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Abstract 
A Genetic based Fuzzy PID controller has been proposed to synchronization task of 
chaotic systems in which one system has been considered as "master" whilst the other 
system has been treated as "slave" (a perturbed system with uncertainty and 

disturbance). Three PID control gains pk , ik , and dk , will be updated online. An 

adequate adaptation mechanism is used to minimize the sliding surface error with 
appropriate adaptive law. Using the gradient method, coefficients of the PID controller 
are updated. A supervisory controller has also been used to provide the stability. The 
proposed method has been found with a significant performance when it was 
implemented on the Van Der Pol oscillator chaotic equations.  
 

Keywords: Fuzzy, Chaos synchronization; supervisory controller; Van der Pol; 
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1. Introduction 

Feasibility of control and synchronizing chaotic systems in various types has attracted 
significant interest in the last few years [1-6]. Chaos is a peculiar random-like behavior in 
deterministic systems. In order to achieve the synchronization, a closed loop nonlinear control 
system, which obtains signals from the master and controls the slave accordingly, will be designed. 
In the literature, different non linear methods such as periodic parametric perturbation [7, 8], drive-
response synchronization [9], adaptive control [10–14], variable structure (or sliding mode) control 
[15–17], backstepping control [18, 19], and H

 control [20], have been used for synchronization. 

Chaos synchronization can also be considered as a design problem of a feedback law for an 
observer, using known information of the plant. This is to ensure that the controlled receiver is 
synchronized with the transmitter.  

 In [21] an adaptive robust PID controller of a chaotic system is presented. The aim is to 
improve and develop such a method to synchronize an unknown slave dynamic with a master 
system. A fuzzy sliding-mode control (FSMC) strategy has been proposed for uncertain chaotic 
systems in [22], in which a fuzzy controller is used to replace the discontinuous sign function of the 
reaching law in traditional sliding-mode control (SMC). An active sliding mode control for 
synchronizing two chaotic systems with parametric uncertainty was proposed in [23]. An algorithm 
to determine parameters of active sliding mode controller, during synchronization of different 
chaotic systems has been studied in [24].  In [25] an adaptive sliding mode controller is presented 
for class of master–slave chaotic synchronization systems with uncertainties. Fuzzy sliding mode 
control has been used in many papers [26-29]. 

 In this paper, parameters of PID controller are tuned adaptively by the gradient method, 
according to a proper designed sliding surface. To guarantee the convergence, a supervisory control 
using a suitable Lyapunov function has been designed. As a side effect, the signum function in the 

supervisory controller can cause chattering phenomenon in the control signal.  To reduce this 
effect a Genetic Based Fuzzy Controller (GBFC) will be proposed. The synchronization procedure 
and the stability requirements will be shortly introduced.   

This paper is organized as follows: In section 2, a quick introduction to the proposed method 
for synchronization of the chaotic system in presence of uncertainty is addressed. Section 3 is 
devoted on investigation of the application of the proposed method on chaotic gyroscope, described 
by Van Der Pol oscillator dynamic via simulation, when the system is perturbed with uncertainties. 
Finally, the result analysis and conclusion will be addressed in section 4. 

 

2. Synchronization of uncertain chaotic system using adaptive PID controller 
Model reference adaptive control or model following task is one of usual tasks in control 

engineering which is called Master-Slave problem in electrical engineering. The ultimate goal of this 
task is to design a mechanism, which forces the slave, to follow the master regardless of some 
possible incompatibility. If the slave is chaotic, uncertain or of a reduced order, the synchronization 
problem takes a complex form. Let us consider the following dynamic as a master: 

 (1) 
1 2

2 ( , )

x x

x f X t








 

Where, X is a  two dimensional state vector as 
1 2[ , ]TX x x and (.)f is an unknown function. 

Suppose the following dynamic as slave in the synchronization task: 
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(2) 
1 2

2 ( , ) ( , ) ( ) ( )

y y

y f Y t f Y t d t u t



    




 

1 2[ , ]Ty y y is the output vector, (.)f  and ( )d t denote uncertainty and disturbance respectively. 

