLP problem (4) as follows: 
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    By substituting the membership functions from (3), the LBLP problem (4) changes to: 
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        Now we have a single-objective LBLP problem, in which, nRXx   and ]1,0[1   are the                                                                              

decision  variables  for  the  upper  level  and    
mRYy     and    ]1,0[2     are the decision variables 

for  the  lower  level.                                                                                                
 

3. Extended Kth-best algorithm 
       Kth-best algorithm investigates in the constraint region of the  LBLP problem to find the optimal 
solution at a vertex of this region. Now for applying the algorithm, we use the definitions expressed in 
[7,9]. 
 
       Constraint   region of  the  LBLP  problem  (5) defines as follows: 
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      Denote  the projection of S  onto the leader’s decision space by )(XS  and  the feasible set  for the 

follower for all  ),(, 1 XSx   these two sets define as follows: 

 

     }),,,(],1,0[,:]1,0[,{)( 2121 SyxYyXxXS    

                  (constraints of the leader and the follower are satisfied.) 
 

     }),,,(:]1,0[,{)( 212 SyxYyxS    

 
 

       Then  solving the following problem for any )(XSx ,  gets the follower’s rational reaction set. 

 
 

2,Yy
Max


       2  

s.t            xAbyB 111   

 

               
L

i

L

i

U

i

t

i ZZZxc  1)(  ,                           ki ,...,1       

 

               10 1                                                                                                                           (6) 

 

              xAbyB 222                                                                                

 

              
L

j

L

j

U

j

t

j zzzyd  2)(  ,                         kj  ,...,1    
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         We  denote  the  set  of  the  optimum solutions of  the above  problem by  )(xP . Now we present the 

inducible region of the problem  (5)  by: 
 

)}(),(,),(:),,,{( 2121 xPySxyxIR    

 
To ensure that (5) has an optimal solution, one must consider the following assumptions:  
 
(1)  S  is nonempty and compact. 

(2) )(xP  is nonempty,(i.e. )(xP ) . 
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(3) )(xP  is a point to point map (otherwise some difficulties appear, which are explained in 

[10],[11]). 
 
Thus in terms of  the above definitions and notations, the LBLP problem (5) can be written as: 
 

}),,,(:{ 211 IRyxMax  . 

 
 

        Every theorem for LBLP problems also satisfies for  MOLBLP  problems, since we made the LBLP 
problem (5) from MOLBLP problem (1), these two are equuivalent. The most important theorems are: 

 
Theorem 1.  If S is nonempty and compact, there exists an  optimal solution for a linear BLP problem. 

 

Theorem 2.  A solution for the linear BLP problem occurs at a vertex of IR . 
 
Theorem 3.  The  solution  of  the linear BLP problem occurs at a vertex of S . 

 
        Details of  the proofs can be found in [7].  
  
 
       Now to solve (5), one can use the extended Kth-best algorithm as the following: 

 
     

 

Step 1. Put   1i  . Solve the problem }),,,(:{ 211 SyxMax   with the simplex method  to obtain 

the optimal solution  ),,,(
]1[2]1[1]1[]1[` yx .  Let )},,,{(

]1[2]1[1]1[]1[` yxW    and   T .  Go to Step 

2. 

Step  2.  Solve  (6)  by the assumption 
][11][ ,

iixx   with the simplex method to obtain the optimal 

solution  )
~

,~( 2y .  If  ),()
~

,~(
][2][2 iiyy   ,  stop;   ),,,(

][2][1][][ iiii yx    is the global optimum of (1) . 

Otherwise go to Step 3. 

Step 3.  Let ][iW  denote the set of adjacent extreme points of  ),,,(
][2][1][][` iiii yx     such that  

][21 ),,,( iWyx   implies 
][11 i

  . Let  )},,,{(
][2][1][][` iiii yxTT     and    TWWW i \)( ][ . 

Go to Step 4. 

Step 4. Set     1 ii   and choose  ),,,(
][2][1][][` iiii yx   so that   }),,,(:{ 211][1 WyxMax

i
  . 

Go to Step 2. 

4. Numerical example 
        Consider the following problem with 

22 , RyRx  and }0{},0{  yYxX . 

 

       
Xx

Max


        ( 21 2xx   , 213 xx  ) 

s.t            321  xx  
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Yy
Max


        ( 21 3yy  , 212 yy  )   

s.t            6211  yyx                             

         312  yx  

                       8221  yxx   

 
        The problem is equivalent to the following problem by fuzzy programming. 
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        By appling the extended Kth-best algorithm, the optimal solution of the problem reached at the point 

)4615.0,5.0,3846.3,1154.4,5.1,5.1(),,,,,( *

2

*

1

*

2

*

1

*

2

*

1 yyxx . 

Then objective function values are: for the upper level functions  5.42 21  xx    , 63 21  xx  and for 

the lower level functions 2692.143 21  yy , 6154.112 21  yy . 

 
 

5. Conclusion 
We found the global optimal solution of the multi-objective linear bilevel programming problems 

under fuzzy programming and extended Kth-best algorithm. If the constraint regions of the upper level 
and lower level be non-empty and compact we are able to solve any linear multi-objective bilevel 
programming problems. 

 
It might suggest that this approach can be extended for non-linear problems where the leader’s 

objective function is quadratic. 
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