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Abstract 
This paper investigates the trajectory tracking of a bio-inspired flexible probe in medical where there 

exist of uncertainty and disturbance in the system. In the first approach, a sliding mode controller is 

designed to deal with the uncertainties and output disturbances in the system. In this case, it is assumed 

that the upper band of uncertainty in the system is known, but in practice this may not be really possible. 

Therefore, in the next section, the sliding mode controller has been extended to a robust – adaptive 

controller in such a way that even if there is no information on the uncertainty upper bond, the system is 

still stable and the probe continues to track the desired trajectory. In this case, an adaptive rule has been 

designed to estimate the upper bound of the uncertainty and disturbance. A numerical simulation shows 

the effectiveness of the proposed methodologies. 

 
Keywords: Bio-inspired flexible probe, Sliding mode control, Robust-adaptive control. 

1. Introduction 

Among a lot of techniques that are available for the surgeon, percutaneous intervention has attracted 

great interest, because it is performed through a very small port through the soft tissue, i.e., skin [1]. 

Entering into the body tissues through the skin and by probes and needles develops far fewer risks than 

open surgery for patients and thus is a treatment of choice in many clinical applications [2-3]. Needle 

insertion into soft tissue has many clinical applications such as tissue biopsy [4], brachytherapy [5], 

and anesthetic delivery [6]. When a path in to the tissue does not seem possible or is not safe, a 

flexible probe or needle can be utilized instead of a rigid probe to reach the target while avoiding 

special areas or obstacle avoidance. On the other hand, using flexible probe impose less pain to the 

patient. 

Different models have been provided for bevel-tip flexible probe which predict needle-tip deviations 

from the target for compensation. Webster et al. proposed a kinematic model for probe deflections by 

generalizing the standard nonholonomic unicycle and bicycle models [7]. 
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Due to the lack of an accurate on dynamic model of needle-tissue systems [8], most of the related 

studies are on computer simulations [9-10], pre-planning [11], steering [12] and path-planning [13], 

rather than the automatic control of the flexible needle. Path-planning, by itself, is not sufficient to 

proceed to robot-assisted needle insertion, unless there is a control system which can control the 

needle to track the designed path. Pre-planning is an offline process in which the needle insertion 

parameters such as the insertion angle and bevel orientation are derived prior to the insertion [11]. 

Steering is a closer approach to a control strategy. DiMaio et al. [12] derived a needle manipulation 

Jacobian, which relates the desired needle tip to base velocities, using a numerical needle insertion 

model that includes needle deflection and tissue deformation. Glozman et al. [14] used the analytical 

forward and inverse kinematics of a simplified needle-tissue model to determine the required needle 

base trajectory for any desired needle tip trajectory. Contrary to other approaches, we are currently 

developing a bio-inspired flexible probe [15-16], which can change its direction smoothly by means of 

a programmable bevel tip. 

Robot-assisted needle insertion has recently received significant attention because of its potential 

capability in delivering accurate targeting [17], [18], [19], [20]. Due to the lack of an accurate model 

for the coupled needle-tissue system [21], most of the related studies are focused on computer 

simulations [22], [23], pre-planning [24], steering [25], and path-planning [26], rather than the 

automatic control of the flexible needle. 

Closed loop control of the probe tip along an arbitrary smooth trajectory can be achieved without the 

need for an external imaging system. The authors in [27-28] have been showed that the concept of a 

programmable bevel tip is viable through experiments with a first 12 mm outer diameter prototype, 

where two-dimensional trajectory following can be achieved by means of a state feedback controller 

employing approximated linearization and a chained form representation. Webster et al. first proposed 

a kinematic model of the beveled tip needle to describe its behavior in soft tissue [29]. Alterovitz et al. 

then derived a motion-planning algorithm under uncertainty to obtain better targeting accuracy [30]. 

As the needle is inserted, asymmetric tissue forces cause the tip to deflect and follow a curved path 

through the tissue, which the flexible shaft follows. Asymmetric tip designs can be passive (e.g., using 

a beveled, prebent (kinked), precurved, or flexure tip) [31], [32] or actuatable [33], [34]. 

Reed et al. modeled the torsional dynamics of a flexible needle to analyze torsional behavior during 

needle insertion [35]. These studies have predominantly focused on open-loop trajectory following. 