The control signal ( )u t  has a duty to synchronize the slave system (2) with the master dynamic in 

(1). A schematic diagram of the synchronization, which is eventually inspired from the adaptive 
control terminology, is shown in Figure (1). The difference between master and slave will be 
minimized via an adaptive controller. The synchronizer designation consists of the following 
sections:  

1. PID controller  

2. A supervisory controller to guarantee the stability.  

3. A method to update PID coefficients. The gradient or a sliding surface will be such an update 
mechanism. 

Slave System

Master System

GBF Supervisory 

Controller

Adaptive PID 

Controller

Adaptation 

Law

-
+

+
+

 
Figure 1: Schematic diagram of a synchronization mechanism 

The error vector of two states is defined for by , 1,2i i ie x y i   . Suppose that we can choose 

a gain vector K = [k0, k1]T such that roots of 2

2 1 0s k s k   are in the left hand side of the s-plane. A 

feedback linearization technique is a possible choice, to combat both uncertainty and disturbance, 
which is as follows: 

1 2 1 1 1 2 2 2 2 1 1

. . 2 2 2 1 1

0 0

( ) ( , ) ( , ) ( )F L

e k e k e x y k e k e

u t f Y t f Y t d t x k e k e

       

      

   


                                  (3) 

It is of the goal to reduce the error asymptotically. Therefore, the slave must follow the master 
dynamically. It should be noted that 2nd system is unknown and the states and error are the only 
available signals. These may have been infected by some uncertainties and perturbations. The 
following assumptions are required to design an adaptive PID. 
Assumption 1. Let the constraint set y  for the state X is defined as: 

2{ : },y yY Y M       (4) 
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Where, yM  is a pre-specified upper  limit. It is desired that the state trajectory of system X never 

reaches to the boundary, during the control action. For simplicity in analysis, we choose

yM X


 . Let us assume the control input of the form: 

(5) 
PID Su u u   

where, PIDu denotes  the signal produced by PID controller which is defined as follows: 

 (6) 
0

( )
( ) ( )

t

PID P I D

e t
u K e t K e d K

t
 


  

  

Furthermore, Su  supervisory controller signal [21], is added to guarantee the stability. Then a 

sliding mode control is proposed. Accordingly, a proper adaptation law, based on the gradient 
method, is designed to minimize the error. Let us redefine the state in equation (3) using the control 
law in equation (5), by the following statement: 

(7)   

1 2

2

. . . .

2 2 2 1 1 . .

( , ) ( , ) ( )

( , ) ( , ) ( )

[ ]

PID s

PID s F L F L

PID s F L

y y

y f Y t f Y t d t u u

f Y t f Y t d t u u u u

x k e k e u u u



     

       

     







 

This immediately follows that: 
(8) 

1 2

2 2 2 1 1 . .[ ]PID s F L

e e

e k e k e u u u



     




 

The following gain vectors: 

(9) 
1 2

0 1 0
,

1
A B

k k

   
    

    
 

Establish the state feedback. Therefore, the error dynamic will be of the form: 
  (10)  

. .[ ]F L PID SE AE B u u u     

Where, E is
1 2[ , ]e e . The energy of the system will be candidate as a Lyapunov function according to: 

 (11) 1

2

TV E PE  

Where p is a symmetric and positive definite matrix. This will be found via following Lyapunov 
equation: 

(12) TA P PA Q    

Furthermore, Q  is also a symmetric and positive definite matrix. This may be designed by the user 

in advance, to meet such other criteria. Definition of MV as: 

(13) 21
min( ( ))( )

2
M yV P M X


   

leads us to the following equation: 

(14) 

2 2

2

1 1
min( ( )) min( ( ))( )

2 2

1
min( ( ))( )

2
y M

V P E P Y X

P M X V

 




  

  
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Where min( ( ))P denotes the minimum value of eigenvalue of matrix P. For the case MV V one 

obtains
yX M . By taking the time derivative of (11) and using (10) leads us to: 

(15)  

. .

