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Abstract

The present paper deals with unique fixed point results for quasi contraction mappings on a
metric space satisfying some generalized inequality conditions in first section and unique common
fixed point result for asymptotically regular mappings of certain type and satisfying a generalized
contraction condition in another section. The results obtained generalize the earlier results of Fisher
(1979), Hardy and Roger (1973) and others in turn. (©2016 All rights reserved.
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1. Introduction

Definition 1.1 ([I]). A mapping 7" on a metric space X into itself is said to be a quasi — contraction
if and only if there exist a number ¢, with 0 < ¢ < 1, such that

d(Tx,Ty) < cmax{d(z,y)d(z, Tx),d(y, Ty),d(x, Ty),d(y, Tz)}
for all z,y in X.

Definition 1.2 ([1]). X is said to be T orbitally complete if and only if every Cauchy sequence
which is contained in the sequence {x,Tz,...,T"x,...} for some z in X converges in X.
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He then established the following basic results for such mappings:

Theorem 1.3. Let T be a quasi contraction on the metric space X into itself and let X be T orbitally
complete. Then T has a unique fixed point in X.

Theorem 1.4. Let T be a continuous mapping on the complete metric space X into itself satisfying
the inequality:

d(TPz, T%) < emax{d(T"z, T°y),d(T"z, T" z),d(T°y, T*y)} : 0 < r,7' < p and 0 < 5,5 < q}
for all z, y in X, where 0 < ¢ < 1, for some positive integer p and q, then T has a unique fixed point.
For a continuous quasi contraction mapping the following result is proved.

Theorem 1.5. Let T be a quasi contraction on the metric space X into itself and let T be continuous.
Then T has a unique fixed point in X.

It may be noted that in case when T is a quasi contraction for which g(or p) = 1, the continuity
condition of 7" is unnecessary. We then have,

Theorem 1.6. Let T be a mapping on the complete metric space X into itself satisfying the inequality

d(TPz, Ty) < cmax{d(T"x, Ty),d(T"z, T" z),d(T°y, T*y)} : 0 < r,r' < p and s = 0,1}

for all z, y in X, where 0 < ¢ < 1, for some positive integer p . Then T has a unique fized point in

X.

In the next section we obtain some fixed point results for such mappings, which satisfy a more
general inequality conditions.

2. Results for Quasi contraction mappings

Theorem 2.1. Let T be a quasi contraction on the complete metric space X into itself satisfying the
imequality

d(Tp, ') < cmax{d(Te, T*y), d(T7x, T7'x), d(T*, T"y), (T2, Ty)},  (2.1)

0<~v,v<pand0<s,s <q forallz, yin X where 0 < ¢ < 1 and for some fized positive integers
p and q. Then T has a unique fized point in X.

Proof. Without loss of generality we assume that % < ¢ < 1. Inequality (2.1)) will still hold but we
will then have <> 1. We assume that p > q. Let for an arbitrary point x in X the sequence {T"x}
is unbounded.

Then the sequence {d(T"x, T9%) : n =1, 2, ...} is unbounded and so there exists an integer n such
that

(T2, T") > (5 ‘

— c) max{d(T"x, T%) : 0 < i < p}.

Suppose n is the smallest such integer satisfying the above inequality and since <> 1, we must

l—c—
have n > p>gq.
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Thus

Is .

d(T"x,T%) > (—— )max{d(T "z, T%) : 0 <1 <

( ) > (=) max{d( ) p} (22)
> max{d(T"z,T%) : 0 < v < n}.

It now follows from inequality (2.2)) that

(1 —¢)d(T"z, T9%) > cmax{d(T"z, T) : 0 < i < p}
> cmax{d(T"z, T"x) — d(T"x,T%) : 0 <i<pand 0 <~y <n} (2.3)
> cmax{d(T"z, T"z) — d(T"x,T92) : 0 <i<pand 0 <y <n}
and so '
d(T"z, T%) > cmax{d(T'z,T"x) : 0 <i < pand 0 <~ < n}. (2.4)
We will now prove that
d(T"x, T%) > cmax{d(T'z,T"z) : 0 < i,y < n}. (2.5)
For, if not so then we have
d(T"z, T2) < cmax{d(T"'z,T"z) : 0 < i,y < n}
ie., '
d(T"z, T%) < cmax{d(T"z,T"x) : p < i,y < n}. (2.6)

In view of inequality (2.4), we can apply inequality ({2.1)) indefinitely to inequality ([2.6]), since when-
ever terms of the form d(T’x, T7x) appear with 0 < i < p, they can be omitted because of inequality

(2.4)). This means that

d(T"z, Tx) < " max{d(T"z,T"z) : p < i,y < n}

fork =1, 2, ...and on letting limit k tending to infinity it follows that d(T"x, T%) = 0, which gives
a contradiction. So inequality (2.5) now follows. However, on using inequality (2.1)), we now have

d(T"z, T%) < emax{d(T"z, T°z),d(T"2, T" z),d(T°z, T z), (T x, T y)
n—p<~v,7 <nand 0<s,s < g}
< cmax{d(T7z,T°z) : 0 < ,s < n},
which is impossible, because of inequality (2.5). This contradiction further implies that the sequence