Glozman and Shoham closed the control loop in their original approach [36] by means of fluoroscopic 

images, which were used to measure needle deflection during the insertion process [37]. Recently, [38] 

designed a model predictive controller for a bio-inspired flexible probe to track a desired trajectory. 

On the other hand, for generating multiple trajectories with a fixed bevel tip, Minhas et al. [39, 40] and 

Wood et al. [41] proposed a duty-cycling spinning algorithm – by periodically changing the 

orientation of the needle along its long axis by means of a base-mounted revolute actuator, trajectories 

with different radii could be achieved. Specifically, [42] utilized fluoroscopic images to measure the 

deflection of a stiff needle (without bevel tip) when inserted into tissue. 

In previous studies on bio-inspired flexible probes, it has been assumed that the model of probe is 

exact and there is no disturbance and uncertainty in the system.  Actually, according to the movement 

of the probe tip into the tissue and the lack of detailed knowledge of the tissue, the model is subject to 

the noise and disturbance. This unknown disturbance may accrue because of the vessels and the 

unpredictable movement of tissues in the direction of the probe path. In this case, a term as disturbance 

and noise must be added to the kinematic model of probe. 

In this paper, the problem of trajectory tracking of a bio-inspired flexible probe with consideration of 

uncertainty and disturbance in the system model has been studied. With assumption that the upper 

band of uncertainty in the system is known a sliding mode controller is designed to deal with the 
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uncertainties and output disturbances in the system. In practice, knowing the upper bound of 

disturbances may not be really possible. Therefore, the sliding mode controller has been extended to a 

robust-adaptive controller in such a way that, even if there is no information on the uncertainty upper 

bond, the probe continues to track the desired trajectory.  

This paper is organized as follows: The problem formulation and some preliminaries are given in 

Section II. Section III presents the main results of this paper that is designing the tracking controller 

for the probe in presence of uncertainty and disturbance. A robust sliding mode controller and a 

robust- adaptive controller have been designed in this Section. Simulation results in Section IV are 

given to confirm the analytical results. Finally, conclusions in Section V close the paper. 

 

2. Problem formulation 

The kinematic model of a bio-inspired flexible probe can be expressed by the following nonlinear 

model [24]: 

 

0

0

1 20

0 1

x cos

y sin
u u

k





  



     
     
      
     
     
     

  

(1) 

where δ indicates the steering offset,k  indicates a coefficient between the steering offset and the 

curvature of the probe, ε  indicates the compensation coefficient caused by the shape of the 

probe,θindicates the tip angle of the probe and u1 and u2respectively denote the linear velocity and the 

rate of change of steering offset of the probe (Fig. 1) 

 

(a) 

 

(b) 

Fig. 1 The bio-inspired flexible probe. The probe that is following a trajectory [24]. The model of a 

Flexible probe 
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Actually, the bevel tip of probe is controlled by applying a force to the base of the probe and probe’s 

motion is due to the relative position between two segments of the probe so-called steering offset [18]. 

The aim of the probe control is leading to an optimal point in the tissue of the body.  To reach this 

point, an optimal path is determined to deal with possible obstacles or damaging to the body tissues. 

Defining q = [x, y, θ, δ]  as the generalized coordinates of the probe and u = [u1, u2]T  as input 

velocities, the model in (1) can be written as 

 q G q u   (2) 

Where 

 
 

cosθ 0

sin θ 0

k δ εθ 0

0 1

G q

 
 
 
 
 
 

  (3) 

The model introduced in (2) does not express the exact behavior of the probe. For example, the 

relation between instantaneous curvature (ρ) and the steering offset in the tip of probe (δt) has been 

considered with a linear function with the coefficient k  (mm−2 )[24].This relation may be more 

complicated and with this assumption, some parts of the motion behavior of probe may be ignored. So, 

in the following model, we have considered such modeling uncertainties 

    q G q G q u    (4) 

Where ∆G(q)  denotes the additive uncertainty in the kinematic model introduced in (2).  

In addition, according to the movement of the probe tip into the tissue and the lack of detailed 

knowledge of the tissue, the model in (2) is subject to the noise and disturbance. This unknown 

disturbance may accrue because of the vessels and the unpredictable movement of tissues in the 

direction of the probe path. In this case, a term as disturbance and noise must be added to the 

kinematic model in (2). In fact, considering the effects of noise and disturbance, more accurately 

describes the behavior of the probe. So, rewrite the model in (2) as 

   q G q u E t    (5) 

Where E(t) = [E1(t), E2(t), E3(t), E4(t)]T denotes the disturbance and noise in the probe model that 

there is no information about them, unless we assume that this disturbance is bounded and we know 

the upper bound of it i.e. 