. .

. .

1
( ) [ ]

2

1
[ ]

2

1
( )

2

T T T

e F L PID S

T T

F L PID S

T T T

F L PID S

V E A P PA E E PB u u u

E QE E PB u u u

E QE E PB u u E PBu

    

    

    



 

An achievable approximation of inequalities (.) (.), (.) (.)and ( )u uf f f f d t       with 

aiding equation (3) provides a lower limit for the feedback linearization law. This immediately 
follows that: 

 (16) 
. . 2 2 2 1 1( )F L u uu t f f x k e k e        

For the other case when
MV V , the following supervised controller guarantees the necessity 

condition of 0V  . 
 (17) 

 
2 2 2 1 1

0, ,

( ) ,

M

S T
u u M

V V
u

sgn E PB f f x k e k e V V


 

         


 

In order to have an adaptation mechanism to update PID coefficients, reference signal 
ry can be 

defined as: 
 (18) 

2 2 1 1 1ry x k e k e      

and the sliding surface by: 

 
When the sliding mode is activated i.e. 0S  , therefore we have: 

 (20) 
2 ry y  

Replacing equation (20) in (18) approaches: 
 (21) 

1 2 1 1 1 0e k e k e     

A necessary and sufficient condition for the convergence needs the error to approach zero when the 
time tends to infinity. Furthermore, to meet the sliding condition, the following Lyapunov function 
will be candied to realize a stable controller. 

(22) 21

2
V S  

Therefore, differentiation of V  would be as: 
(23) 0V SS   

It guarantees the convergence when ( )S t  as t  . A proper adaptation mechanism needs to 

minimize the sliding condition SS . The  gradient search algorithm is calculated in the opposite 
direction of the energy flow. Therefore, the convergence of the system can be obtained by a 

satisfactory  adjustment of PID coefficients. Furthermore, it is quite intuitive to choose SS as an 
error function. From (19) and using (2), obtains: 

 Replacing (5) in (24) and multiplying both sides of (24) in S , there will be: 
 (25) [ ( , ) ( , ) ( ) ( ) ].rSS S f Y t f Y t d t u t y        

       (19) 
2 rS y y   

2 ( , ) ( , ) ( ) ( ) .r rS y y f Y t f Y t d t u t y                                                (24) 
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Applying the gradient method and the chain principle to equations (6) and (25), the adaptation law 
for determining PID parameters will be obtained as: 

(26) 1( )PID
P

P PID P

uSS SS
K Se t

K u K
  

 
    

  

 
  

(27) 1
0

( )
t

PID
I

I PID I

uSS SS
K S e d

K u K
    

 
     

   
 

  

(28) 1

d
( )

d

PID
D

D PID D

uSS SS
K S e t

K u K t
  

 
    

  

 
  

where, 0   is the learning rate. It should be noted that selection of  and/or the initial setting of 

PID coefficients is very crucial for the stability [21]. The discontinuity of the sign function in (17) 
causes the chattering phenomenon. Using saturation instead of a simple sign function in (31),  to 
reduce the chattering, in (17) obtains: 

 
where: 

 
and 

sgn( ) if 1
( )

if 1
sat

 


 

   
  

  

 
                                            (31) 

 

 

 However to have a better compromise between small chattering and good tracking precision in the 
presence of parameter uncertainties, a fuzzy controller is proposed. 

 

3. Fuzzy control 
The main advantage of the fuzzy controller is its heuristic design procedure as a model-free 
approach. The combination of fuzzy control strategy and (29) becomes a feasible approach to 
preserve advantages of these two approaches [30, 31] especially to reduce the chattering.  A fuzzy 
controller is introduced to develop (29) control law. The IF-THEN rules of fuzzy controller can be 
described as: 

R1: If   is NB then K is PB 

R2: If   is NM then K is PM 

R3: If   is NS then K is PS 

R4: If   is ZE then K is ZE 

R5: If   is PS then K is NS 

R6: If   is PM then K is NM 

R7: If   is PB then K is NB 
 

 
 
