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Abstract

In this paper we prove some results on upward subsets of a Banach lattice X with a strong unit. Also
we study the best approximation in X by elements of upward sets, and we give the necessary and
sufficient conditions for any element of best approximation, by a closed subset of X.
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1. Introduction

The theory of best approximations is an important subject in Functional Analysis. It is a very
extensive field which has various applications ([2], [5], [7] and [10] ). Also the problems of best
approximation by elements of convex sets are welldeveloped and have many applications in different
areas of Mathematics ( [3], [4], [6], [8] and [12]). Downward and upward sets are not necessarily
convex and since, convexity is sometimes a very restrictive assumption, so we can use the so-called
downward and upward sets as good tools in the study of best approximation by closed and not
necessarily convex sets. Best approximation by downward sets and their properties have been studied
by several authors (for example see [1]).

The approximation properties of upward sets play a crucial role in this paper. We study some aspects
of best approximation by elements of closed upward sets, in a Banach lattice X with a strong unit. We
show that a closed upward set is proximinal, and we derive the necessary and sufficient conditions for
the uniqueness of best approximation. As we reminded, an upward set is not necessarily convex. We
show that this set is abstract convex with respect to a certain set of elementary functions (for the
definition of abstract convexity, see [11]). This fact allows us to examine the separation properties of
upward sets and gives the necessary and sufficient conditions for best approximations.
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2. Preliminaries

In this section, we introduce some basic definitions for the next sections. Let G be a non empty subset
of a normed linear space X. An element g, € G is called a best approximation to x € X from G if
forevery g € G,

lx—go ISl x — g |l.

On the other hand, recall that (see e.g. [13]) a point g, € G is called a best approximationto x € X
if

" X — gO ": d(le)l

Where
d(x,G) = inf gec Il x — g |l

The set of all such elements g, € G (called best approximations to x € X) is denoted by P; (x).
Thus

Pe(X)={go€G: lIx-golI=d(xG)}. @)

Hence P; defines a mapping from X into the power set of G, called metric projection onto G ( other
names are nearest point mapping and proximity map). If P; (x) contains at least one element, then
the subset G is call a proximinal set. In other words, if P;(x) = @, then G is called a proximinal set.
Also if each element x € X has a unique best approximation in G, then G is called a Chebyshev
subset of X.

It is well-known that Pg;(x) is a closed and bounded subset of X . If x € G then. P;(x) is located in
the boundary of G.

Definition 2.1 ( [14]) A vector space X which is ordered by a relation <, is called a vector lattice if
any two elements x,y € X have a least upper bound denoted by x vy = sup(x,y), a greatest lower
bound denoted by x Ay = inf(x,y) and the following properties are satisfied:

(1) x < yimpliesthat x + z < y + z, forallx,y,z € X,

(2) x = oimpliesthat tx > 0,forallx € Xandt € R™.

If a vector lattice X is equipped with a norm || . || for which
B) x| <|y|implies II x I<Il y I, for x,y € X,

then X (equipped with < and || . ||) is called a normed vector lattice. A complete normed vector
lattice is called a Banach lattice.

Example 2.2 Let S be a set, equipped with a sigma-field o. The space L*(S, o) of all bounded,
o —measurable real functions on S is a vector lattice for the pointwise ordering f < g means
f(s) < g(s),Vs € S. The supremum norm, defined by ||f || = supses| f(s) |, satisfies in 2.1(3)
and the space L*(S, o) is a normed vector lattice. The space L*(S, o) is also complete by supremum
norm, in the sense that Cauchy sequences converge to bounded, measurable limit functions.
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If X is a vector lattice, an element 1 € X is called a strong unit if for each x € X, there exists 0 <
a € Rsuchthatx < al.

Using a strong unit 1, we can define a norm on X by

lx ||= infla > 0: |x|< al} Vx € X. (2
Then
Bx,r):={yeX: ||lx-y|| <r}={yeX: x—r1 <y<x+rl} 3)
Also we have
| x| < [Ix||1 for all x € X. (@)

[*°(S, Y, ,u) denotes the lattice of all essentially bounded functions defined on the space S withao —
algebra of measurable sets, ). , and a measure 1. Also th lattice of all bounded functions defined on X
is an example of Banach lattices with the strong units.

Recall that a subset G of an ordered set X is said to be upward if

g€EG,g<x>xc€LQq.

If X is a normed linear space and G is a subset of X, we shall denote by intG, clG and bdG the
interior, the closure and the boundary of G, respectively. If X is a lattice and there exists the greatest
elements of G, we shall denote it by maxG.