  1, ,4E t i
i i

     (6) 

where αi    i = 1, … ,4  indicate the upper bound of disturbance and noise. 

Considering both uncertainty and disturbance in the kinematic model of probe, one can easily combine 

the two models in (4) and (5) as follow 

   q G q u d t    

     d t G q u E t     
(7) 
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In this model d(t) = [d1(t), d2(t), d3(t), d4(t)]T describes both the model uncertainty and disturbance 

in the system. It is assumed that we only know the upper bound of the elements ofd(t)as follows 

  1, ,4d t i
i i

     (8) 

Where εi ∈ R+ denotes the upper bound of the summation of the disturbance and uncertainty in (7). 

Now, according to the (2) and (7), the equation of each state variable can be written as follow 

  1 1coscosx u d                 
1 1

d t   
(9) 

 sinsin
1 2

y u d                  
2 2

d t    
(10) 

   
1 3 3 3

k u d d t         
(11) 

 
2 4 4 4

u d d t      
(12) 

 

3. Design of tracking controller 

The aim of this Section is to design a controller for the flexible probe that is described in (9-12), to 

track a desired trajectory. Note that the rank of the matrix G(q) in (3) around any equilibrium point is 

two. This means that only two state variable of the probe in the model can be controlled to reach a 

desired point or track a desired trajectory. In this Section, a sliding mode controller has been designed 

in such a way that the position of the probe tip e.g. [x, y]Ttracks a desiredtrajectory [xdes, ydes]T.  

In the part A of this Section, a sliding mode controller is designed for the system in (9-12) to deal with 

the uncertainties and disturbances. In this case, it is assumed that the upper band of uncertainty in the 

system is known, but we know that in practice, this may not be really possible. Therefore, in part B, a 

robust – adaptive controller has been designed in such a way that, even if there is no information on 

the uncertainty upper bond, the system is still stable and the probe continues to track the desired 

trajectory. 

A. Robust sliding mode controller 

 

The sliding mode controller has been designed using back stepping in the following three steps: 

Step 1: design u1 and θ in (9) and (10) in such a way that [x, y]Ttracks[xdes, ydes]T. 

Step 2:  design δ in (11) in such a way that θ converges to θthat is designed in the previous step 

(θdes). 

Step 3:  design u2 in (12) in such a way that  δ  converges to δ that is designed in the previous step 

(δdes). 

Step 1: Design 𝐮𝟏 and 𝛉 

First, consider the following change of variables 

 coscos
1 1

v u   (13) 
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 sinsin
2 1

v u   

So, the equations in (9) and (10) can be written as 

1 1
x v d    

2 2
y v d    

(14) 

Now, the problem is finding v1 and v2 in presence of unknown uncertainties d1 and d2 such thatx  and 

y converge to the xdes and ydes respectively. The controller design has been presented for the first 

equation in (14) and designing controller for the second equation in (14) is quite similar. 

Considering the error as  x̃ = x − xdes, we choose the integral sliding surface s(t) as below 

   Λx

0

t
s t x d      (15) 

Where s(t) ∈ ℝ  and Λ > 0 is an arbitrary positive constant. 

To establish the sliding mode, the reaching condition has been selected as 

   s t rs sgn s     (16) 

Where r and ρ are positive constants. 

We select the input control v1 as follow for the system in (14) 

 1 Λxdesv x rs sgn s      (17) 

Substituting (17) into (14) results in the following equation for the closed loop system 

   
1

s t rs sgn s d      (18) 

It is shown in the following theorem that the input control (17) will stabilize the system in (14) if ρ >
ε1. This means that we should know the upper bound ofd1. 

Theorem1. Consider the first equation in (14). By applying the input control (17) withΛ > 0, r > 0 

andρ > ε1, the closed loop system of error is asymptotically stable and  x exponentially converges to 

xdes . In this case,ε1 denotes the upper bound of the uncertainty and disturbance denoted byd1.  

