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Abstract

The present paper deals with unique fixed point results for quasi contraction mappings on a
metric space satisfying some generalized inequality conditions in first section and unique common
fixed point result for asymptotically regular mappings of certain type and satisfying a generalized
contraction condition in another section. The results obtained generalize the earlier results of Fisher
(1979), Hardy and Roger (1973) and others in turn. c©2016 All rights reserved.
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1. Introduction

Definition 1.1 ([1]). A mapping T on a metric space X into itself is said to be a quasi – contraction
if and only if there exist a number c, with 0 ≤ c < 1, such that

d(Tx, Ty) ≤ cmax{d(x, y)d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
for all x, y in X.

Definition 1.2 ([1]). X is said to be T orbitally complete if and only if every Cauchy sequence
which is contained in the sequence {x, Tx, . . ., T nx, . . .} for some x in X converges in X.
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He then established the following basic results for such mappings:

Theorem 1.3. Let T be a quasi contraction on the metric space X into itself and let X be T orbitally
complete. Then T has a unique fixed point in X.

Theorem 1.4. Let T be a continuous mapping on the complete metric space X into itself satisfying
the inequality:

d(T px, T qy) ≤ cmax{d(T rx, T sy), d(T rx, T γ
′
x), d(T sy, T s

′
y)} : 0 ≤ r, r′ < p and 0 ≤ s, s′ ≤ q}

for all x, y in X, where 0 ≤ c < 1, for some positive integer p and q, then T has a unique fixed point.

For a continuous quasi contraction mapping the following result is proved.

Theorem 1.5. Let T be a quasi contraction on the metric space X into itself and let T be continuous.
Then T has a unique fixed point in X.

It may be noted that in case when T is a quasi contraction for which q(or p) = 1, the continuity
condition of T is unnecessary. We then have,

Theorem 1.6. Let T be a mapping on the complete metric space X into itself satisfying the inequality

d(T px, Ty) ≤ cmax{d(T rx, T sy), d(T rx, T γ
′
x), d(T sy, T s

′
y)} : 0 ≤ r, r′ < p and s = 0, 1}

for all x, y in X, where 0 ≤ c < 1, for some positive integer p . Then T has a unique fixed point in
X.

In the next section we obtain some fixed point results for such mappings, which satisfy a more
general inequality conditions.

2. Results for Quasi contraction mappings

Theorem 2.1. Let T be a quasi contraction on the complete metric space X into itself satisfying the
inequality

d(Tpx, T qy) ≤ cmax{d(T γx, T sy), d(T γx, T γ
′
x), d(T sy, T s

′
y), d(T γ

′
x, T s

′
y)}, (2.1)

0 ≤ γ , γ < p and 0 ≤ s, s′ ≤ q for all x, y in X where 0 ≤ c < 1 and for some fixed positive integers
p and q. Then T has a unique fixed point in X.

Proof. Without loss of generality we assume that 1
2
≤ c < 1. Inequality (2.1) will still hold but we

will then have c
1−c≥ 1. We assume that p ≥ q. Let for an arbitrary point x in X the sequence {Tnx}

is unbounded.
Then the sequence {d(Tnx, Tqx) : n = 1, 2, . . . } is unbounded and so there exists an integer n such
that

(T nx, T qx) > (
c

1− c
) max{d(T ix, T qx) : 0 ≤ i < p}.

Suppose n is the smallest such integer satisfying the above inequality and since c
1−c≥ 1, we must

have n > p≥q.



