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Abstract 
In this paper we introduce the notion of  𝛼, 𝜓 - weak contractions and use the notion to establish the 

existence and uniqueness of coupled common fixed points for the mixed monotone operators in partially 

ordered metric spaces. The obtained results extend, improve, complement and unify many recent coupled 

fixed point results present in the literature. The theoretic results are accompanied with suitable examples. 

An application to the existence and uniqueness of the solution of the system of integral equations is also 

presented. 
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1. Introduction and preliminaries 

Banach [1] in his classical work gave the following contractive theorem: 

Theorem 1.1 ([1]). Let (𝑋, 𝑑)  be a metric space and 𝑇: 𝑋 → 𝑋 be a self mapping. If (𝑋, 𝑑) is 
complete and 𝑇 is a contraction; that is, there exists a constant 𝑘 ∈ [0,1) such that 

  𝑑 𝑇𝑥, 𝑇𝑦 ≤ 𝑘𝑑 𝑥, 𝑦 ,    for all 𝑥, 𝑦 ∈ 𝑋                                      (1.1) 

then, 𝑇 has a unique fixed point 𝑢 ∈ 𝑋 and for any 𝑥0 ∈ 𝑋, the Picard iteration{𝑇𝑛 𝑥0 } converges 
to 𝑢. 

       This contraction principle proved to be a very important tool in nonlinear analysis, and various 
authors have generalized it in many ways. One can refer to the works noted in references ([2-17]). 
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Turinici [16] laid the foundation of new era in fixed point theory by extending the Banach 
contraction principle to the partially ordered sets. Ran and Reurings [17] developed some 
applications of Turinici’s theorem to matrix equations. Guo and Lakshmikantham [18] defined the 
concept of coupled fixed point. 

Definition 1.1 ([18]). An element  𝑥, 𝑦 ∈ 𝑋 × 𝑋, is called a coupled fixed point of the mapping 
𝐹: 𝑋 × 𝑋 → 𝑋  if 

  𝐹 𝑥, 𝑦 = 𝑥  and 𝐹 𝑦, 𝑥 = 𝑦.  

Bhaskar and Lakshmikantham [19] proved the existence and uniqueness of coupled fixed point for 
mappings satisfying the mixed monotone property in partially ordered metric spaces. As an 
application, they discussed the existence and uniqueness of the solution for a periodic boundary 
value problem. 

Definition 1.2 ([19]). Let (𝑋, ≤) be a partially ordered set and 𝐹: 𝑋 × 𝑋 → 𝐹. The mapping 𝐹 is said 
to have the mixed monotone property if 𝐹(𝑥, 𝑦) is monotone non-decreasing in 𝑥 and monotone 
non-increasing in 𝑦; that is, for any 𝑥, 𝑦 ∈ 𝑋, 

                           𝑥1, 𝑥2 ∈ 𝑋,         𝑥1  ≤ 𝑥2 implies 𝐹 𝑥1, 𝑦 ≤ 𝐹(𝑥2, 𝑦) 

and 

                           𝑦1, 𝑦2 ∈ 𝑋,        𝑦1   ≤ 𝑦2 implies 𝐹 𝑥, 𝑦1 ≥ 𝐹(𝑥, 𝑦2). 

Bhaskar and Lakshmikantham [19] proved the following main result. 

Theorem 1.2 ([19]). Let  𝑋, ≤  be a partially ordered set and 𝑑 be a metric on 𝑋 such that (𝑋, 𝑑) is a 
complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a continuous mapping having the mixed monotone 
property on 𝑋. Assume that there exists a 𝑘 in [0,1) with 

                   𝑑 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣  ≤
𝑘

2
[𝑑 𝑥, 𝑦 , 𝑑 𝑦, 𝑣 ]   for each 𝑥 ≥ 𝑢, 𝑦 ≤ 𝑣.                      (1.2) 

If there exists  𝑥0 , 𝑦0 in 𝑋 such that 

                𝑥0 ≤ 𝐹(𝑥0, 𝑦0)   and   𝑦0 ≥ 𝐹(𝑦0, 𝑥0) 

then there exists 𝑥, 𝑦 in 𝑋 such that 

  𝑥 = 𝐹(𝑥, 𝑦)     and      𝐹(𝑦, 𝑥).  

     In [19, Theorem 2.2], it has also been shown that the continuity assumption of 𝐹 in Theorem 1.2 
can be replaced by an alternative condition imposed on convergent non-decreasing and non-
increasing sequences. 

Assumption 1.1. 𝑋 has the property that 

        (i) if a non-decreasing sequence  𝑥𝑛 ⊂ 𝑋 converges to 𝑥, then 𝑥𝑛 ≤ 𝑥  for all 𝑛, 

        (ii) if a non-increasing sequence  𝑥𝑛 ⊂ 𝑋  converges to 𝑥, then 𝑥𝑛 ≥ 𝑥  for all 𝑛. 
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     Berinde [20, Theorem 3], in an alternative way generalized the results of Bhaskar and 
Lakshmikantham [19] under a weaker contraction  given below: 

  𝑑 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣  +  𝑑 𝐹 𝑦, 𝑥 , 𝐹 𝑣, 𝑢  ≤ 𝑘 𝑑(𝑥, 𝑢) + 𝑑 𝑦, 𝑣  ,                     (1.3) 

with 𝑥 ≥ 𝑢  and 𝑦 ≤ 𝑣, where 𝑘 ∈ [0,1). 

    On the other hand, Lakshmikantham and C iric  [21] extended the notion of mixed monotone 
property to mixed 𝑔-monotone property and generalized the results proved in [19] by establishing 
the existence of coupled coincidence point results using a pair of commutative mappings. This 
generated new trends in coupled fixed point theory with applications to partially ordered sets. Since 
then much work has been done in this direction by different authors. For more details the reader 
may consult ([22-38]). 

Definition 1.3 ([21]). Let (𝑋, ≤) be a partially ordered set and 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 × 𝑋 → 𝑋. We 
say 𝐹 has the mixed 𝑔-monotone property if 𝐹 is monotone 𝑔-nondecreasing in its first argument 
and is monotone 𝑔-nonincreasing in its second argument; that is, for any 𝑥, 𝑦 ∈ 𝑋,  

                           𝑥1, 𝑥2 ∈ 𝑋,           𝑔𝑥1 ≤ 𝑔𝑥2        implies       𝐹 𝑥1, 𝑦 ≤ 𝐹(𝑥2, 𝑦)  

and  

                           𝑦1, 𝑦2 ∈ 𝑋,          𝑔𝑦1 ≤ 𝑔𝑦2      implies       𝐹 𝑥, 𝑦1 ≥ 𝐹 𝑥, 𝑦2 . 

Definition 1.4 ([21]). An element  𝑥, 𝑦 ∈ 𝑋 × 𝑋, is called a coupled coincidence point of the 
mappings 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 if 

𝐹 𝑥, 𝑦 = 𝑔𝑥     and     𝐹 𝑦, 𝑥 = 𝑔𝑦.  

Definition 1.5 ([21]). Let 𝑋 be a non-empty set and 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋. We say that F and g 
are commutative if 

                         𝑔 𝐹 𝑥, 𝑦   = F 𝑔 𝑥 , 𝑔 𝑦   

for all x, y ∈ X. 

     Later, Choudhury et al. [22] introduced the notion of compatible mappings in context of coupled 
coincidence point problems and used the notion to improve the results noted in [21]. 