Proof:  Consider the following Lyapunov candidate function:  

21

2
V s   (19) 

Taking the derivative of  V with respect to time and substituting from (14), (15) and (17) results in 

  

           Λx Λ Λ Λ Λ
1 1 1 1

V ss s x s x x x s v d x x s x x rs sgn s d x x s rs sgn s d
des des des des

                     

    2 2 2
1 1 1 1

s rs sgn s d r s s sd r s s s d r s s                    

(20) 
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Equation (20) shows that the condition  ρ > ε1 is a sufficient condition for the derivative of lyapunov 

function to be negative. 

Using Lyapunov theorems, negativity of the derivative of Lyapunov function shows that s(t) and 

ṡ(t)tends to zero. So 

  Λ 0 Λs t x x x x        (21) 

And this means that  

 ΛΛ 0 0tx ex x x x x x
des

          
(22) 

Design of the input controller v2 for the second equation in (14) is similar to (17). So, without loss of 

generality we can consider both  v1 and v2 as follow 

 Λ sgn
1 1 1 1 1 1

v x x r s s
des

      

 Λ sgn
2 2 2 2 2 2

v y y r s s
des

      

(23) 

Where Λ1, Λ2, r1, r2  are real positive constants and the inequalities ρ1 > ε1  and ρ2 > ε2  should be 

satisfied. On the other hand, the sliding surfaces s1 and s2are defined as follow 

   Λ
1 1

0

t
s t x x d      

   Λ
2 2

0

t
s t y y d      

(24) 

Now, after achieving  v1 and v2 from (23), according to the equations in (13)u1 and the desired θ 

(θdes) can be obtained from the following relations 

 

2 2
1 1 2

u v v    

1 2tan

1

v

des v


 
  

 
 

  

(25) 

Assumption 1: It is assumed in this paper thatu1 ≠ 0. 

This assumption means that during achieving the desired point, the probe must not be stopped. 

Step 2:  Design 𝛅 

In this step, the steering offset  δ in (11) has been designed in such a way that θ converges to θdes in 

(25). 

Consider the equation in (11) as follows 
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  1 3k u A B d           (26) 

Where A ≜ −kεu1 and  B ≜ ku1. Define a new sliding surface as follows 

   Λ
3 3

0

t
s t d        (27) 

where θ̃ = θ − θdes and Λ3 is a arbitrary positive constant. Now, choosing δ as below for the system 

in (26) results in θ → θdes 

  1
Λ sgn

3 3 3 3 3
A r s s

des desB
           (28) 

Where r3, Λ3 and ρ3 are positive constants. It should be noted that according to the Assumption 1, B ≠
0 and we can use 1/B in (26). 

Theorem2. Consider the equation in (11). By applying the input steering offset δ as in (28) with Λ3 >
0, r3 > 0 and  ρ3 > ε3,  the closed loop system of error is asymptotically stable and  θ exponentially 

converges to θdes . In this case ε3 denotes the upper bound of the uncertainty and disturbanced3.  

Proof:  consider the following lyapunov candidate function:  

2

3

1

2
V s   (29) 

Taking the derivative of  V with respect to time results in 

 

𝑉̇ = 𝑠3𝑠̇3 = 𝑠3 (𝜃̇̃ + Λ3𝜃̃) = 𝑠3(𝜃̇ − 𝜃̇𝑑𝑒𝑠 + Λ3𝜃̃) = 𝑠3(𝐴𝜃 + 𝐵𝛿 + 𝑑3 − 𝜃̇𝑑𝑒𝑠 + Λ3𝜃̃)

= 𝑠3 (𝐴𝜃 + 𝐵
1

𝐵
{𝜃̇𝑑𝑒𝑠 − Λ3𝜃̃ − 𝐴𝜃 − 𝑟3𝑠3 − 𝜌3𝑠𝑔𝑛(𝑠3)} + 𝑑3 − 𝜃̇𝑑𝑒𝑠 + Λ3𝜃̃)

= 𝑠3(−𝑟3𝑠 − 𝜌3𝑠𝑔𝑛(𝑠3) + 𝑑3) = −𝑟3|𝑠3|2 − 𝜌3|𝑠3| + 𝑠3𝑑3

≤ −𝑟3|𝑠3|2 − 𝜌3|𝑠3| + |𝑠3||𝑑3| ≤ −𝑟3|𝑠3|2 + (𝜀3 − 𝜌3)|𝑠3| 

(30) 

Equation (30) shows that the conditionρ3 > ε3 is a sufficient condition for the negativity of derivative 

of lyapunov function. 

