A Note on \boldsymbol{t}-Derivations of \boldsymbol{B}-Algebras

Rasoul Soleimani ${ }^{1}$
Department of Mathematics, Payame Noor University, I.R of IRAN
r_soleimani@pnu.ac.ir \& rsoleimanii@yahoo.com
Somayeh Jahangiri
Department of Mathematics, Payame Noor University, I.R of IRAN

sjahan1389@gmail.com
Article history:
Received February 2014
Accepted March 2014
Available online April 2014

Abstract

In this paper, we introduce the notion of t-derivation on B-algebras and obtain some of its related properties.

Keywords: B-algebra, 0 -commutative, t-derivation.
2010 Mathematics Subject Classification: Primary 06F35, 03G25.

1. Introduction

Imai and Is'eki $[4,5]$ introduced two classes of logical algebras: $B C K$ and $B C I$-algebras. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. Neggers and Kim [7] introduced the notion of B-algebras which is related to several classes of algebras such as $B C I / B C K$ algebras. Abujabal and Al-Shehrie [1] defined and studied the notion of left derivation of BCIalgebras. Further, Al-Shehrie [2] has applied the notion of left-right derivation in BCI-algebra to B algebra and obtained some of its properties. Furthermore This logical algebra Have been studied by another authors, see for example [3], [6], [8], [9]. In this paper, we introduce the notion of t derivation on B-algebras and investigate some properties of 0 -commutative B-algebras.
(see [2], [3], [6], [7], [9]) A B-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms:

[^0](B1) $x * x=0$;
(B2) $x * 0=x$;
(B3) $(x * y) * z=x *(z *(0 * y))$ for all $x, y, z \in X$.
In any B-algebra X the following properties satisfied for all $x, y, z \in X$,
(1) $(x * y) *(0 * y)=x$.
(2) $x * y=z * y$ implies $x=z$.
(3) $x *(y * z)=(x *(0 * z)) * y$.
(4) $x * y=0$ implies $x=y$.
(5) $x=0 *(0 * x)$.
(6) $x * y=x * z$ implies $y=z$.
(7) $0 *(x * y)=y * x$.
(8) $(x * y) *(z * y)=x * z$.

A B-algebra $(X, *, 0)$ is said to be 0 -commutative if $x *(0 * y)=y *(0 * x)$, for any $x, y \in X$.

For any 0 -commutative B-algebra X and all $x, y, z, u \in X$, the following properties hold:
(9) $(0 * x) *(0 * y)=y * x$.
(10) $(x * y) *(z * u)=(u * y) *(z * x)$.
(11) $(x * y) *(x * z)=z * y$.
(12) $(x * y) * z=(0 * y) *(z * x)$.
(13) $x *(y * z)=z *(y * x)$.
(14) $(x * y) * z=(x * z) * y$.
(15) $x *(x * y)=y$.

Let X be a B-algebra. Then X is called associative if for all $x, y, z \in X$,
(16) $(x * y) * z=x *(y * z)$.

For a B-algebra X, we denote $x \Lambda y=y *(y * x)$ for all $x, y \in X$.

2. t-Derivation of B-Algebras

In this section we investigate the notion of t-derivation for a B-algebra and study some of its properties.

Definition 2.1. Let X be a B-algebra. For any $t \epsilon X$, we define a self map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t$ for all $x \in X$.

Lemma 2.2. Let d_{t} be a self map of a B-algebra X. Then the following hold:
(i) d_{t} is one-one.
(ii) $d_{t}(x) * d_{t}(y)=x * y$ for all $x, y \in X$.

Proof. It is sufficient to prove (ii). By applying (8) we obtain
$d_{t}(x) * d_{t}(y)=(x * t) *(y * t)=x * y$.
Definition 2.3. A self map d_{t} of a B-algebra X is said to be t-regular if $d_{t}(0)=0$.
Lemma 2.4. Let d_{t} be a self map of a 0 -commutative B-algebra X. Then the following hold:
(i) $d_{t}(x * y)=d_{t}(x) * y$ for all $x, y \in X$.
(ii) If d_{t} is t-regular, then it is an identity.

Proof. (i) Since d_{t} is a self map of a B -algebra X, by (14),
$d_{t}(x * y)=(x * y) * t=(x * t) * y=d_{t}(x) * y$.
(ii) Let d_{t} be t-regular and $x \in X$. Then $0=d_{t}(0)$ and by $(i), o=d_{t}(x) * x$. Hence by (4) $d_{t}(x)=x$ for all $x \in X$. Therefore d_{t} is an identity. This completes the proof.