Definition 1.6 ([22]). The mappings F and g where 𝐹: 𝑋 × 𝑋 → 𝑋 𝑔: 𝑋 → 𝑋 are said to be compatible 
if 

                       lim𝑛→∞ 𝑑 𝑔𝐹 𝑥𝑛 , 𝑦𝑛 , 𝐹 𝑔𝑥𝑛 , 𝑔𝑦𝑛  = 0 

and 

                       lim𝑛→∞ 𝑑 𝑔𝐹 𝑦𝑛 , 𝑥𝑛 , 𝐹 𝑔𝑦𝑛 , 𝑔𝑥𝑛  = 0, 

where {𝑥𝑛} and {𝑦𝑛 } are sequences in 𝑋 such that lim𝑛→∞ 𝐹 𝑥𝑛 , 𝑦𝑛 = lim𝑛→∞ 𝑔𝑥𝑛 = 𝑥 and 
lim𝑛→∞ 𝐹 𝑦𝑛 , 𝑥𝑛 = lim𝑛→∞ 𝑔𝑦𝑛 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋 are satisfied. 
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       Jain et al. [38], extended Berinde’s contraction (1.3) for a pair of compatible mappings and 
obtained coupled coincidence points under the following contraction: 

  𝑑 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣  +  𝑑 𝐹 𝑦, 𝑥 , 𝐹 𝑣, 𝑢  ≤ 𝑘 𝑑(𝑔𝑥, 𝑔𝑢) + 𝑑 𝑔𝑦, 𝑔𝑣  .                   (1.4) 

Denote with Ψ the family of non-decreasing functions 𝜓 : [0, +∞) → [0, +∞) such that  𝜓𝑛 𝑡 <∞
𝑛=0

+∞ for all 𝑡 > 0, where 𝜓𝑛  is the nth iterate of  𝜓. 

These functions are popularly known as  𝑐 -comparison functions in the literature and it can be 
easily seen that if 𝜓 is a  𝑐 -comparison function, then 𝜓 𝑡 < 𝑡  for any 𝑡 > 0. 

       In 2012, Samet et al. [39] introduced the notions of 𝛼- 𝜓-contractive and 𝛼-admissible mappings 
and used the notions to establish the existence of fixed points in complete metric spaces. The work 
presented in the paper [39] generalized and extended the famous Banach contraction principle and 
the works noted in the references [17, 10, 19]. 

Definition 1.7 ([39]). Let (𝑋, 𝑑) be a metric space and let 𝑇: 𝑋 → 𝑋  be a given mapping. We say that 
𝑇 is an 𝛼- 𝜓-contractive mapping if there exist two functions 𝛼: 𝑋 × 𝑋 → [0, +∞) and 𝜓 ∈ Ψ  such 
that 

  𝛼 𝑥, 𝑦 𝑑 𝑇𝑥, 𝑇𝑦 ≤ 𝜓 𝑑 𝑥, 𝑦  ,    for all  𝑥, 𝑦 ∈ 𝑋.                       (1.5) 

Interestingly, a mapping satisfying Banach Contraction condition (that is, condition (1.1)), is an 𝛼- 𝜓-
contractive mapping with 𝛼 𝑥, 𝑦  = 1 for all x, y ∈ X and 𝜓 𝑡  = kt, k ∈ [0, 1). 

 

Definition 1.8 ([39]). Let 𝑇: 𝑋 → 𝑋 and 𝛼: 𝑋 × 𝑋 → [0, +∞). We say that 𝑇 is 𝛼-admissible if for all 
𝑥, 𝑦 ∈ 𝑋, we have 

  𝛼 𝑥, 𝑦 ≥ 1 ⟹ 𝛼 𝑇𝑥, 𝑇𝑦 ≥ 1. 

Examples of such mappings are presented in [39]. 

       Mursaleen et al. [40] defined  𝛼, 𝜓 -contractive mappings and extended the notion of 𝛼-
admissible mappings to obtain coupled fixed points in the setting of metric spaces endowed with 
partial ordering. 

Definition 1.9 ([40]). Let 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝛼: 𝑋2 × 𝑋2 → [0, +∞) be two mappings. Then 𝐹 is said 
to be  𝛼  -admissible if 

  𝛼  𝑥, 𝑦 ,  𝑢, 𝑣  ≥ 1 ⟹ 𝛼   𝐹 𝑥, 𝑦 , 𝐹 𝑦, 𝑥  ,  𝐹 𝑢, 𝑣 , 𝐹 𝑣, 𝑢   ≥ 1, 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋. 

 

Definition 1.10 ([40]). Let (𝑋, 𝑑) be a partially ordered metric space and 𝐹: 𝑋 × 𝑋 → 𝑋 be a 
mapping. Then the mapping 𝐹 is said to be  𝛼, 𝜓 -contractive if there exist two functions 
𝛼: 𝑋2 × 𝑋2 → [0, +∞) and 𝜓 ∈ Ψ such that 
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  𝛼  𝑥, 𝑦 ,  𝑢, 𝑣  𝑑 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣  ≤ 𝜓  
𝑑 𝑥,𝑢 +𝑑 𝑦,𝑣 

2
 ,                         (1.6) 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 with 𝑥 ≥ 𝑢 and 𝑦 ≤ 𝑣. 

      Very recently, Karapinar and Agarwal [41] weakened the contraction (1.6) by considering more 
general contractive condition. We summarize the main results in [41, Theorems 2.1 and 2.2] as: 

 

Theorem 1.3 ([41]). Let (𝑋, ≤) be a partially ordered set, and suppose that there is a metric 𝑑 on 𝑋 
such that (𝑋, 𝑑) is a complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋 be a mapping having the mixed 
monotone property on 𝑋. Suppose that there exist 𝜓 ∈ Ψ and 𝛼: 𝑋2 × 𝑋2 → [0, +∞) such that for 
all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋, the following holds: 

  𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
𝑑 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +𝑑 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 ≤ 𝜓  

𝑑 𝑥,𝑢 +𝑑 𝑦,𝑣 

2
 ,            (1.7) 

for which 𝑥 ≥ 𝑢 and 𝑦 ≤ 𝑣. Suppose also that 

(i) 𝐹 is  𝛼 -admissible, 
(ii) there exist 𝑥0, 𝑦0 ∈ 𝑋 such that 

         𝛼  𝑥0, 𝑦0 ,  𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)  ≥ 1     and     𝛼  𝑦0, 𝑥0 ,  𝐹 𝑦0, 𝑥0 , 𝐹(𝑥0, 𝑦0)  ≥ 1 ; 

(iii) either 𝐹  is continuous  or the following property hold: 

if  𝑥𝑛  and  𝑦𝑛  are sequences in 𝑋 such that 𝛼  𝑥𝑛 , 𝑦𝑛 ,  𝑥𝑛+1, 𝑦𝑛+1  ≥ 1 and 

𝛼  𝑦𝑛 , 𝑥𝑛 ,  𝑦𝑛+1, 𝑥𝑛+1  ≥ 1 for all 𝑛, and lim𝑛→∞ 𝑥𝑛 = 𝑥 and lim𝑛→∞ 𝑦𝑛 = 𝑦, then 

𝛼  𝑥𝑛 , 𝑦𝑛 ,  𝑥, 𝑦  ≥ 1  and  𝛼  𝑦𝑛 , 𝑥𝑛 ,  𝑦, 𝑥  ≥ 1  for all 𝑛. 