Similar to the Theorem 1 and using lyapunov conditions, negativity of the derivative of lyapunov 

function results in convergence of θ to  θdes. 

 

Step 3:  Design 𝐮𝟐 

The last step of designing the tracking controller is to design u2 in (12) such thatδ converges to the 

δdes in (28). This u2 has been offered as below 

 2 4 4 4 4 4Λ sgndesu r s s       (31) 

Where  



   S. Zamiri, A. Vahidian Kamyad / J. Math. Computer Sci.    14 (2015) 108 - 123 
 

116 
 

   Λ
3 4

0

t
s t d       4Λ 0   4r 0   4 4       (32) 

Theorem3. Consider the equation in (12). By applying u2 as (31) withΛ4 > 0, r4 > 0 andρ4 > ε4, the 

closed loop system is asymptotically stable and  δ exponentially converges to  δdes . In this case ε4 

denotes the upper bound of the uncertainty and disturbanced4.  

Proof. The proof is similar to the proof of theorems 1 and 2. 

By designing u1 and u2 from Theorems 1 and 3 respectively, the probe tip tracks the desired path 

[xdes, ydes]T in the presence of uncertainty and disturbanced(t). 

 

B. Robust-Adaptive controller 

In the previous part, it has been assumed that the upper band of uncertainties in the system e.i. 𝜀𝑖, 𝑖 =
1, … ,4 are known and available, while it may not be possible in practice. Therefore, in this part, the 

previous controllers have been extended and for each equation, a robust- adaptive controller has been 

designed in such a way that the system tracks the desired trajectory even if there is no information of the 

upper band of uncertainty and disturbance in the system.  For each case, a sliding mode control has been 

used and an adaptive law has been designed to estimate the upper bound of the uncertainty. 

Similar to the part A, the robust-adaptive tracking controller is designed in three steps: 

 

Step 1: Design 𝐮𝟏 and 𝛉 

Consider the first equation in (14) and suppose that ε̅1is an estimation of the upper bound ofd1(ε1). 

Now, instead of (17), consider the input control v1 as follows 

 11 Λ sgndesv x x rs s      (33) 

Where the parameter ε̅1 is obtained from the following adaptive update law 

 1 K ssgn s    (34) 

Where K > 0 is adaptive gain? Actually ε̅1  that is an estimation of upper bound of uncertainty and 

disturbance, is estimated from the equation in (34). Now, consider the following Theorem. 

Theorem4. Consider the first equation in (14). By applying the input control (33) withΛ > 0, r > 0 and 

ρ > 1 along with the adaptive law in (34) withK > 0, theclosed loop system of error is asymptotically 

stable and  x exponentially converges to  xdes .  

Proof:  Consider the following lyapunov candidate function:  

 
22

1

1 1

2 2
V s t

k
    (35) 

Where  ε̃1(t) = ε̅1(t) − ε1. Taking the derivative of  V with respect to time and substituting from (33) 

and (34) results in 
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𝑉̇ = 𝑠𝑠̇ +
1

𝑘
𝜀1̃𝜀1̇̃ = 𝑠(−𝑟𝑠 − 𝜌𝜀1̅𝑠𝑔𝑛(𝑠) + 𝑑1) +

1

𝑘
𝜀1̃𝜀1̇̅

= −𝑟|𝑠|2 − 𝜌𝜀1̅𝑠𝑠𝑔𝑛(𝑠) + 𝑠𝑑1 +
1

𝑘
𝜀1̃𝑘𝜌𝑠 𝑠𝑔𝑛(𝑠)

= −𝑟|𝑠|2 − 𝜌𝜀1̅𝑠𝑠𝑔𝑛(𝑠) + 𝑠𝑑1 + (𝜀1̅ − 𝜀1)𝜌𝑠 𝑠𝑔𝑛(𝑠)
≤ −𝑟|𝑠|2 − 𝜀1𝜌𝑠 𝑠𝑔𝑛(𝑠) + |𝑠|𝜀1 ≤ −𝑟|𝑠|2 + (1 − 𝜌)𝜀1|𝑠| < 0 

)36) 

Equation (36) shows that the condition ρ > 1is a sufficient condition for the derivative of lyapunov 

function to be negative. Similar to the Theorem 1, negativity of the derivative of lyapunov function results 

in convergence of x toxdes. 