{T"x : n =1, 2,...} must be bounded.
Now taking

M = sup{d(T7z,T°z) : v,s =0,1,2,...} < o0

and then for arbitrary e > 0, choosing N such that ¢c™M < ¢, it follows that for m, n >N max{p, q}
and on using inequality (2.1) N times we get

d(T™z, T"z) < N M < e

Thus the sequence {T"x: n = 1,2,...} is a Cauchy sequence in the complete metric space X and so
has a limit z in X. Since T is continuous it follows that Tz = z and so z is a fixed point of T'. The
uniqueness of z follows easily from the inequality ({2.1]).This completes the proof of the Theorem. [J
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Our next generalization goes as follows.
Theorem 2.2. Let T be a mapping on the complete metric space X into itself satisfying the inequality
d(TPz, Ty) < cmax{d(T"z, T*y),d(T"z, T" z),d(y, Ty),d(T" z,Ty) : 0 < ~v,7 < p and s = 0,1}

for all z, y in X where 0 < ¢ < 1, for some fized positive integer p. Then T has a unique fixed point
m X.

Proof. Let x be an arbitrary point in X. Then, as in the proof of 2.1 the sequence {T"z} is a
Cauchy sequence in the complete metric space X and so has a limit z in X. For n > p, we now have

(T"z,Tz) < emax{d(T"z,T°z),d(T"z,T" z),d(z,Tz),(T"2,Tz) : n— p < v, < nands = 0,1}.
Taking n tends to infinity it follows that

d(z,Tz) < cmax{d(z,T°z) : s = 0,1}
=cd(z,Tz).
Since ¢ < 1, we see that z is a fixed point of T. This completes the proof of the theorem. n

The following corollary is immediate when p = 1.

Corollary 2.3. Let T be a mapping on the complete metric space X into itself satisfying the inequality
d(Tx, Ty) < cmax{d(x,y),d(z, Tx),d(y, Ty),d(z, Ty),d(y, Tx)}
for all x, y in X, where 0 < ¢ < 1. Then T has a unique fixed point in X.

We now note that the condition that T be continuous when p,q > 2 is necessary in Theorem (1.5
This is easily seen by considering X be the closed interval [0, 1] with the usual metric. Define a
discontinuous mapping T on X by

1 ifz=0,
Tm—{ o ifx #£0.

2
We then have

1
d(T?z, T%) = §d(Tp’1x, T 1y)

for all x, y in X and so T is a quasi contraction with ¢ = % T however has no fixed point.
We now prove a fixed point theorem on a compact metric space.

Theorem 2.4. Let T be a continuous mapping on the compact metric space X into itself satisfying
the inequality

d(TPz, T%) < max{d(T"z, T*),d(T"z, T x),d(T°y, T y),d(T" z, T y)
0<y,7Y <pand0<s,5 <q}

for all x,y in X for which the right hand side of the inequality is positive. Then T has a unique fixed
point in X.
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Proof. Suppose first of all that T is a quasi contraction. The result then follows from Theorem
If T is not a quasi- contraction and if {c,: n = 1,2,...} is a monotonically increasing sequence of
numbers converging to 1, then there must exist sequences. {x,} and {y,} in X such that

d(TPx,, T,) > cp max{d(T" 2, T°yn), d(T" 20, TV ), ATy, T y), d(T7 2, T 1) -
0 < 7,9 < pand0 < 5,8 < q}

forn = 1,2, .... Since X is compact, there exist subsequences {x,; : k = 1, 2,..} and {y.x : k =1,
2,..} of {x,} and {y,} converging to x and y, respectively. We then have

A(TP g, TYnk) > cpp max{d(T" zpg, TYnr), d(T7 Ty, T7/xnk), d(Tsynk,Tslynk), d(TV/:cnk, Tslynk) :
0 <77 <pand0 < s,s < q}

for k =1, 2, .... Since T is continuous, taking limit as k tends to infinity, we get

d(TPz, T%)> max{d(T"z, T%),d(T"z, T" z),d(T%y, T y), d(T" z, Ty) :
0 <7,7 <pand0 < s,s' < g},

which leads to a contradiction unless x = y = Tx. Thus x is a fixed point of T. The uniqueness of x
follows easily. This completes the proof of the theorem. n

When p = q = 1, we have the following corollary:

Corollary 2.5. Let T be a continuous mapping of the compact metric space X into itself satisfying
the inequality
d(Tz,Ty) < max{d(z,y),d(x,Tz),d(y, Ty),d(z,Ty),d(y, Tz)}

for all z, y in X for which the right hand side of the inequality is positive. Then T has an unique
fixed point.

3. A fixed point result for generalized contraction

In this section we prove common fixed point theorems with the help of sequences which are not
necessarily obtained as a sequence of iterates of mappings under consideration. The mappings are
asymptotically regular of certain nature mentioned below. The result obtained generalizes a result
due to Hardy and Roger [3].