If there exist  𝑥0, 𝑦0 ∈ 𝑋 such that 𝑥0 ≤ 𝐹(𝑥0, 𝑦0) and 𝑦0 ≥ 𝐹(𝑦0, 𝑥0), then 𝐹 has a coupled fixed 
point; that is, there exist 𝑥, 𝑦 ∈ 𝑋 such that 

  𝐹 𝑥, 𝑦 = 𝑥    and   𝑦 = 𝐹(𝑦, 𝑥). 

Now, we  introduce our notions: 

Definition 1.11. Let (𝑋, 𝑑) be a partially ordered metric space and 𝐹: 𝑋 × 𝑋 → 𝑋, then 𝐹 is said to be 
 𝛼, 𝜓 - weak contraction if there exist two functions 𝛼: 𝑋2 × 𝑋2 → [0, +∞) and 𝜓 ∈ Ψ such that 

  𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 ≤ 𝜓  

𝑑 𝑥,𝑢 +𝑑 𝑦,𝑣 

2
 ,                    (1.8) 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 with 𝑥 ≥ 𝑢 and 𝑦 ≤ 𝑢 (or 𝑥 ≤ 𝑢 and 𝑦 ≥ 𝑣). 

Definition 1.12. Let (𝑋, 𝑑) be a partially ordered metric space and 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 be 
two mappings. Then 𝐹 is said to be  𝛼, 𝜓 - weak contraction with respect to 𝑔, if there exist two 
functions 𝛼: 𝑋2 × 𝑋2 → [0, +∞) and 𝜓 ∈ Ψ such that 

  𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 ≤ 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑 𝑔𝑦 ,𝑔𝑣 

2
 ,         (1.9) 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 with 𝑔𝑥 ≥ 𝑔𝑢 and 𝑔𝑦 ≤ 𝑔𝑣 (or 𝑔𝑥 ≤ 𝑔𝑢 and 𝑔𝑦 ≥ 𝑔𝑣). 
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Definition 1.13. Let 𝐹: 𝑋 × 𝑋 → 𝑋, 𝑔: 𝑋 → 𝑋 and 𝛼: 𝑋2 × 𝑋2 → [0, +∞) be mappings. Then 𝐹 is said 
to be  𝛼 -admissible with respect to 𝑔 if 

   𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣  ≥ 1 ⟹ 𝛼   𝐹 𝑥, 𝑦 , 𝐹 𝑦, 𝑥  ,  𝐹 𝑢, 𝑣 , 𝐹 𝑣, 𝑢   ≥ 1, 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋. 

If we replace 𝑔 with identity mapping in Definition 1.13, we get the definition of  𝛼 -admissible 
mappings. 

        For a partially ordered set (𝑋, ≤), we endow 𝑋 × 𝑋 with the following order ≼ 

                        𝑢, 𝑣 ≼  𝑥, 𝑦 ⟺ 𝑢 ≤ 𝑥, 𝑦 ≤ 𝑣 for all  𝑥, 𝑦 ,  𝑢, 𝑣 ∈ 𝑋 × 𝑋. 

We say that  𝑢, 𝑣  and  𝑥, 𝑦  are comparable if either   𝑢, 𝑣 ≼  𝑥, 𝑦   or   𝑥, 𝑦 ≼  𝑢, 𝑣 . 

However, in our theory, we use the same notation ≤ to denote the ordering in 𝑋 × 𝑋 and in 𝑋. 

         In this paper, we shall extend and improve the main result of Karapinar et al. [41] to the pair of 
compatible mappings. Our results generalize the recent results noted in [38], [20] and weakens the 
contractions involved in the works of Bhaskar and Lakshmikanthan [19] and Mursaleen et al. [40]. 
Suitable examples and applications to the system of integral equations are given to illustrate the 
usability of our obtained results. 

 

2. Main results 

Theorem 2.1. Let (𝑋, ≤) be a partially ordered set and there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) 
is a complete metric space. Let 𝐹: 𝑋 × 𝑋 → 𝑋, 𝑔: 𝑋 → 𝑋 be two mappings. Suppose that 𝐹 has the 
mixed 𝑔-monotone property and the mapping 𝑔 is continuous. Suppose there exists two functions  

𝛼:𝑋2 × 𝑋2 → [0, +∞) and 𝜓 ∈ Ψ such that 𝐹 is  𝛼, 𝜓 - weak contraction with respect to 𝑔. 

Also suppose that 

(i) 𝐹 is  𝛼 -admissible with respect to 𝑔; 
(ii) there exist 𝑥0, 𝑦0 ∈ 𝑋 such that 

  𝛼  𝑔𝑥0, 𝑔𝑦0 ,  𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)  ≥ 1 ; 

(iii) 𝐹 𝑋 × 𝑋 ⊆ 𝑔(𝑋); 
(iv) the pair (𝐹, 𝑔) is compatible; 
(v) the mapping 𝐹 is continuous. 

If in the hypotheses (ii), the elements 𝑥0, 𝑦0 ∈ 𝑋 be chosen so that 𝑔𝑥0 ≤ 𝐹(𝑥0, 𝑦0) and            𝑔𝑦0 ≤
𝐹(𝑦0, 𝑥0), then the mappings 𝐹 and 𝑔 have a coupled coincidence point in 𝑋; that is, there exist 
𝑥, 𝑦 ∈ 𝑋 such that 

  𝐹 𝑥, 𝑦 = 𝑔(𝑥)     and     𝐹 𝑦, 𝑥 = 𝑔(𝑦). 

Proof. Let 𝑥0, 𝑦0 ∈ 𝑋 be such that 

  𝛼  𝑔𝑥0, 𝑔𝑦0 ,  𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)  ≥ 1 . 
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Since 𝐹 𝑋 × 𝑋 ⊆ 𝑔(𝑋), we can choose 𝑥1, 𝑦1 ∈ 𝑋 such that 𝑔 𝑥1 = 𝐹 𝑥0, 𝑦0 , 𝑔 𝑥1 = 𝐹(𝑦0, 𝑥0). 
Again we can choose 𝑥2, 𝑦2 ∈ 𝑋 such that  𝑥2 = 𝐹 𝑥1, 𝑦1 , 𝑔 𝑦2 = 𝑓(𝑥1, 𝑦1). 

Continuing this process, we can inductively construct sequences  𝑔𝑥𝑛  and  𝑔𝑦𝑛  in 𝑋 such that 

  𝑔(𝑥𝑛+1) = 𝐹(𝑥𝑛 , 𝑦𝑛 ), 𝑔(𝑦𝑛+1) = 𝐹(𝑦𝑛 , 𝑥𝑛 ),     for all 𝑛 ≥ 0                                           (2.1) 

We shall prove for all 𝑛 ≥ 0, that 

  𝑔𝑥𝑛 ≤ 𝑔𝑥𝑛+1  and  𝑔𝑦𝑛 ≥ 𝑔𝑦𝑛+1.                                       (2.2) 

Since 𝑔𝑥0 ≤ 𝐹(𝑥0, 𝑦0) and 𝑔𝑦0 ≥ 𝐹(𝑦0, 𝑥0), g𝑥1 = F(𝑥0, 𝑦0), g𝑦1  = F(𝑦0, 𝑥0), we have g𝑥0  ≤  g𝑥1,  g𝑦0  ≥  
g𝑦1; that is, (2.2) holds for n = 0. 