             (32) 

 Where NB, NM, NS, ZE, PS, PM, PB are the linguistic terms of antecedent fuzzy set. They mean 
Negative Big, Negative Medium, Negative Small, Zero, Positive Medium Positive Small and Positive 
Big, respectively. The fuzzy membership function for each fuzzy term should be a proper design 
factor in the fuzzy control problem. A general form is used to describe these fuzzy rules as: 

Ri: If   is Ai , then K is Bi (33) 

2 2 2 1 1( )S u uu Ksat f f x k e k e           (29) 
 

TE PB   (30) 
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Where Ai has a triangle membership function (depicted in figure 2) and Bi is a fuzzy 
singleton. The modified controller (29), invites an idea to restrict the width of boundary 
layer Φ, and uses a continuous function (31) to smoothen the control action. Therefore, the 
problem of the discontinuousness of the sign function can be solved, and the chattering 
phenomena will be decreased. From the control point of view, the parameters of structures 
should be automatically modified by evaluating the results of fuzzy control in (32). Hitting 
time and chattering phenomenon are two important factors that influence the performance 
of proposed Controller. The width of boundary layer, Φ, will influence the chattering 
magnitude of control signal, and the gain K, will influence how soon the states of Slave  
reach to that of in Master. 

2 0

z

2

PBPMZENMNB



PSNS

Φ/4-Φ/4
 

(a) 

K

k0k 2k2k / 4k/ 4k

 PB PM PSZE NS NB  NM

 
(b) 

Figure 2. (a): The input membership function of the Fuzzy  supervisory Controller (b): The output 
membership Fuzzy supervisory Controller 

 

The reaching time can also be reduced via a suitable selection of parameter K. GA is used  to 

search for a best fit for 1 2, , ,k k k parameters in (29). The tracking error and existence of 

chattering in the controlled response are chosen as a performance index to select the 
parameters.  The proposed fitness function is defined in such a way that the selected 
parameters can force the state to reach together fast and then keep the control signal with 
less chattering and synchronization error. In this manner, GA is used to search the 
parameter space to find appropriate values of the parameters, 1 2, , ,k k k in (29). A fitness 

function is defined as follows: 
        

(34) 
where 1e , 2e  is defined in (3), and W1 and W2 are the weight factors. The design parameters 

of the GBFCassociated with the above control rules are specified as follows: 
Population size = 60 Crossover probability = 0.8  (35) 
Generations = 70 Mutation probability = 0.02  
k  belongs to [0, 20]   belongs to [0, 10]  

   
22 2

1 1 2 2y W e e W dt   
 

 



Yaghoub Heidari,  Soheil Salehi Alashti, Rouhollah Maghsoudi/ TJMCS Vol .1 No.4 (2010) 273-286 

280 
 

These are popular setting and can be easily found by a minor modification. The Fuzzy 
designed controller has applied to some case studies in the next sections. 
 

4. Simulation 

4.1 Synchronization of Uncertain Hard Spring Φ6 -Van der Pol Oscillator 

4.1.1 System description 

Consider the following system namely Φ6 – Van Der Pol oscillator [34] as another case study: 
(36) 2 2 3 5

0 0(1 ) cosx x x x x x f t            

The above system for
0 0f  , is a complete oscillatory system.  Increasing 

0f  appears chaotic 

characteristic of the system [34]. In Figure (3), phase portrait of the chaotic system namely 6φ  – Van 

Der Pol oscillator with 
0 4.5f   has been shown. Simultaneously, parameters of system have been 

selected as 0.4M  , 1, 0.1   , 0.46, 0.86
o

w w  . In Figure (3), chaotic behavior of the system is 

completely evident. Correspondingly, parameter 
0f  is treated and designed as an uncertainty of the 

system. To show the effectiveness of the proposed controller, the procedure is implemented here. 