Definition 3.1. Let A and B be two self mappings on X and {x, }a sequence in X. Then the sequence
{x,} is said to be asymptotically A- regular with respect to B if
Lt ood(Bx,, Ax,) = 0, when B is identity map.

Definition 3.2. Let f and g be two self mappings on X. Then the pair {f, g} is said to be a weakly
commuting pair if d(fgz, gfz) < d(gx, fz) for all x € X.

Theorem 3.3. Let (X,d) be a complete metric space. Let A, B, S, T be four self mappings of X
satisfying the following conditions:
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(a) d(Sz,Ty) < ayd(Sz, Ax) + asd(Ty, By) + asd(Sz, By) + a,d(Ty, Ax) + asd(Ax, By)
for all z,y € X where a; (i = 1,2,3,4,5) are non negative real and max{(as+a4), (az+as+as)} <
L

(b) A and B are continuous,

(c) {A,S} and {B,T} are weakly commuting pairs,

(d) there exists a sequence which is asymptotically S- reqular as well as T- regqular with respect to
A and B.

Then A, B, S, T have a unique common fized point.

Proof : Let {x,} be a sequence as described in (b). Then using (a) we get

d(Az,, Bx,,) < d(Ax,, Sz,) + d(Szp, Txy,) + d(Txp, Bx,y,)
< d(Ax,, Sz,) + a1d(Sx,, Ax,) + axd(Tx,, Bx,,) + asd(Sx,, Br,,)
+ asd(Txp,, Azy) + asd(Azy,, Bxy,) + d(Txy,, Bt,)
< d(Azy, Sxy,) + ard(Sxy,, Axy) + aod(TTy, By,) + as[d(Swy,, Axy,) + d(Azx,, Br,,))
+ a4|d(Tzp,, Bxy,) + d(Bxy,, Ax,)] + asd(Azx,, Bx,,) + d(Txy,, Bx,,)

Therefore , d(Ax,, Bx,,) < —24+% _ q(Ax, Sx,) + —+t2+t%4_ ((Tx,,, Bx,,). This shows that{Ax,}

) l-az—as—as / l—agz—as—as . .
is a Cauchy sequence. Let lim,, »oc0cAz, = z = lim,, »coBx,,. Then it follows that lim, —»occSz, =

z = lim,, »o0T'x,,. By virtue of the continuity of A and B, we find that
A%z, — Az, ASx,— AzandB?x,,— Bz, BT ¢,,—Bx.
We shall show that

SAx,—Az and T Bx,,—Bz.

For this, consider the inequality,

d(SAz,, Az) (SAz,, ASx,) + d(ASz,, Az)

<d
< d(Az,, Sx,) + d(ASx,, Az),

which shows that SAx,, — Az.
Similarly,

d(TBx,, Bz) < d(TBxy,, BTxy,) + d(BTx,,, Bz) < d(Bx,Txy,) + d(BTz,, Bz),

which shows that TBx,, — Bz.
Now,

d(Az,Tz) < d(Az,SAz,) + d(SAx,,Tz)
< d(Az, SAx,) + a1d(S Az, A*r,) + ayd(Tz, Az)
+ azd(SAw, A2) + ayd(Tz, A%x,) + asd(A’x,, Az).

Taking limit as n tending to infinity, we get

d(Az,Tz) < (ag + aq)d(Az,Tz)
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and hence Az = Tz. Similarly we can show that Bz = Sz.
Further

d(SAz,, TBx,,) < a1d(SAx,, A%2,) + ayd(T Bz, B*x,,) + asd(SAz,, B*x,,)
+ ayd(T By, A%x,) + asd(A%x,, B*z,,).

On taking limits we have

d(Az,Bz) < ayd(Az, Az) + axd(Bz, Bz) + asd(Az, Bz) + a,d(Bz, Az) + azd(Az, Bz)

<
< (as + a4 + as)d(Az, Bz)

ie. (1 -a3— a4 as) d( AzBz) <0. So, Az = Bz.
Hence Az = Bz =Sz ="Txz.
Now consider,

d(Sz,, Tz) < a1d(Szy, Ax,) + a2d(Tz, Bz) + azd(Sw,, Bz) + ayd(Tz , Ax,,) + asd(Ax,, Bz).
As limit n — oo ,we have
d(z,Tz) < a1d(z,2) + aed(Tz,Tz) + azd(z,Tz) + a4d(T'z, z) + asd(z,T'z)

or
d(z,Tz) < (as + a4+ a5)d(2,Tz) < d(z,Tz),

which implies that z = Tz. Thus z is a common fixed points of A, B, S and T.
In order to prove the uniqueness of common fixed point. Let z;and z; be any two distinct common
fixed points of A, B, S and T. Then

d(Zl, 22) = d(SZl, TZQ) S d(SZl, AZl) + (le(TZQ, BZQ) + agd(Szl, BZQ)
+ a4d(T22, AZl) + a,5d(A21, BZQ)
= (a3 + a4 + a5)d(21, ZQ) < d(217 ZQ).

Therefore, z; = z, . This completes the proof.
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