Definition 2.5. Let X be a B-algebra. Then for any $t \in X$, the self map $d_{t}: X \rightarrow X$ is called a leftright t-derivation (or briefly (l, r)-t-derivation) of X if it satisfies the identity $d_{t}(x * y)=\left(d_{t}(x) *\right.$ y) $\Lambda\left(x * d_{t}(y)\right)$ for all $x, y \in X$.

Similarly, if d_{t} satisfies the identity $d_{t}(x * y)=\left(x * d_{t}(y)\right) \Lambda\left(d_{t}(x) * y\right)$ for all $x, y \in X$, then it is called a right-left t-derivation (or briefly (r, l)-t-derivation) of X.
Moreover, if d_{t} is both a (l, r) - and a $(r, l)-t$-derivation of X, then d_{t} is a t-derivation of X.
Example 2.6. Let X be a B-algebra of all real numbers except for a negative integer $-n$, with a binary operation * on X by $x * y=\frac{n(x-y)}{n+y}$.
For any $t \in X$, define a self map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t$ for all $x \in X$. First, we show that X is a 0 -commutative B-algebra. For any $x, y \in X$:
$x *(0 * y)=x * \frac{n(0-y)}{n+y}=x * \frac{-n y}{n+y}=\frac{n x+x y+n y}{n}$.
Also, $y *(0 * x)=y * \frac{n(0-x)}{n+x}=y * \frac{-n x}{n+x}=\frac{n y+y x+n x}{n}$.
Hence X is a 0 -commutative B-algebra. Next for all $x, y, t \in X$,
$(x * y) * t=n \frac{n(x-y)-t(n+y)}{(n+y)(n+t)}$, and $(x * t) * y=n \frac{n(x-y)-t(n+y)}{(n+y)(n+t)}$.
Since X is a 0 -commutative B-algebra, by (15) for all $x, y, t \in X$,
$\left(d_{t}(x) * y\right) \Lambda\left(x * d_{t}(y)\right)=(x *(y * t)) *((x *(y * t)) *((x * t) * y))$
$=(x * t) * y=n \frac{n(x-y)-t(n+y)}{(n+y)(n+t)}=(x * y) * t=d_{t}(x * y)$.
So d_{t} is a $(l, r)-t$-derivation of X. It is easy to check that d_{t} is not a $(r, l)-t$-derivation of X.
Example 2.7 Let $X:=\{0,1,2\}$ be a B-algebra with the following table,

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

For any $t \in X$, define a self map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t$ for all $x \in X$. Then it is easy to check that d_{t} is a (l, r) - t-derivation of X, which is not a (r, l) - t-derivation of X. If we set $x:=0, y:=2$ and $t:=1$, then
$d_{t}(x * y)=(x * y) * t=0 \neq 2=((x * t) * y) *(((x * t) * y) *(x *(y * t)))$
$=\left(x * d_{t}(y)\right) \Lambda\left(d_{t}(x) * y\right)$.
But if for any $t \in X$, define a self map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t=x$
then X is a t-derivation of X, which is t-regular.
Theorem 2.8. Let d_{t} be a self map of a B-algebra X. Then
(i) If d_{t} is a (l,r)-t-derivation and t-regular of X, then $d_{t}(x)=d_{t}(x) \Lambda x$ for all $x \in X$.
(ii) If d_{t} is a (r, l) - t-derivation of X, then $d_{t}(x)=x \Lambda d_{t}(x)$ for all $x \in X$ if and only if d_{t} is t regular.
Proof. (i) If d_{t} is a $(l, r)-t$-derivation and t-regular of X, then by (B2)
$d_{t}(x)=d_{t}(x * 0)=\left(d_{t}(x) * 0\right) \Lambda\left(x * d_{t}(0)\right)=d_{t}(x) \Lambda(x * 0)=d_{t}(x) \Lambda x$.
(ii) Let d_{t} be a (r, l)-t-derivation of X. If d_{t} is t-regular, then by (B2)
$d_{t}(x)=d_{t}(x * 0)=\left(x * d_{t}(0)\right) \Lambda\left(d_{t}(x) * 0\right)=(x * 0) \Lambda d_{t}(x)=x \Lambda d_{t}(x)$.
Conversely, suppose that $d_{t}(x)=x \Lambda d_{t}(x)$ for all $x, y \in X$, then
$d_{t}(0)=0 \Lambda d_{t}(0)=d_{t}(0) *\left(d_{t}(0) * 0\right)=d_{t}(0) * d_{t}(0)=0$.
So d_{t} is t-regular.