Suppose that (2.2) holds for some fixed n > 0; that is, g𝑥𝑛≤ g𝑥𝑛+1, g𝑦𝑛≥ g𝑦𝑛+1. As F has the mixed g-
monotone property, using (2.1), we have 

                       g 𝑥𝑛+1  = F(𝑥𝑛 , 𝑦𝑛 ) ≤ F(𝑥𝑛+1, 𝑦𝑛 ) ≤ F(𝑥𝑛+1, 𝑦𝑛+1) = g 𝑥𝑛+2 , 

and 

                       g 𝑦𝑛+1  = F(𝑦𝑛 , 𝑥𝑛 ) ≥ F(𝑦𝑛+1, 𝑥𝑛 ) ≥ F(𝑦𝑛+1, 𝑥𝑛+1) = g 𝑦𝑛+2 . 

Then by mathematical induction, it follows that (2.2) holds for all n ≥ 0. 

If for some n ≥ 0, we have (g𝑥𝑛+1, g𝑦𝑛+1) = (g𝑥𝑛 , g𝑦𝑛 ), then F(𝑥𝑛 , 𝑦𝑛 ) = g𝑥𝑛  and F(𝑦𝑛 , 𝑥𝑛 ) = g𝑦𝑛 ; that 
is, F and g have a coupled coincidence point. So now onwards, we suppose (g𝑥𝑛+1, g𝑦𝑛+1) ≠ (g𝑥𝑛 , 
g𝑦𝑛 ) for all n ≥ 0; that is, we suppose that either g𝑥𝑛+1 = F(𝑥𝑛 , 𝑦𝑛 ) ≠ g𝑥𝑛  or g𝑦𝑛+1 = F(𝑦𝑛 , 𝑥𝑛 ) ≠ g𝑦𝑛 . 

Since F is  𝛼  – admissible with respect to g, we have 

 𝛼  𝑔𝑥0, 𝑔𝑦0 ,  𝑔𝑥1, 𝑔𝑦1   = 𝛼  𝑔𝑥0, 𝑔𝑦0 ,  F(𝑥0, 𝑦0), F(𝑦0, 𝑥0)   ≥ 1 

⟹ 𝛼  F(𝑥0, 𝑦0), F(𝑦0, 𝑥0) ,  F(𝑥1, 𝑦1), F(𝑦1, 𝑥1)   = 𝛼  𝑔𝑥1, 𝑔𝑦1 ,  𝑔𝑥2, 𝑔𝑦2   ≥ 1. 

Thus, using mathematical induction, we have 

   𝛼  𝑔𝑥𝑛 , 𝑔𝑦𝑛 ,  𝑔𝑥𝑛+1, 𝑔𝑦𝑛+1   ≥ 1,                                      (2.3) 

for all n ∈ ℕ. Since F is  𝛼, 𝜓 - weak contraction with respect to g, using (2.3), we obtain 

 
d 𝑔𝑥𝑛 ,𝑔𝑥𝑛+1 +d 𝑔𝑦𝑛 ,𝑔𝑦𝑛+1 

2
 

  = 
d F(𝑥𝑛−1,𝑦𝑛−1),F(𝑥𝑛 ,𝑦𝑛 ) +d F(𝑦𝑛−1,𝑥𝑛−1),F(𝑦𝑛 ,𝑥𝑛 ) 

2
 

         ≤ 𝛼  𝑔𝑥𝑛−1, 𝑔𝑦𝑛−1 ,  𝑔𝑥𝑛 , 𝑔𝑦𝑛    
d F(𝑥𝑛−1,𝑦𝑛−1),F(𝑥𝑛 ,𝑦𝑛 ) +d F(𝑦𝑛−1,𝑥𝑛−1),F(𝑦𝑛 ,𝑥𝑛 ) 

2
  

         ≤ 𝜓  
d 𝑔𝑥𝑛−1,𝑔𝑥𝑛  +d 𝑔𝑦𝑛−1,𝑔𝑦𝑛  

2
 .                (2.4) 

Repeating the above process, we get 
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d 𝑔𝑥𝑛 ,𝑔𝑥𝑛+1 +d 𝑔𝑦𝑛 ,𝑔𝑦𝑛+1 

2
 ≤ 𝜓𝑛  

𝑑 𝑔𝑥0,𝑔𝑥1 +𝑑 𝑔𝑦0,𝑔 𝑦1 

2
  

for all n ∈ ℕ. For 𝜖 > 0 there exists n 𝜖  ∈ ℕ such that 

   𝜓𝑛  
𝑑 𝑔𝑥0,𝑔𝑥1 +𝑑 𝑔𝑦0,𝑔 𝑦1 

2
 𝑛≥n 𝜖  < 𝜖 2 . 

Let n, m ∈ ℕ be such that m > n > n 𝜖 . Then, by using the triangle inequality, we obtain 

              
d 𝑔𝑥𝑛 ,𝑔𝑥𝑚  +d 𝑔𝑦𝑛 ,𝑔𝑦𝑚  

2
 ≤  

𝑑 𝑔𝑥𝑘 ,𝑔𝑥𝑘+1 +𝑑 𝑔𝑦𝑘 ,𝑔 𝑦𝑘+1 

2
𝑚−1
𝑘=𝑛  

     ≤  𝜓𝑘  
𝑑 𝑔𝑥0,𝑔𝑥1 +𝑑 𝑔𝑦0,𝑔 𝑦1 

2
 𝑚−1

𝑘=𝑛  

     ≤  𝜓𝑛  
𝑑 𝑔𝑥0,𝑔𝑥1 +𝑑 𝑔𝑦0,𝑔 𝑦1 

2
 𝑛≥n 𝜖  < 𝜖 2 . 

This implies that d 𝑔𝑥𝑛 , 𝑔𝑥𝑚   + d 𝑔𝑦𝑛 , 𝑔𝑦𝑚   < 𝜖. 

Hence, it follows that  𝑔𝑥𝑛  and  𝑔𝑦𝑛  are Cauchy sequences in (X, d), then using the completeness 
of (X, d) there exist x, y ∈ X such that 

  lim𝑛→∞ F(𝑥𝑛 , 𝑦𝑛 ) = lim𝑛→∞ 𝑔𝑥𝑛+1 = x and lim𝑛→∞ F(𝑦𝑛 , 𝑥𝑛 ) = lim𝑛→∞ 𝑔𝑦𝑛+1 = y.                       (2.5) 

Since, the pair (F, g) is compatible, we have 

  
lim𝑛→∞ 𝑑  𝑔 F(𝑥𝑛 , 𝑦𝑛 ) , 𝐹 𝑔 𝑥𝑛 , 𝑔 𝑦𝑛    =  0

lim𝑛→∞ 𝑑  𝑔 F(𝑦𝑛 , 𝑥𝑛 ) , 𝐹 𝑔 𝑦𝑛 , 𝑔 𝑥𝑛    =  0.
                                      (2.6) 

Finally, we shall show that  

  g(x) = F(x, y) and g(y)=F(y, x). 

For all n ≥ 0, we have 

        d 𝑔𝑥, 𝐹 𝑔𝑥𝑛 , 𝑔𝑦𝑛   ≤ d 𝑔𝑥, 𝑔 F(𝑥𝑛 , 𝑦𝑛 )   + d 𝑔 F(𝑥𝑛 , 𝑦𝑛 ) , 𝐹 𝑔𝑥𝑛 , 𝑔𝑦𝑛                       (2.7) 

Taking the limit as n → ∞ in (2.7), then by the continuities of F and g, and using (2.5)-(2.6), we obtain 
d(g(x), F(x, y)) = 0 and hence g(x) = F(x, y). Similarly, g(y) = F(y, x). 