3. Upward sets and their approximation properties

Let X be a Banach lattice with a strong unit 1. In this section we investigate the best approximations
in X by elements of upward sets. In particular, we show that the greatest element, in the set of best
approximations, exists.

Proposition 3.1 Let G be an upward subset of X and x € X. Then the following statements are true:
(D) If x € G,thenx + €1 € intG,Ve > 0,
(2)intG = {x € X: x — €1 € G, forsomee > 0}.
Proof: (1) Lete > Obegivenand x € G. suppose that
W={eX:ly—(x+c¢€l)l< ¢},
be an open neighborhood of (x + €1). Then, by (3),
W={yeX:x<y<x+ 21}

Since G isan upward setand x € G, itfollowsthat W < G,andso x + €1 € intG.
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(2) Let x € intG. Then there exists 5 > 0 such that the closed ball B(x,&y) < G. In view of (3) ,
x — g1 € G. Conversely, suppose that there exists & > 0such that x — €1 € G. Then, as we
saw, x = (x — €1) + €1 € intG, which completes the proof. o

Corollary 3.2 Let G be a closed upward subset of Xand g € G. Theng € bdG ifandonly if g —
al & G,foreacha > 0.

Lemma 3.3 Let G be a closed upward subset of X. Then G is proximinal in X.

Proof: Let x, € X \ G be arbitrary and r := d(x¢,G) = inf ge¢ | xo — g II> 0. This implies
that for each ¢ > 0, there exists g . € G such that || x, — g ¢ I< r + €. Then, by (3), we have

—r+e1<g, —x <+ ol
Let go = xo + rl. Then, we have
I xo — go lI=l =71 lI= 1 = d(x,G),

andhence go + €1 = xg+ 11 + el = x4+ (r + €)1 > g .. SinceGisupwardand g . €
G, it follows that g, + €1 € G, for each € > 0. Since G is closed, we have g, € G and then g, €
P (xg). Thus the result follows. o

Remark 3.4 We proved that for each x, € X \ G, the set P; (x,) contain the element g, = x0 +
riwithr = d(x,,G). If x, € Gthen g, = xyand P; (xy) ={g0}-

Proposition 3.5 Let G be a closed upward subset of X and x, € X. Then there exists the greatest
element g, = max P; (x,) of the set P; (xq), namely go = xo + r1, wherer := d(x,, G).

Proof: If x, € G, then the result holds. Assume that x, € G and g, = xo + 1.

Then, by remark 3.4, we have go€ P; (xy). By applying (3) and the equality ll x, — go lI= 1,
we get

x < xog+ 11l =gy forall x € B(xq,1).

This implies that g, is the greatest element of the closed ball B(x,,7). Now, let g € P (x,) be
arbitrary. Then || x, — g ll= r,andsog € B(x,,1). Thereforeg < g, and hence, g, isthe
greatest element of P (x,). O

Corollary 3.6 Let G be a closed upward subset of X, x, € X and g, = max P; (xg). Then,

Yo = Xg-
Corollary 3.7 Let G be a closed upward subset of X and x € X be arbitrary. Then
d(x,G) = minfa =2 0: x + al € G}.

Proof:LetA = {a > 0: x + a1 € G}. If x € Gthenx + 01 = x€G,andsomin A4 =
0 = d(x,G).Suppose that x € G then r := d(x,G) > 0.Leta > 0 be arbitrary such that x +
al € G. Thus, we have

a=llall=l (x +al) — x 1= d(x,G) = 7.
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Since, by proposition 3.5, x + r1 € G, it followsthat r € A. Hence, min A = r which
completes the proof. O

4. Characterization of best approximation by upward sets

In this section, we present the characterization of upward sets in terms of separation from outside
points. Throughout this section, X is a Banach lattice. Let ¢ : X X X — R be a function defined

by
@(x,y):= sup{a € R: al < x + y}, (x,y € X). (5)

Since 1 is a strong unit, it follows thatthe set {& € R: a1l < x + y}isnonempty and bounded
from above ( by the number || x + y ). Clearly this set is closed. It follows from the aforesaid and
the definition of ¢ that the function ¢ enjoys the following properties.

—oo < e, )<l x+yI, forall x,y € X; (6)
e, y)1 < x + y, forall X,y € X; @)
p(x,y) = ¢y, x), for all X,y €X; (8)

ox,—x)=supfa E R: al < x —x = 0}=0, forall x € X; 9

o,y + al) = o(x,y) + a, forall X,y € Xand a € R; (10)
o(x + al,y) = o(x,y)+ « forall X,y € Xand a € R; (11)
o(rx,vy) = yo(x,y), forall x,y € Xandy > 0. (12)

Foreachy € X, define the function ¢, : X — R by
oy (x):= o(x,y) forall x € X. (13)

The function f : X — R is called topical if this function is increasing (x = y = (x) = f(y))and
plus-homogeneous (f(x + A1) = f(x) + A forall x € X and A € R). The definition of topical
function in finite dimensional case can be found in [11].