3. \boldsymbol{t}-Derivation of $\mathbf{0}$-Commutative \boldsymbol{B}-Algebras

In this section, we investigate the notion of t-derivation for 0 -commutative B-algebras.
Theorem 3.1. Let d_{t} be a self map of an associative 0 -commutative B-algebra X. Then d_{t} is a t derivation of X.

Proof. Since X is an associative 0 -commutative B-algebra, we have

$$
\begin{aligned}
& d_{t}(x * y)=(x * y) * t \\
& =(x *(y * t)) * 0 \\
& =(x *(y * t)) *((x *(y * t)) *(x *(y * t))) \\
& =(x *(y * t)) *((x *(y * t)) *((x * y) * t)) \\
& =(x *(y * t)) *((x *(y * t)) *((x * t) * y)) \\
& =((x * t) * y) \Lambda(x *(y * t)) \\
& =\left(d_{t}(x) * y\right) \Lambda\left(x * d_{t}(y)\right) .
\end{aligned}
$$

Again,

$$
\begin{array}{ll}
d_{t}(x * y)=(x * y) * t=((x * t) * y) * 0 & {[b y(14) \text { and }(B 2)]} \\
=((x * t) * y) *(((x * t) * y) *((x * t) * y)) & {[b y(\mathrm{~B} 1)]}
\end{array}
$$

$=((x * t) * y) *(((x * t) * y) *((x * y) * t))$
[by (14)]
$=((x * t) * y) *(((x * t) * y) *(x *(y * t)))$
[by (16)]
$=(x *(y * t)) \Lambda((x * t) * y)=\left(x * d_{t}(y)\right) \Lambda\left(d_{t}(x) * y\right)$.
Lemma 3.2. Let d_{t} be a (r, l)-t-derivation of a 0 -commutative B-algebra X. Then $d_{t}(x * y)=x * d_{t}(y)$ for all $x, y \in X$.

Proof. Since d_{t} is a (r, l)-t-derivation of X, by (15),
$d_{t}(x * y)=\left(x * d_{t}(y)\right) \Lambda\left(d_{t}(x) * y\right)=\left(d_{t}(x) * y\right) *\left(\left(d_{t}(x) * y\right) *\left(x * d_{t}(y)\right)\right)$
$=x * d_{t}(y)$.
Definition 3.3. Let X be a B-algebra and d_{t}, d_{t}^{\prime} be two self maps of X. Then we define $d_{t} \circ d_{t}^{\prime}$: $X \rightarrow X$ by $\left(d_{t} \circ d_{t}^{\prime}\right)(x)=d_{t}\left(d_{t}^{\prime}(x)\right)$, for all $x \in X$.
Theorem 3.4. Let X be a 0 -commutative B-algebra and d_{t}, d_{t}^{\prime} are (r, l) - t-derivations of X. Then $d_{t} \circ d_{t}^{\prime}$ is a t-derivation of X.
Proof. Since d_{t}, d_{t}^{\prime} are two self maps of X, by Lemma 2.4(i) and (15) for all $x, y \in X$,

$$
\begin{aligned}
& \left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x * y)\right)=d_{t}\left(d_{t}^{\prime}(x) * y\right)=d_{t}\left(d_{t}^{\prime}(x)\right) * y= \\
& \quad\left(x * d_{t}\left(d_{t}^{\prime}(y)\right)\right) *\left(x * d_{t}\left(d_{t}^{\prime}(y)\right)\right) *\left(d_{t}\left(d_{t}^{\prime}(x)\right) * y\right)=\left(d_{t}\left(d_{t}^{\prime}(x)\right) * y\right) \Lambda\left(x * d_{t}\left(d_{t}^{\prime}(y)\right)\right) \\
& \quad=\left(\left(d_{t} \circ d_{t}^{\prime}\right)(x) * y\right) \Lambda\left(x *\left(d_{t} \circ d_{t}^{\prime}\right)(y)\right) .
\end{aligned}
$$

Next, since d_{t}, d_{t}^{\prime} are (r, l)-t-derivations of X, by Lemma 3.2 and (15), for all $x, y \in X$,
we have

$$
\begin{gathered}
\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x * y)\right)=d_{t}\left(x * d_{t}^{\prime}(y)\right)=x * d_{t}\left(d_{t}^{\prime}(y)\right) \\
=\left(d_{t}\left(d_{t}^{\prime}(x)\right) * y\right) *\left(\left(d_{t}\left(d_{t}^{\prime}(x)\right) * y\right) *\left(x * d_{t}\left(d_{t}^{\prime}(y)\right)\right)\right)= \\
\left(x * d_{t}\left(d_{t}^{\prime}(y)\right)\right) \Lambda\left(d_{t}\left(d_{t}^{\prime}(x)\right) * y\right)=\left(x *\left(d_{t} \circ d_{t}^{\prime}\right)(y)\right) \Lambda\left(\left(d_{t} \circ d_{t}^{\prime}\right)(x) * y\right)
\end{gathered}
$$