Hence, we proved that F and g has coupled coincidence point. 

Next, we discuss an example to support Theorem 2.1. 

Example 2.1. Let X = ℝ. Then (X, ≤) is a partially ordered set with the natural ordering of real 
numbers. Let d: X × X → R+ be defined by 

                   d(x, y) =  𝑥 − 𝑦  for x, y ∈ X. 

Then (X, d) is a complete metric space. 

Consider the mapping 𝛼: 𝑋2 × 𝑋2 → [0, +∞) defined as 
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𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   =  
1,   𝑖𝑓 𝑥 ≥ 𝑢, 𝑦 ≤ 𝑣, 𝑜𝑟  𝑥 ≤ 𝑢, 𝑦 ≥ 𝑣,
0, otherwise.                                                  

  

Let us define  : [0, +∞) → [0, +∞) by 𝜓(t) = 
3

5
t, for t ∈ [0, +∞). 

Define F : X × X → X by F(x, y) = 
2𝑥−𝑦

10
, (x, y) ∈ X × X and 𝑔 : X → X by 𝑔(x) = 

𝑥

2
, x ∈ X. 

Clearly, F has the mixed g-monotone property on X and the pair (F, g) is compatible. It is easy to 
observe that F is  𝛼  – admissible with respect to g. Next, we claim that F is  𝛼, 𝜓 - weak 

contraction with respect to g. Indeed, if 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 0, then the result is obvious. Suppose 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 1. Without loss of generality, assume that gx ≥ gu and gy ≤ gv so that, x ≥ u and 

y ≤ v. Then, we have that 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣  + d 𝐹 𝑦, 𝑥 , 𝐹 𝑣, 𝑢  

2
  

                                  = 
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 

                                  = 
1

20
  2 𝑥 − 𝑢 −  𝑦 − 𝑣   + 

1

20
  2 𝑦 − 𝑣 −  𝑥 − 𝑢   

                                      ≤ 
3

5
  

 
𝑥

2
 − 

𝑢

2
 + 

𝑦

2
 − 

𝑣

2
 

2
  = 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑 𝑔𝑦 ,𝑔𝑣 

2
 . 

Also, 𝑥0 = −1 and 𝑦0 = 1 are two points in X such that 𝑔(𝑥0) ≤ F(𝑥0, 𝑦0) and 𝑔(𝑦0) ≥ F(𝑦0, 𝑥0). 

Hence, all the conditions of Theorem 2.1 are satisfied. Indeed, the point (0, 0) is the coupled 
coincidence point of F and g. 

      Next, we relax the assumption of the compatibility of the pair (F, g) of mappings and replace the 
continuity assumption of the mapping F by an alternative condition imposed on the convergent 
sequences in the space X. We need the following definition. 

Definition 2.1. Let (X, ≤) be a partially ordered set and suppose there exists a metric d on X. Consider 

the function 𝛼: 𝑋2 × 𝑋2 → [0, +∞). We say that (X, d, ≤) is 𝛼-regular, if for each convergent 
sequences  𝑥𝑛  and  𝑦𝑛  in X with 

                     𝛼  𝑥𝑛 , 𝑦𝑛 ,  𝑥𝑛+1, 𝑦𝑛+1   ≥ 1 

for all n ∈ N and lim𝑛→∞ 𝑥𝑛  = x ∈ X and lim𝑛→∞ 𝑦𝑛  = y ∈ X, then 

                                 𝛼  𝑥𝑛 , 𝑦𝑛 ,  𝑥, 𝑦   ≥ 1, 

and the pairs  𝑥𝑛 , 𝑦𝑛  and  𝑥, 𝑦  are comparable with respect to the ordering in X × X. 

 

Theorem 2.2. Let (X, ≤) be a partially ordered set and there exists a metric d on X. Let  F : X × X → X 
and g : X → X be mappings such that F has the mixed g-monotone property. Assume that there exist 
two functions 𝛼: 𝑋2 × 𝑋2 → [0, +∞) and 𝜓 ∈ Ψ such that F is  𝛼, 𝜓 - weak contraction with respect 
to g. Suppose that  
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(vi) hypotheses (i), (ii), (iii) of Theorem 2.1 hold and the range space (g(X), d) is complete; 
(vii) (X, d, ≤) is 𝛼-regular. 

If in hypotheses (ii), the elements 𝑥0, 𝑦0 ∈ X be such that g𝑥0 ≤ F(𝑥0, 𝑦0) and g𝑦0  ≥ F(𝑦0, 𝑥0). Then F 
and g have a coupled coincidence point in X; that is, there exist x, y ∈ X such that 

  F(x, y) = g (x) and F (y, x) = g (y). 

Proof. Proceeding along the same lines as in the proof of Theorem 2.1, we know that  𝑔𝑥𝑛  and 
 𝑔𝑦𝑛  are Cauchy sequences in the complete metric space (g(X), d). Then there exist x, y ∈ X such 
that gxn  → gx and gyn  → gy; that is, 

                    lim𝑛→∞ 𝑑 𝑔𝑥𝑛 , 𝑔𝑥  = 0        and       lim𝑛→∞ 𝑑 𝑔𝑦𝑛 , 𝑔𝑦  = 0.              (2.8 ) 

On the other hand, from (2.3) and hypotheses (vii), we obtain for all n ∈ N, that 

                     𝛼  𝑔𝑥𝑛 , 𝑔𝑦𝑛 ,  𝑔𝑥, 𝑔𝑦   ≥ 1,                 (2.9) 

and the pairs  𝑔𝑥𝑛 , 𝑔𝑥  and  𝑔𝑦𝑛 , 𝑔𝑦  are comparable. Using the triangle inequality and (2.9), we 
obtain 

 
𝑑 𝐹 𝑥,𝑦 ,𝑔𝑥 +𝑑 𝐹 𝑦,𝑥 ,𝑔𝑦  

2
 

                                  ≤ 
𝑑 𝐹 𝑥,𝑦 ,𝐹 𝑥𝑛 ,𝑦𝑛   +𝑑 𝐹 𝑦,𝑥 ,𝐹 𝑦𝑛 ,𝑥𝑛   

2
 + 

𝑑 𝐹 𝑥𝑛 ,𝑦𝑛  ,𝑔𝑥 +𝑑 𝐹 𝑦𝑛 ,𝑥𝑛  ,𝑔𝑦 

2
 

             = 
𝑑 𝐹 𝑥,𝑦 ,𝐹 𝑥𝑛 ,𝑦𝑛   +𝑑 𝐹 𝑦,𝑥 ,𝐹 𝑦𝑛 ,𝑥𝑛   

2
 + 

𝑑 𝑔𝑥𝑛+1,𝑔𝑥  +𝑑 𝑔𝑦𝑛+1,𝑔𝑦  

2
 

                  ≤ 𝛼  𝑔𝑥𝑛 , 𝑔𝑦𝑛 ,  𝑔𝑥, 𝑔𝑦    
𝑑 𝐹 𝑥,𝑦 ,𝐹 𝑥𝑛 ,𝑦𝑛   +𝑑 𝐹 𝑦,𝑥 ,𝐹 𝑦𝑛 ,𝑥𝑛   

2
  

                                              +  
𝑑 𝑔𝑥𝑛+1,𝑔𝑥  +𝑑 𝑔𝑦𝑛+1,𝑔𝑦  

2
  

                   ≤ 𝜓  
𝑑 𝑔𝑥𝑛 ,𝑔𝑥 +𝑑 𝑔𝑦𝑛 ,𝑔𝑦  

2
  +  

𝑑 𝑔𝑥𝑛+1,𝑔𝑥  +𝑑 𝑔𝑦𝑛 +1,𝑔𝑦  

2
 . 