A. Choudhury, T. Som, J. Math. Computer Sci. 16 (2016), 26–32 28

Thus

d(T nx, T qx) > (
c

1− c
) max{d(T ix, T qx) : 0 ≤ i < p}

≥ max{d(T γx, T qx) : 0 ≤ γ < n}.
(2.2)

It now follows from inequality (2.2) that

(1− c)d(T nx, T qx) > cmax{d(T ix, T qx) : 0 ≤ i ≤ p}
≥ cmax{d(T ix, T γx)− d(T γx, T qx) : 0 ≤ i ≤ p and 0 ≤ γ < n}
≥ cmax{d(T ix, T γx)− d(T nx, T qx) : 0 ≤ i ≤ p and 0 ≤ γ < n}

(2.3)

and so
d(T nx, T qx) > cmax{d(T ix, T γx) : 0 ≤ i ≤ p and 0 ≤ γ < n}. (2.4)

We will now prove that

d(T nx, T qx) > cmax{d(T ix, T γx) : 0 ≤ i, γ < n}. (2.5)

For, if not so then we have

d(T nx, T qx) ≤ cmax{d(T ix, T γx) : 0 ≤ i, γ < n}

i.e.,
d(T nx, T qx) ≤ cmax{d(T ix, T γx) : p < i, γ < n}. (2.6)

In view of inequality (2.4), we can apply inequality (2.1) indefinitely to inequality (2.6), since when-
ever terms of the form d(Tix, Tγx) appear with 0 ≤ i ≤ p, they can be omitted because of inequality
(2.4). This means that

d(T nx, T qx) ≤ ck max{d(T ix, T γx) : p < i, γ < n}
for k = 1, 2, . . . and on letting limit k tending to infinity it follows that d(Tnx, Tqx) = 0, which gives
a contradiction. So inequality (2.5) now follows. However, on using inequality (2.1), we now have

d(T nx, T qx) ≤ cmax{d(T γx, T sx), d(T γx, T γ
′
x), d(T sx, T s

′
x), (T γ

′
x, T s

′
y)

: n− p ≤ γ, γ′ ≤ n and 0 ≤ s, s′ ≤ q}
≤ cmax{d(T γx, T sx) : 0 ≤ γ, s ≤ n},

which is impossible, because of inequality (2.5). This contradiction further implies that the sequence
{Tnx : n = 1, 2,. . . } must be bounded.
Now taking

M = sup{d(T γx, T sx) : γ, s = 0, 1, 2, . . .} <∞
and then for arbitrary ε > 0, choosing N such that cNM < ε, it follows that for m, n ≥N max{p, q}
and on using inequality (2.1) N times we get

d(Tmx, T nx) ≤ cNM < ε.

Thus the sequence {Tnx: n = 1,2,. . . } is a Cauchy sequence in the complete metric space X and so
has a limit z in X. Since T is continuous it follows that Tz = z and so z is a fixed point of T . The
uniqueness of z follows easily from the inequality (2.1).This completes the proof of the Theorem.
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Our next generalization goes as follows.

Theorem 2.2. Let T be a mapping on the complete metric space X into itself satisfying the inequality

d(T px, Ty) ≤ cmax{d(T γx, T sy), d(T γx, T γ
′
x), d(y, Ty), d(T γ

′
x, Ty) : 0 ≤ γ, γ′ ≤ p and s = 0, 1}

for all x, y in X where 0 ≤ c < 1, for some fixed positive integer p. Then T has a unique fixed point
in X.

Proof. Let x be an arbitrary point in X. Then, as in the proof of 2.1, the sequence {T nx} is a
Cauchy sequence in the complete metric space X and so has a limit z in X. For n ≥ p, we now have

(T nx, Tz) ≤ cmax{d(T γx, T sx), d(T γx, T γ
′
x), d(z, Tz), (T γ

′
x, Tz) : n− p ≤ γ, γ′ ≤ nands = 0, 1}.

Taking n tends to infinity it follows that

d(z, Tz) ≤ cmax{d(z, T sz) : s = 0, 1}
= cd(z, Tz).

Since c < 1, we see that z is a fixed point of T. This completes the proof of the theorem.

The following corollary is immediate when p = 1.

Corollary 2.3. Let T be a mapping on the complete metric space X into itself satisfying the inequality

d(Tx, Ty) ≤ cmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y in X, where 0 ≤ c < 1. Then T has a unique fixed point in X.

We now note that the condition that T be continuous when p,q ≥ 2 is necessary in Theorem 1.5
This is easily seen by considering X be the closed interval [0, 1] with the usual metric. Define a
discontinuous mapping T on X by

Tx =

{
1 if x = 0,
1
2
x if x 6= 0.