Theorem 3.5. Let X be a 0 -commutative B-algebra and let d_{t} be a (r, l) - t-derivation and d_{t}^{\prime} be a self map of X. Then $d_{t} \circ d_{t}^{\prime}=d_{t}^{\prime} \circ d_{t}$
Proof. Suppose d_{t} is a $(r, l)-t$-derivation and d_{t}^{\prime} is a self map of X. By Lemmas $2.4(i)$ and 3.2,
for all $x, y \in X,\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x * y)\right)=d_{t}\left(d_{t}^{\prime}(x) * y\right)=d_{t}^{\prime}(x) * d_{t}(y)$.
Again, by Lemmas 3.2 and 2.4(i), for all $x, y \in X$,
$\left(d_{t}^{\prime} \circ d_{t}\right)(x * y)=d_{t}^{\prime}\left(d_{t}(x * y)\right)=d_{t}^{\prime}\left(x * d_{t}(y)\right)=d_{t}^{\prime}(x) * d_{t}(y)$.
Therefore, $\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=\left(d_{t}^{\prime} \circ d_{t}\right)(x * y)$
By putting $y:=0$, for all $x \in X$, we get
$\left(d_{t} \circ d_{t}^{\prime}\right)(x)=\left(d_{t}^{\prime} \circ d_{t}\right)(x)$. Hence, $d_{t} \circ d_{t}^{\prime}=d_{t}^{\prime} \circ d_{t}$.
This completes the proof.
Definition 3.6. Let X be a B-algebra and let d_{t} and d_{t}^{\prime} be two self maps of X. Then we define $d_{t} * d_{t}^{\prime}: X \rightarrow X$ by $\left(d_{t} * d_{t}^{\prime}\right)(x)=d_{t}(x) * d_{t}^{\prime}(x)$ for all $x \in X$.
Theorem 3.7. Let d_{t}, d_{t}^{\prime} be two (r, l)-t-derivations of a 0 -commutative B-algebra X. Then $d_{t} * d_{t}^{\prime}=d_{t}^{\prime} * d_{t}$.

Proof. Since d_{t} is a (r, l) - t-derivation of X, for all $x, y \in X$, by Lemmas 2.4(i) and 3.2, $\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x * y)\right)=d_{t}\left(d_{t}^{\prime}(x) * y\right)=d_{t}^{\prime}(x) * d_{t}(y)$.

Again, since d_{t}^{\prime} is a $(r, l)-t$-derivation of X, then by Lemmas 3.2 and $2.4(i)$,

$$
\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x * y)\right)=d_{t}\left(x * d_{t}^{\prime}(y)\right)=d_{t}(x) * d_{t}^{\prime}(y) .
$$

Therefore, $d_{t}^{\prime}(x) * d_{t}(y)=d_{t}(x) * d_{t}^{\prime}(y)$. By putting $y:=x$, for all $x \in X$, we get $d_{t}^{\prime}(x) * d_{t}(x)=d_{t}(x) * d_{t}^{\prime}(x)$. Hence $d_{t} * d_{t}^{\prime}=d_{t}^{\prime} * d_{t}$. This proves the theorem.

1. References

[1] H.A.S. Abujabal, N.O. Al-Shehrie, On left Derivations of BCI-algebras, Soochow J. Math., 33(3) (2007), 435-444.
[2] N.O. Al-Shehrie, Derivations of B-algebras, JKAU: Sci., 22(1) (2010), 71-83.
[3] J.R. Cho, H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems, 8 (2001), 16.
[4] Y.Imai, K. Is'eki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42(1966), 1922.
[5] K. Is'eki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29.
[6] H.S. Kim, H.G. Park, On 0-commutative B-algebras, Sci. Math. Japonicae Online, (2005), 31-36.
[7] J. Neggers, H.S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21-29.
[8] S.A. Nematoalah Zadeh, A. Radfar, A. Borumand Saied, On BP-algebras and $Q S$-algebras, TJMCS, 5(1) (2012), 17-21.
[9] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca, 56(3) (2006), 301-306.

[^0]: ${ }^{1}$ This research was in part supported by a grant from Payame Noor University