Lemma 4.1 The function ¢,, defined by (13) is topical.

Proof: we try to check the conditions. Let x,z € X withx < z. Then{a € R: a1l < x + y} C
{a € R: al < z + y}. Hence,

@y(x) = sup{a € R: al < x + y} < sup{a € R: al < z + y} = ¢,(2).
Letx € Xand A € R be arbitrary. Then
@y(x + A1) = sup{a € R: al < x + A1 + y}

= sup{a € R: (¢ — )1 < x + y}

sup{fB + A € R: f1 < x + y}

=sup{f ER: 1 <x+y}+ 1 =¢9,x)+ A o
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Proposition 4.2 The function ¢,, is Lipschitz continuous.
Proof: Let x,z € X be arbitrary. Since | x — z| <Il x — z |l 1, it follows that
z—=lx—-—zIl1<x<z+lIlx—-2z I 1
In view of lemma 4.1, we have
Py2)— Il x — z IS @y(x) < @@+l x — z |,
and hence
Py(x) —oy@) | <llx —z . (14)
Therefore, ¢,, is Lipschitz continuous. O
As a direct result of (14), we have:
Corollary 4.3 The function ¢ defined by (5) is continuous.

Lemma 4.4 Let G be a closed upward subset of X, y, € bdG and let ¢ be the function defined by
(5). Then, ¢(—g,y9) < 0,forallg € G.

Proof: Assume that there exists g, € G such that ¢(gg,v9) > 0. Thensup{a € R: al <

—go + Yo} > 0.So there exists a, > 0suchthat ¢yl < —g, + y,. This means that a,1 —
Yo < —4o- Therefore y, — ay1 = g,.Since G isupward and g, € G, it follows that y, —

apl € G. So, by proposition 3.1 (2), we have y, € intG. This is a contradiction, which completes
the proof. O

Now, we give the characterization of upward sets in terms of separation from outside points. For
an easy reference we present the following theorem.

Theorem 4.5 Let G be a subset of X and ¢ be the coupling function of (5). Then the following
statements are equivalent:

(1) G is an upward set,
(2) Foreachx € X\ G, we have
¢(-=g9,x) < 0,vg € G,
(3) Foreach x € X\ G, there exists [ € X such that
o(—g, ) < 0 < o(—x,1) Vg € G.

Proof:(1) = (2). Suppose that G is an upward set and that exists x € X \G, g € G such
that o(—g,x) = 0. Then, by (7) we have 0 < ¢(—g,x)1 < x — g,andso x = g. Since Gisan
upward setand g € G, it followsthat x € G. This is a contradiction.

(2) = (3). Assume that (2) holdsand x € X \ G is arbitrary. Then by hypothesis, we have

o(—g,x) <0 Vg € G.
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Now, let I = x € X, using (9), foreach g € G, we have :

(=g D) = o(=g,x) < 0 = ¢o(—x,x) = @(—x,1).

(3) = (1). Suppose that (3) holds and G is not an upward set. Then there exists g, € G and x, €
X \G with x, > g,. It follows, by hypothesis, that there exists [ € X such that

(=g, 1) < 0 < p(—x41), Vg € G. (15)
Since ¢(., 1) is increasing, we have
0 < o(=x0,)) = ¢(=go,D.
This contradicts (15) . o

Theorem 4.6 Let ¢ be the function defined by (5). Then for a subset G of X the following statements
are equivalent:

(1) G is a closed upward subset of X,
(2) G is upward, and for each x € X the set

H={ax€R:x— al € G}
is closed in R,
(3) Foreach x € X\ G, there exists I € X such that

(=9, <0 < o(=x,D), (g € G)
(4) Foreachx € X\ G, there exists | € X such that
SupgecP (=9, 1) < @(=x,1).

Proof: (1) = (2). Assume that G is a closed upward subset of X and letx € X,a;, € R,x — a1 €
G(k = 1,2,...)and @, — a €R. Then, we have

Il (x—al) —(x—al ll=ll (a —a)l lI=|a — a,|— 0,ask = +oco.

Sincex — ay,1 € G,(k = 1,2,...),and G is closed, it follows that x — a1l € G,andsoa € H.
Hence, H is a closed subset of R.