Then by the properties of 𝜓, we can easily obtain that 

d 𝐹 𝑥, 𝑦 , 𝑔𝑥  = 0 and d 𝐹 𝑦, 𝑥 , 𝑔𝑦  = 0. 

Therefore, F(x, y) = gx and F(y, x) = gy. 

Example 2.2. Let X = [0, 1]. Then (X, ≤) is a partially ordered set with the natural ordering of real 
numbers. 

Let d(x, y) =  𝑥 − 𝑦   for x, y ∈ X. 

Let g : X → X be defined as 

                   𝑔(x) = 𝑥2, for all x ∈ X. 

Let F : X × X → X be defined as 
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                   F(x, y) =  
  
𝑥2−𝑦2 

4
,     𝑖𝑓 𝑥, 𝑦 ∈  0,1 , 𝑥 ≥ 𝑦,

0   ,                         𝑖𝑓    𝑥 < 𝑦.

   

Let {𝑥𝑛 } and {𝑦𝑛 } be two sequences in X such that 

lim𝑛→∞ 𝐹(𝑥𝑛 , 𝑦𝑛 ) = a, lim
𝑛→∞

g(xn) = a, 

lim𝑛→∞ 𝐹(𝑦𝑛 , 𝑥𝑛 ) = b and lim
𝑛→∞

g(yn) = b. 

Now, for all n ≥ 0, 

𝑔(𝑥𝑛 ) = 𝑥𝑛
2 , 𝑔(𝑦𝑛 ) = 𝑦𝑛

2, 

F(𝑥𝑛 , 𝑦𝑛 ) =  
  
𝑥𝑛

2 −𝑦𝑛
2  

4
,     𝑖𝑓 𝑥, 𝑦 ∈  0,1 , 𝑥𝑛  ≥ 𝑦𝑛  ,

0   ,                         𝑖𝑓    𝑥𝑛 < 𝑦𝑛  ,

  

and 

F(𝑦𝑛 , 𝑥𝑛 ) =  
  
𝑦𝑛

2−𝑥𝑛
2  

4
,     𝑖𝑓 𝑥, 𝑦 ∈  0,1 , 𝑦𝑛  ≥ 𝑥𝑛  ,

0   ,                         𝑖𝑓    𝑦𝑛 < 𝑥𝑛  .

  

Obviously, a = 0 and b = 0. 

Then it follows that, 

d(𝑔(F(𝑥𝑛 , 𝑦𝑛 ), F(𝑔𝑥𝑛 , 𝑔𝑦𝑛 )) → 0 as n → ∞, 

and 

d(𝑔(F(𝑦𝑛 , 𝑥𝑛 ), F(𝑔𝑦𝑛 , 𝑔𝑥𝑛 )) → 0 as n → ∞. 

Hence, the mappings F and 𝑔 are compatible in X. Clearly, F obeys the mixed 𝑔-monotone property. 
Also, F(X × X) ⊆ 𝑔(X) and the range space (g(X), d) is complete. 

Define the function 𝛼: 𝑋2 × 𝑋2 → [0, +∞) by 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   =  
1,   𝑖𝑓 𝑥 ≥ 𝑢, 𝑦 ≤ 𝑣, 𝑜𝑟  𝑥 ≤ 𝑢, 𝑦 ≥ 𝑣,
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.                                                  

  

Then, the space (X, d, ≤) is 𝛼-regular. 

Let us define  : [0, +∞) → [0, +∞) by 𝜓(t) = 
𝑡

3
, for t ∈ [0, ∞). 

Also, 𝑥0 = 0 and 𝑦0 = c ( > 0) are two points in X such that 𝑔(𝑥0) = 𝑔(0) = 0 = F(0, c) = F(𝑥0, 𝑦0) and 

𝑔(𝑦0) = 𝑔(c) = 𝑐2 ≥ 
𝑐2

4
 = F(c, 0) = F(𝑦0, 𝑥0). It is easy to observe that F is  𝛼  – admissible with respect 

to g. 

Next, we claim that F is  𝛼, 𝜓 - weak contraction with respect to g. Indeed, if 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 0, 

then the result is obvious. Suppose 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 1. 
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We take x, y, u, v ∈ X, such that 𝑔x ≥ 𝑔u and 𝑔y ≤ 𝑔v; that is, 𝑥2 ≥ 𝑢2 𝑎𝑛𝑑 𝑦2 ≤  𝑣2. We discuss the 
following cases: 

Case 1: x ≥ y, u ≥ v. 

Then 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
  

               = 
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 = 

d F x,y ,F u,v  +d(0,0) 

2
 = 

1

2
 d( 

𝑥2−𝑦2

4
, 
𝑢2−𝑣2

4
) 

               = 
1

2
 
𝑥2−𝑦2

4
−

𝑢2−𝑣2

4
  = 

1

2
  

 𝑥2−𝑢2 +(𝑣2−𝑦2)

4
  = 

1

4
  

 𝑥2−𝑢2 + 𝑣2−𝑦2 

2
  

               ≤ 
1

3
  

 𝑥2−𝑢2 + 𝑣2−𝑦2 

2
  = 

1

3
  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦 )

2
  = 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦 )

2
 . 

Case 2: x ≥ y, u < v. 

Then 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
  

                = 
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 = 

1

2
 d   

𝑥2−𝑦2

4
, 0 + d(0,

𝑣2−𝑢2

4
)  

                 = 
1

2
   

𝑥2−𝑦2

4
 + ( 

𝑣2−𝑢2

4
)  = 

1

2
   

𝑥2−𝑢2

4
 + ( 

𝑣2−𝑦2

4
)  

                 ≤  
1

3
 
 𝑥2−𝑢2  +  𝑣2−𝑦2 

2
  = 

1

3
  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦 )

2
  = 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦 )

2
 . 

Case 3: x < y, u ≥ v. 

Then 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
  

                 = 
d F x,y ,F u,v  +d(F(y,x),F(v,u))  

2
 = 

1

2
 d  0,

𝑢2−𝑣2

4
 + d(

𝑦2−𝑥2

4
, 0)  

                 = 
1

2
   

𝑢2−𝑣2

4
 + ( 

𝑦2−𝑥2

4
)  = 

1

2
 
− 𝑥2−𝑢2 −  𝑣2−𝑦2 

4
  ≤ 

1

4
 
 𝑥2−𝑢2  +  𝑣2−𝑦2 

2
  

                 ≤ 
1

3
 
 𝑥2−𝑢2  +  𝑣2−𝑦2 

2
  = 

1

3
  

𝑑 𝑔𝑥,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦)

2
  = 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦 )

2
 . 

Case 4: x < y, u < v. 

Then 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
  

                 = 
d F x,y ,F u,v  +d(F(y,x),F(v,u))  

2
 = 

d(0,0)+d F y,x ,F v,u   

2
 = 

1

2
 d( 

𝑦2−𝑥2

4
, 

𝑣2−𝑢2

4
) 

= 
1

2
 
𝑦2−𝑥2

4
− 

𝑣2−𝑢2

4
  = 

1

2
  

− 𝑥2−𝑢2 −(𝑣2−𝑦2)

4
  = 

1

2
 
  𝑥2−𝑢2 +(𝑣2−𝑦2) 

4
  =  

1

2
  

 𝑥2−𝑢2 +(𝑣2−𝑦2)

4
  

≤ 
1

3
  

 𝑥2−𝑢2 +(𝑣2−𝑦2)

2
  = 

1

3
  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦)

2
  = 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑(𝑔𝑣,𝑔𝑦)

2
 . 