As it is clear, design of the input controller v2 for the second equation in (14) is similar to (33). So, 

without loss of generality we can consider both  v1 and  v2 as follow 

For the first equation in (14) we have 

𝑣1 = 𝑥̇𝑑𝑒𝑠 − Λ1𝑥̃ − 𝑟1𝑠1 − 𝜌1𝜀1̅𝑠𝑔𝑛(𝑠1) 

𝜀1̇̅ = 𝐾1𝜌1𝑠1 𝑠𝑔𝑛(𝑠1) 
(37) 

And for the second equation we have 

𝑣2 = 𝑦̇𝑑𝑒𝑠 − Λ2𝑦̃ − 𝑟2𝑠2 − 𝜌2𝜀2̅𝑠𝑔𝑛(𝑠2) 

𝜀2̇̅ = 𝐾2𝜌2𝑠2 𝑠𝑔𝑛(𝑠2) 
(38) 

Where Λ1, Λ2, r1, r2, K1  and K2  are real positive constants and the conditions ρ1 > 1and ρ2 > 1  are 

satisfied. After designing v1and v2, u1 and θdes can be obtained from the equation in (25). 

 

Step 2:  Design 𝛅 

The steering offset  δ in (11) has been designed in this step, in such a way that even if there is no 

information ond3, θ converges to θdes(θdes is obtained from the previous step) 

Consider the equations in (26) and (27), chooseδ as below for the system in (26)  

𝛿𝑑𝑒𝑠 =
1

𝐵
{𝜃̇𝑑𝑒𝑠 − Λ3𝜃̃ − 𝐴𝜃 − 𝑟3𝑠3 − 𝜌3𝜀3̅𝑠𝑔𝑛(𝑠3)} (39) 

Where r3, Λ3 and ρ3 are positive constants and ε̅3 is obtained from the following adaptive law 

𝜀3̇̅ = 𝐾3𝜌3𝑠3 𝑠𝑔𝑛(𝑠3) (40) 

Where K3 > 0 is the adaptive gain? 

Theorem5. Consider the equation in (11). By applying the input steering offset δ as (39) with Λ3 > 0, 

r3 > 0 and ρ3 > 1 along with the adaptive law in (40) with K3 > 0  ,θ exponentially converges to θdes . 

In this case ε̅3 denotes the estimation of the upper bound of the uncertainty and disturbanced3.  

Proof:  consider the following lyapunov candidate function:  

𝑉 =
1

2
𝑠3

2 +
1

2𝑘3
𝜀3̃(𝑡)2 (41) 

Taking the derivative of  V with respect to time results in 
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𝑉̇ = 𝑠3𝑠̇3 +
1

𝑘3

𝜀3̃𝜀3̇̃ = 𝑠3(−𝑟3𝑠3 − 𝜌3𝜀3̅𝑠𝑔𝑛(𝑠3) + 𝑑3) +
1

𝑘3

𝜀3̃𝜀3̇̅

= −𝑟3|𝑠3|2 − 𝜌3𝜀3̅𝑠3𝑠𝑔𝑛(𝑠3) + 𝑠3𝑑3 + (𝜀3̅ − 𝜀3)𝜌3𝑠3𝑠𝑔𝑛(𝑠3)
≤ −𝑟3|𝑠3|2 − 𝜀3𝜌3𝑠3𝑠𝑔𝑛(𝑠3) + 𝜀3|𝑠3| ≤ −𝑟3|𝑠3|2 + (1 − 𝜌3)𝜀3|𝑠3| < 0 

(42) 

Equation (42) shows that the condition ρ3 > 1 is a sufficient condition for the negativity of derivative of 

lyapunov function. 

Similar to the Theorem 4 and using lyapunov conditions, negativity of the derivative of lyapunov function 

results in convergence of θ to θdes. 

 

Step 3:  Design 𝐮𝟐 

The last step of designing the tracking controller is to design u2 in (12) such thatδ converge to the δdes in 

(39). This u2 has been offered as below 

𝑢2 = 𝛿̇𝑑𝑒𝑠 − Λ4𝛿 − 𝑟4𝑠4 − 𝜌4𝜀4̅𝑠𝑔𝑛(𝑠4) )43) 

Where ε̅4 is an estimation of  ε4 and is obtained from the following equation 

𝜀4̇̅ = 𝐾4𝜌4𝑠4 𝑠𝑔𝑛(𝑠4),     𝐾4 > 0 )44) 

Theorem6. Consider the equation in (12). By applying u2in (43) withΛ4 > 0,r4 > 0 and ρ4 > 1, the 

closed loop system of error is asymptotically stable and  δ exponentially converges to δdes . In this case ε̅4 

denotes the estimation of the upper bound of the uncertainty and disturbanced4.  