We then have

d(T px, T qy) =
1

2
d(T p−1x, T q−1y)

for all x, y in X and so T is a quasi contraction with c = 1
2
. T however has no fixed point.

We now prove a fixed point theorem on a compact metric space.

Theorem 2.4. Let T be a continuous mapping on the compact metric space X into itself satisfying
the inequality

d(T px, T qy) < max{d(T γx, T sy), d(T γx, T γ
′
x), d(T sy, T s

′
y), d(T γ

′
x, T s

′
y)

: 0 ≤ γ, γ′ ≤ p and 0 ≤ s, s′ ≤ q}

for all x, y in X for which the right hand side of the inequality is positive. Then T has a unique fixed
point in X.
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Proof. Suppose first of all that T is a quasi contraction. The result then follows from Theorem 2.1
If T is not a quasi- contraction and if {cn: n = 1,2,. . . } is a monotonically increasing sequence of
numbers converging to 1, then there must exist sequences. {xn} and {yn} in X such that

d(T pxn, T
qyn) > cn max{d(T γxn, T

syn), d(T γxn, T
γ′xn), d(T syn, T

s′yn), d(T γ
′
xn, T

s′yn) :

0 ≤ γ, γ′ ≤ pand0 ≤ s, s′ ≤ q}

for n = 1, 2, . . . . Since X is compact, there exist subsequences {xnk : k = 1, 2,..} and {ynk : k = 1,
2,..} of {xn} and {yn} converging to x and y, respectively. We then have

d(T pxnk, T
qynk) > cnk max{d(T γxnk, T

synk), d(T γxnk, T
γ′xnk), d(T synk, T

s′ynk), d(T γ
′
xnk, T

s′ynk) :

0 ≤ γ, γ′ ≤ pand0 ≤ s, s′ ≤ q}

for k = 1, 2, . . . . Since T is continuous, taking limit as k tends to infinity, we get

d(T px, T qy)≥max{d(T γx, T sy), d(T γx, T γ
′
x), d(T sy, T s

′
y), d(T γ

′
x, T s

′
y) :

0 ≤ γ, γ′ ≤ pand0 ≤ s, s′ ≤ q},

which leads to a contradiction unless x = y = Tx. Thus x is a fixed point of T. The uniqueness of x
follows easily. This completes the proof of the theorem.

When p = q = 1, we have the following corollary:

Corollary 2.5. Let T be a continuous mapping of the compact metric space X into itself satisfying
the inequality

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
for all x, y in X for which the right hand side of the inequality is positive. Then T has an unique
fixed point.

3. A fixed point result for generalized contraction

In this section we prove common fixed point theorems with the help of sequences which are not
necessarily obtained as a sequence of iterates of mappings under consideration. The mappings are
asymptotically regular of certain nature mentioned below. The result obtained generalizes a result
due to Hardy and Roger [3].

Definition 3.1. Let A and B be two self mappings on X and {xn}a sequence in X. Then the sequence
{xn} is said to be asymptotically A- regular with respect to B if

Ltn→∞d(Bxn, Axn) = 0, when B is identity map.

Definition 3.2. Let f and g be two self mappings on X. Then the pair {f, g} is said to be a weakly
commuting pair if d(fgx, gfx) ≤ d(gx, fx) for all x ∈ X.

Theorem 3.3. Let (X,d) be a complete metric space. Let A, B, S, T be four self mappings of X
satisfying the following conditions:
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(a) d(Sx, Ty) ≤ a1d(Sx,Ax) + a2d(Ty,By) + a3d(Sx,By) + a4d(Ty,Ax) + a5d(Ax,By)
for all x,y ∈ X where ai (i = 1,2,3,4,5) are non negative real and max{(a2+a4), (a3+a4+a5)} <
1,

(b) A and B are continuous,

(c) {A,S} and {B,T} are weakly commuting pairs,

(d) there exists a sequence which is asymptotically S- regular as well as T- regular with respect to
A and B.

Then A, B, S, T have a unique common fixed point.