Hence, the mapping F is  𝛼, 𝜓 - weak contraction with respect to g. 
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      Thus all the conditions of Theorem 2.2 are satisfied and it can be easily seen that (0, 0) is the 
required coupled coincidence point of F and 𝑔 in X. 

       Now, putting g = IX  (the identity map on X) in the previous results, we obtain the following 
result. 

Theorem 2.3. Let (X, ≤) be a partially ordered set and there exists a metric d on X such that (X, d) is 
a complete metric space. Let F : X × X → X be a mapping having the mixed monotone property. 
Suppose there exist two functions  𝛼 : 𝑋2 × 𝑋2 → [0, +∞) and 𝜓 ∈ Ψ such that F is  𝛼, 𝜓 - weak 
contraction. 

Also suppose that 

(viii) F is  𝛼 -admissible; 
(ix) there exist 𝑥0, 𝑦0 ∈ X such that 

  𝛼  𝑥0, 𝑦0 ,  F(𝑥0, 𝑦0), F(𝑦0, 𝑥0)   ≥ 1; 

(x) the mapping F is continuous      or  (X, d, ≤) is 𝛼-regular. 

If in the hypotheses (ix), the elements 𝑥0, 𝑦0 ∈ X be such that 𝑥0 ≤ F(𝑥0, 𝑦0) and 𝑦0  ≥ F(𝑦0, 𝑥0), then F 
has a coupled fixed point in X; that is, there exist, x, y ∈ X such that 

  F(x, y) = x and F (y, x) = y. 

Remark 2.1. If in Theorem 2.1 (and in Theorem 2.2, respectively), hypotheses (ii) is replaced by the 
following hypotheses: 

(xi) there exist 𝑥0, 𝑦0 ∈ X such that 𝛼  𝑔𝑦0, 𝑔𝑥0 ,  F(𝑦0, 𝑥0), F(𝑥0, 𝑦0)   ≥ 1 with g𝑥0 ≥ F(𝑥0, 𝑦0) 

and g𝑦0 ≤ F(𝑦0, 𝑥0), then we also get the existence of some x, y ∈ X such that F(x, y) = g(x) 
and F (y, x) = g(y). 

And if in Theorem 2.3, hypotheses (ix) is replaced by the following hypotheses: 

(xii) there exist 𝑥0, 𝑦0 ∈ X such that 𝛼  𝑦0, 𝑥0 ,  F(𝑦0, 𝑥0), F(𝑥0, 𝑦0)   ≥ 1 with 𝑥0 ≥ F(𝑥0, 𝑦0) and 

𝑦0 ≤ F(𝑦0, 𝑥0), then we also get the existence of some x, y ∈ X such that F(x, y) = x and F (y, x) 
= y. 

Remark 2.2. Theorem 2.3, along with Remark 2.1 improves the main results of Karapinar et al.  [41, 
Theorems 2.1 and 2.2]. Note that, we require only one of the conditions: 

(a) 𝛼  𝑥0, 𝑦0 ,  F(𝑥0, 𝑦0), F(𝑦0, 𝑥0)   ≥ 1    or   (b)     𝛼  𝑦0, 𝑥0 ,  F(𝑦0, 𝑥0), F(𝑥0, 𝑦0)   ≥ 1 to 

produce a coupled fixed point of the mapping F rather than assuming both the conditions (a) and (b) 
as in the results of Karapinar et al. [41, Theorems 2.1 and 2.2] and in the results of Mursaleen et al. 
[40, Theorems 3.4 and 3.5] 

The following example illustrates that Theorem 2.3 is more general than the main result in [19, 
Theorem 2.1] and [40, Theorem 3.4]. 

Example 2.3. Let X = ℝ. Then (X, ≤) is a partially ordered set with the natural ordering of real 
numbers. Let d: X × X → R+ be defined by 

                   d(x, y) =  𝑥 − 𝑦  for x, y ∈ X. 
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Then (X, d) is a complete metric space. 

Consider the mapping 𝛼: 𝑋2 × 𝑋2 → [0, +∞) defined as 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   =  
1,   𝑖𝑓 𝑥 ≥ 𝑢, 𝑦 ≤ 𝑣, 𝑜𝑟  𝑥 ≤ 𝑢, 𝑦 ≥ 𝑣,
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.                                                  

  

Let us define  : [0, +∞) → [0, +∞) by 𝜓(t) = 
7

10
t, for t ∈ [0, ∞). 

Define F : X × X → X by F(x, y) = 
6𝑥−𝑦

10
, (x, y) ∈ X × X. 

Then, F is continuous and has the mixed monotone property. It is easy to observe that F is  𝛼  – 
admissible. Also, F is  𝛼, 𝜓 - weak contraction but does not satisfy either of the condition (1.2) or 
the condition (1.6). 

Indeed, assume there exists some k ∈ [0, 1) such that the condition (1.2) holds. Then, we must have 

 
6𝑥−𝑦

10
−

6𝑢−𝑣

10
  ≤ 

𝑘

2
   𝑥 − 𝑢 +  𝑦 − 𝑣  , x ≥ u and y ≤ v, 

by which, for y = v, we get 

3

5
  𝑥 − 𝑢  ≤ 

𝑘

2
  𝑥 − 𝑢 , x ≥ u, 

which for x > u implies k > 1, a contradiction, since k ∈ [0, 1). Hence, F does not satisfy condition 
(1.2). 

Further, condition (1.6) is also not satisfied. Assume, to the contrary, that there exists some 𝜓 ∈ Ψ 
such that condition (1.6) holds. Then we must have 

                         𝛼  𝑥, 𝑦 ,  𝑢, 𝑣  d 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣   ≤ 𝜓  
𝑑 𝑥,𝑢 +𝑑 𝑦,𝑣 

2
  

holds for all x ≥ u and y ≤ v. Let us take x ≠ u, y = v in the previous inequality. Hence, t =  𝑥 − 𝑢  > 0 
and the previous inequality turns into 

                                            
3

5
𝑡 = 

3 𝑥−𝑢 

5
 ≤ 𝜓  

 𝑥−𝑢 

2
  = 𝜓  

𝑡

2
 , 

since 𝜓(t) < t for t > 0, we have 
3

5
𝑡 ≤ 𝜓  

𝑡

2
  < 

𝑡

2
, a contradiction. Hence, F does not satisfy (1.6). 

Next we prove that F is  𝛼, 𝜓 - weak contraction. Indeed, if 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 0, then the result is 

obvious. Suppose 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 1. Without loss of generality, assume that x ≥ u and y ≤ v. 

Then, we have that 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   
d 𝐹 𝑥, 𝑦 , 𝐹 𝑢, 𝑣  + d 𝐹 𝑦, 𝑥 , 𝐹 𝑣, 𝑢  

2
  

                                 = 
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 

                                 = 
1

20
  6 𝑥 − 𝑢 −  𝑦 − 𝑣   + 

1

20
  6 𝑦 − 𝑣 −  𝑥 − 𝑢   
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                                 ≤ 
7

10
  

 𝑥−𝑢 + 𝑦−𝑣 

2
  = 𝜓  

𝑑 𝑥,𝑢 +𝑑 𝑦,𝑣 

2
 . 