Proof. The proof is similar to the proof of Theorems4 and 5. 

By designing u1  and u2  from Theorems 4 and 6 respectively, the probe tip tracks the desired path 

[xdes, ydes]T in the presence of uncertainty and disturbance d(t) and when there is no information ond(t). 

 

4. Numerical simulations 

Some numerical examples have been presented in this Section to clarify the results of the previous section 

Example 1: Consider the following desired path for the flexible probe 

𝑥𝑑𝑒𝑠 = 𝑡 

𝑦𝑑𝑒𝑠 = sin (
𝑡

2
) 

(45) 

Suppose the uncertainty and disturbance di(t), i = 1,2, … ,4  for all equations in (9)-(12) is a random 

number between 1 and 2. So, an upper bound for di(t) can be considered as (ε1 = ε2 = ε3 = ε4 = 2). The 

aim is to design an robust sliding mode controller using theorems 1- 4. To use this theorem we choose ρ =
3 for all of them that is larger than the upper bound of uncertainties. The other controller parameters have 

been chosen as follow (they have been considered same for all of sliding mode controllers) 

Λ = 5, r = 3  )46( 

On the other hand, the probe parameters have been considered as [24] 

ε = 7.2,    k = 0.28 )47( 

Considering the initial condition of probe as [x0, y0]T = [1, −2]T, the results of simulation have been 

shown in Fig. 1 and Fig. 2. The tracking errors have been shown in Fig. 1.  This figure confirms that 

errors converge to zero. It is worth mention that some oscillations in the error signals that called 
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chattering, are because of the function sgn(s) in the input controllers. To counteract this phenomenon, 

there are some ways for example adding a damped continues term along with the sgn(s) with the aim 

of continuous improvement of control signal. 

 

Fig 2. Tracking errors in the direction of x and y in Example 1 

 

Fig. 2 shows the trajectory of probe along with the desired trajectory. This Figure confirms that in the 

presence of uncertainty and disturbances, the probe tracks the desired trajectory well. 

 

Fig 3. Probe trajectory and desired trajectory in Example 1 

 

Example 2: Consider the following desired path for the probe [38] 

 

xdes = t 

ydes =
a

2
(1 − cos (

πt

l
)) ,   a = 20, l = 30 

)48( 

Suppose that the probe is subjected to uncertainty similar to the previous example. The difference is 

that there is no information on the upper bound of this uncertainty. So, the robust-adaptive controllers 

in Theorems 4-6 are used for this example. 
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Consider the controller parameters as follow (the parameters are same for all of controllers) 

Λ = 5 ،  r = 3   ، ρ = 2  ،   K = 3 )49( 

Considering the probe parameters as in (47), the simulation results have shown in Fig. 3, Fig. 4 and 

Fig. 5with initial condition[x0, y0]T = [1, −2]T. 

 

Fig. 4 tracking errors in the direction of x and y in Example 2 

 

 

Fig. 5 Probe trajectory and desired trajectory in Example 2 
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Fig. 6 Estimated parameters ε̅1 and ε̅2 in Example 2 

 

Fig. 3 shows the trajectory errors that both go to zero. The trajectory of probe and desired trajectory 

both have been shown in Fig. 4. It is shown in this figure that the probe tracks the desired trajectory 

well. On the other hand, the estimations of the upper bound of disturbances have been shown in Fig. 5. 

This figure confirms that these estimations both are bounded. 

 

5.   Conclusions 

The trajectory tracking problem of bio-inspired flexible probesin the presence of uncertainty and 

disturbance was dealt with. First, a robust sliding mode controller is established to deal with the 

uncertainties and output disturbances with this assumption that the upper band of uncertainty in the 

system is known. Then, an adaptive rule has been designed to estimate the upper bound of the 

uncertainty and disturbance and the sliding mode controller has been extended so that even if there is 

no information on the uncertainty, the system is still stable and the probe continues to tracks the 

desired trajectory. Simulation results demonstrated the effectiveness of the proposed method. 
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