(2)= (3). Suppose that (2) holds and x € X \ G is arbitrary. We claim that there exists a, > 0 such
that —a, € H. Indeed, if —a € H, forall @ > 0, then due to the closedness of H, we have 0 €
H. Thisimpliesthat x = x — 01 € G. Thisis a contradiction. Now, let | = x + a31 € X. We
show that ¢(—g,l) < 0, forall g € G. Assume that there exists g, € G such that ¢(—g,,1) = 0.
Then by (7) we have 0 < ¢(—go, 1)1 < —go+ l,andso gy < | = x + ay1.Since G isan
upward set and g, € G, it follows that x + ay1 € G, and consequently —a, € H. Thisisa
contradiction. Hence, ¢(—g,l) < 0,forall g € G. On the other hand, we have

o(—x,1) = sup{la ER: a1l < —x + [}

=sup{ad €E R: al < —x + oyl + x = ay 1}
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= sup{a ER: (a— ao)l < 0}

=sup{d + ap € R; 11 < 0}

=supfA € R: 11 < 0}+ ay = qp > 0.
(3) = (4) is abvious.

(4) = (1). Suppose that (4) holds and that G is not an upward set. Then there exists g, € G and
X9 € X\ Gwith x, = g,. By hypothesis, there exists [ € X such that

Supgec (=9, 1) < @(=xo,D).
Since ¢(., 1) is increasing, it followes that
P(=x0,D) < 9(=go.1) = supgecp(=g.1) < @(=xo,1).

This is a contradiction. Hence, G is an upward set. Finally, assume that G is not closed. Then there
exists a sequence {g,}ns0 € Gandx, € X\ G suchthat|l g, — xo l= 0,asn —
+o00. Since x, € X \ G, by hypothesis, there exists [ € X such that

supgecp(—g,1) < @(—x0,1).
Thus, we have
O(—gn 1) < supgegp(—g, D), vn > 1.

By continuity of ¢ ; = ¢(., ), it follows that ¢ (—x,,1) < supgege(—g,1). This is a contradiction,
which completes the proof. O

Lemma 4.7 Let G be a closed upward subset of X, g, € bdG and [
(5). Then

Jo - Let @ be defined by

Proof: Since g, € bda, it follows, by lemma 4.4, that

»(9,) = ¢(g9,90) < 0, Vg € G.

Also, we have

(=90, 1) = sup{a € R: al

IA

—90 + 1}

= supfa €E R: a1l < —g, + go = 0}

= 0. O
References

[1] H. Alizadeh Nazarkandi, “Downward sets and their topological propertices”, World Applied
Sciences journal. 18(11) (2012), 1630 — 1634.

[2] H. Asnashari, “Two continvity concepts in Approximation Theory”, J. Tjmcs, 4 (2012), 32-36.

352



Z. Soltani, H.R. Goudarzi / J. Math. Computer Sci. 14 (2015), 345-353

[3] C. K. Chui, F. Deutsch, J. D. Ward, “Constrained best approximation in Hilbert spaces”,
Conster. Approx., 6 (1990), 35-64.
[4] C. K. Chui, F. Deutsch, J. D. Ward, “Constrained best approximation in Hilbert spaces 117, J.
Approx. Theory, 71 (1992), 213-238.
[5] F. Deutsch, “Best approximation in inner product spaces”, Springer - Velage, New York,
(2000).
[6] F. Deutsch, W. Li, J. D. Ward, “A dual approach to constrained in- terpolation from a convex
subset of Hilbert spaces”, J. Approx. Theory, 90(1997), 385-414.
[7]1 R. A. Halmos, “A course on Optimization and Best approximation”, CLNM257, Springer,
(1972).
[8] V. Jeyakumar, H. Mohebi, “Limiting and e-subgradient characterizations of constrained best
approximation”, J. Approx. Theory, 135 (2005), 145-159.
[9] J. E. Martinez - Legaz, A. M. Rubinov, I. Singer, “Downward sets and their sepration and
approximation properties”, J. Global Optimization, 23(2002), 111-137.
[10] H. Shojaei, R. Mortezaei, “Common Fixed Point for Affine Self Maps Invariant
Approximation in P-normed Spaces”, J.Tjmcs, 6(2013), 201-209.
[11] 1. Singer, “Abstract convex Analysis”, Wiley-Interscience, New York, (1987).
[12] I. Singer, “Best approximation in normed linear spaces by elements of linear subspaces”,
Springer-Verlag, New York, (1970).
[13] I. Singer, “The theory of best approximation and Functional Analysis”, Re- gional
Conference Series in Applied Mathematics, No. 13, (1974).
[14] B. Z. Vulikh, “Introduction to the theory of partially ordered vector spaces”, Wolters -
Noordhoff, Groningen, (1967).

353