Proof : Let {xn} be a sequence as described in (b). Then using (a) we get

d(Axn, Bxm) ≤ d(Axn, Sxn) + d(Sxn, Txm) + d(Txm, Bxm)

≤ d(Axn, Sxn) + a1d(Sxn, Axn) + a2d(Txm, Bxm) + a3d(Sxn, Bxm)

+ a4d(Txm, Axn) + a5d(Axn, Bxm) + d(Txm, Bxm)

≤ d(Axn, Sxn) + a1d(Sxn, Axn) + a2d(Txm, Bxm) + a3[d(Sxn, Axn) + d(Axn, Bxm)]

+ a4[d(Txm, Bxm) + d(Bxm, Axn)] + a5d(Axn, Bxm) + d(Txm, Bxm)

Therefore , d(Axn, Bxm) ≤ 1+a1+a3
1−a3−a4−a5 d(Axn,Sxn) + 1+a2+a4

1−a3−a4−a5 d(Txm, Bxm). This shows that{Axn}
is a Cauchy sequence. Let limn→∞Axn = z = limn→∞Bxm. Then it follows that limn→∞Sxn =
z = limn→∞Txm. By virtue of the continuity of A and B, we find that

A2xn→Az,ASxn→AzandB2xm→Bz,BTxm→Bz.

We shall show that

SAxn→Az and TBxm→Bz.

For this, consider the inequality,

d(SAxn, Az) ≤ d(SAxn, ASxn) + d(ASxn, Az)

≤ d(Axn, Sxn) + d(ASxn, Az),

which shows that SAxn → Az.
Similarly,

d(TBxm, Bz) ≤ d(TBxm, BTxm) + d(BTxm, Bz) ≤ d(Bx, Txm) + d(BTxm, Bz),

which shows that TBxm → Bz.
Now,

d(Az, Tz) ≤ d(Az, SAxn) + d(SAxn, T z)

≤ d(Az, SAxn) + a1d(SAxn, A
2xn) + a2d(Tz,Az)

+ a3d(SAxn,Az) + a4d(Tz,A2xn) + a5d(A2xn, Az).

Taking limit as n tending to infinity, we get

d(Az, Tz) ≤ (a2 + a4)d(Az, Tz)
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and hence Az = Tz. Similarly we can show that Bz = Sz.
Further

d(SAxn, TBxm) ≤ a1d(SAxn, A
2xn) + a2d(TBxm, B

2xm) + a3d(SAxn, B
2xm)

+ a4d(TBxm, A
2xn) + a5d(A2xn, B

2xm).

On taking limits we have

d(Az,Bz) ≤ a1d(Az,Az) + a2d(Bz,Bz) + a3d(Az,Bz) + a4d(Bz,Az) + a5d(Az,Bz)

≤ (a3 + a4 + a5)d(Az,Bz)

i.e. (1 – a3 – a4– a5) d( Az,Bz) ≤ 0. So, Az = Bz.
Hence Az = Bz = Sz = Tz.
Now consider,

d(Sxn, T z) ≤ a1d(Sxn, Axn) + a2d(Tz,Bz) + a3d(Sxn, Bz) + a4d(Tz,, Axn) + a5d(Axn, Bz).

As limit n → ∞ ,we have

d(z, Tz) ≤ a1d(z, z) + a2d(Tz, Tz) + a3d(z, Tz) + a4d(Tz, z) + a5d(z, Tz)

or
d(z, Tz) ≤ (a3 + a4 + a5)d(z, Tz) < d(z, Tz),

which implies that z = Tz. Thus z is a common fixed points of A, B, S and T.
In order to prove the uniqueness of common fixed point. Let z1and z2 be any two distinct common

fixed points of A, B, S and T. Then

d(z1, z2) = d(Sz1, T z2) ≤ d(Sz1, Az1) + a2d(Tz2, Bz2) + a3d(Sz1, Bz2)

+ a4d(Tz2, Az1) + a5d(Az1, Bz2)

= (a3 + a4 + a5)d(z1, z2) < d(z1, z2).

Therefore, z1 = z2 . This completes the proof.
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