 
Figure 3: Phase portrait of Φ6-Van Der Pol oscillator 

 

4.1.2   Implementation 

The master system is defined by the following dynamic: 

 (41) 1 2

2 2 3 5

2 1 2 0 1 1 1(1 )

x x

x x x x x x   




    




 

Similarly, the slave is defined as follows:  
 (42) 

1 2

2 2 3 5

2 1 2 0 1 1 1 0(1 ) cos

y y

y y y y y y f t    




     




 

-3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6
phase plane

y1(t)

y
2
(t

)
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Sets of initial conditions of master and slave systems are respectively defined as 

1 2
(0) 0.2, (0) 0.2x x   and

1 2(0) 0.5, (0) 2y y  . Considering the disturbance 
0

( ) cosd t f t  and
2 2 3 5

1 2 1 0 1 1 1( , ) (1 )f x x M y w y y y      , an upper limit of related functions are obtained as follows: 
2 2 3 5

1 2 0 1 1 1

2 2 3 5

2 1 0 1 1 1

0 0

(.) (1 )

(1 )

( ) cos

f y y y y y

y y y y y

d t f t f

   

   



    

    

 

 

The value of 
yM is similarly selected to be large enough such that the system state x never reach the 

boundary of y . Initial setting of PID coefficients are equal to (0) 1
p

k  , 1(0) 1k  , (0) 1
D

K   and the 

learning rate has been selected as 1  . Also, 
1

k  and 2k  have been assigned as 0.5 and 2 

respectively. In comparison with equation (9), the state feedback matrix will be found as: 
(43) 0 1

0.5 2
A

 
  

    

Regarding to equations (9) and (41), choosing
1 0

0 1
Q

 
  
 

, yields the symmetric and definite positive 

matrix p as: 
2.375 1

1 0.75
p

 
  
 

. Parameters of the system, similar to section 3.2.1, have been selected 

as
0

4.5, 0.4, 1, 0.1,f M       0.46, 0.86w   . Applying the sign function (17) to the master and 

slave system of Φ6 – Van Der Pol results the oscillation, which have been shown in Figures (4) to 

(6). In Figure (4), synchronization of 1 1
,x y  and 2 2,x y , in Figure (5), the sliding surface and 

ultimately in Figure (6). Simulation results show the chattering phenomenon in the control signal, 
this can wear and tear the actuators. To reduce this undesired effect in control signal the GBFC has 
applied to synchronize the master and slave system of Φ6 – Van Der Pol. The relevant responses are 

shown in Figure (7) to (10). Figure (7) shows the synchronization of 1 1
,x y  and 2 2,x y , whereas, 

Figure (8) shows the sliding surface and ultimately in Figure (9), the control signal can be seen. The 
synchronization error has also been seen in Figure (10). From Figure (9) can be seen that the 
control signal is smoother than that of in the sign function application. It should be noted that in this 
case, the control i.e. ( )u t , has been activated at t=5s. The performance of the GBFC is seen much 

improved. 
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Figure 4: Time response of controlled chaotic Φ6 –van der pol synchronization system 

 
 

 
Figure 5: The sliding surface behavior 

 

  

 
Figure 6: The control signal with sign function 
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Figure 7: Time response of GBFC synchronization Φ6–van der pol 

 
 

 
Figure 8: The sliding surface behavior 
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Figure 9: The control signal with GBFC 

  

 

 
Figure10: The synchronization error of Master and Slave Φ6–van der pol 

 
5. Conclusion 

A methodology for synchronization of chaotic system in presence of uncertainty has been 
proposed. To deal the uncertainty, an Adaptive PID controller has been used on the slave system. A 
supervisory control has been used to guarantee the stability of the global system through energy 
like Lyapunov function. Furthermore, a sliding mode controller has been designed using another 
Lyapunov function to update the coefficients of the PID controller in an adaptive schema. The 
gradient method has been chosen to establish the adaptation law. The sign function in the 
supervisory controller cause the chattering phenomenon; to reduce this undesired effect a GBFC 
was proposed. The proposed synchronization method has been simulated on Φ6 –Van Der Pol 
oscillator. The results confirm the significance of the proposed control technique. 
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