Also, 𝑥0 = −1 and 𝑦0 = 1 are two points in X such that 𝑥0 ≤ F(𝑥0, 𝑦0) and 𝑦0 ≥ F(𝑦0, 𝑥0). 

So by our Theorem 2.3 we obtain that F has a (unique) coupled fixed point (0, 0) but either Theorem 
2.1 in [19] or Theorem 3.4 in [40] cannot be applied to F in this example. 

Theorem 2.4. Let (X, ≤) be partially ordered set and let d  be a metric on X such that (X, d) is 
complete. Let F: X × X → X and g: X → X be two mappings such that F satisfy the mixed g-monotone 
property. Suppose that there exists a function 𝜓 ∈ Ψ such that 

                              
d 𝐹 𝑥,𝑦 ,𝐹 𝑢,𝑣  +d 𝐹 𝑦,𝑥 ,𝐹 𝑣,𝑢  

2
 ≤ 𝜓  

𝑑 𝑔𝑥 ,𝑔𝑢  +𝑑 𝑔𝑦 ,𝑔𝑣 

2
 ,          (2.10) 

for all x, y, u, v ∈ X with gx ≥ gu and gy ≤ gv (or gx ≤ gu and gy ≥ gv). Suppose also that the 
following conditions hold: 

(xiii) the pair (F, g) is compatible; 
(xiv) both the mappings F and g are continuous; 
(xv) F (X× X) ⊆ g(X); 
(xvi) there exist 𝑥0, 𝑦0 ∈ X such that g𝑥0 ≤ F(𝑥0, 𝑦0) and g𝑦0  ≥ F(𝑦0, 𝑥0). 

Then the mappings F and g have a coupled coincidence point in X; that is, there exist x, y ∈ X such 
that 

  F(x, y) = g (x) and F (y, x) = g (y). 

Proof. Define the mapping 𝛼: 𝑋2 × 𝑋2 → [0, +∞) by 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   =  
1,   𝑖𝑓 𝑥 ≥ 𝑢, 𝑦 ≤ 𝑣, 𝑜𝑟  𝑥 ≤ 𝑢, 𝑦 ≥ 𝑣,
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                                                   

    (2.11) 

so that using assumption (xiv), we have 𝛼  𝑔𝑥0, 𝑔𝑦0 ,  F(𝑥0, 𝑦0), F(𝑦0, 𝑥0)   ≥ 1. Further, for all 
 𝑥, 𝑦 ,  𝑢, 𝑣  ∈ X × X, by the mixed g-monotone property of F, we have 

𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   ≥ 1 ⟹    gx ≥ gu and gy ≤ gv    or    gx ≤ gu and gy ≥ gv 

⟹ 𝐹 𝑥, 𝑦  ≥ 𝐹 𝑢, 𝑣  and 𝐹 𝑦, 𝑥  ≤ 𝐹 𝑣, 𝑢     or    𝐹 𝑦, 𝑥  ≥ 𝐹 𝑣, 𝑢  and 𝐹 𝑥, 𝑦  ≤ 𝐹 𝑢, 𝑣  

⟹ 𝛼   𝐹 𝑥, 𝑦 , 𝐹 𝑦, 𝑥  ,  𝐹 𝑢, 𝑣 , 𝐹 𝑣, 𝑢    ≥ 1. 

Therefore, F is 𝛼-admissible with respect to g. Moreover, by (2.10) and (2.11), F is  𝛼, 𝜓 - weak 
contraction with respect to g. Then, Theorem 2.1 yields the existence of a coupled coincidence point 
of the mappings F and g. 

Remark 2.3. Result analogous to Theorem 2.4 can be obtained from Theorem 2.2 for 𝛼-regular 
space. 

Remark 2.4.(i) Theorem 2.4 along with Remark 2.3 provides a generalization of the recent result in 
[38, Corollary 2.3]. By defining 𝜓(t) = kt, k ∈ [0, 1) in Theorem 2.4, we obtain the contraction (1.4). 
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(ii) For g = IX  (the identity mapping on X), Theorem 2.4 along with Remark 2.3 provides a 
generalization of the recent result in [20, Theorem 3]. By defining 𝜓(t) = kt, k ∈ [0, 1) in Theorem 
2.4, we obtain the contraction (1.3). 

3. Existence and Uniqueness of the Coupled Fixed Points 

          Now, in order to prove the existence and uniqueness of the coupled common fixed point for 
our main results, we need the following Lemma. 

Lemma 3.1. Let F : X × X → X and 𝑔 : X → X be compatible maps and there exists an element  (x, y) ∈ 
X × X, such that 𝑔x = F(x, y) and 𝑔y = F(y, x), then 𝑔F(x, y) = F(𝑔x, 𝑔y) and 𝑔F(y, x) = F(𝑔y, 𝑔x). 

Proof. Since the pair (F, 𝑔) is compatible, it follows that 

                lim𝑛→∞ 𝑑(𝑔𝐹 𝑥𝑛 , 𝑦𝑛 , 𝐹 𝑔 𝑥𝑛 , 𝑔 𝑦𝑛  ) = 0, 

                  lim𝑛→∞ 𝑑(𝑔𝐹 𝑦𝑛 , 𝑥𝑛 , 𝐹 𝑔 𝑦𝑛 , 𝑔 𝑥𝑛  ) = 0, 

 
whenever {xn} and {yn} are sequences in X, such that 
lim𝑛→∞ 𝐹(𝑥𝑛 , 𝑦𝑛 ) = lim𝑛→∞ 𝑔(𝑥𝑛 ) = a, lim𝑛→∞ 𝐹(𝑦𝑛 , 𝑥𝑛 ) = lim𝑛→∞ 𝑔(𝑦𝑛 ) = b for some a, b in X. 
Taking 𝑥𝑛  = x, 𝑦𝑛  = y for all n ∈ ℕ and using 𝑔x = F(x, y), 𝑔y = F(y, x),  it follows that 
 
                d(𝑔F(x, y), F(𝑔x, 𝑔y)) = 0 and d(𝑔F(y, x), F(𝑔y, 𝑔x)) = 0. 
 
Hence, 𝑔F(x, y) = F(𝑔x, 𝑔y) and 𝑔F(y, x) = F(𝑔y, 𝑔x). 

Theorem 3.1. In addition to the hypotheses of Theorem 2.1, suppose that for every (x, y), (x*, y*) ∈ X 
× X, there exists (u, v) ∈ X × X such that 

  𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   ≥ 1        and   𝛼  𝑔𝑥∗, 𝑔𝑦∗ ,  𝑔𝑢, 𝑔𝑣   ≥ 1, 

and also assume that (gu, gv) is comparable to (gx, gy) and (gx*, gy*). Then F and 𝑔 have a unique 
coupled common fixed point; that is, there exists a unique (x, y) ∈ X × X such that x = 𝑔(x) = F(x, y) 
and y = 𝑔(y) = F(y, x). 

Proof. By Theorem 2.1, the set of coupled coincidences is non-empty. In order to prove the 
theorem, we shall first show that if (x, y) and (x*, y*) are coupled coincidence points; that is, if 𝑔x = 
F(x, y), 𝑔y = F(y, x) and 𝑔x* = F(x*, y*), 𝑔y*= F(y*, x*), then  

                                   𝑔x = 𝑔x*  and 𝑔y = 𝑔y*.                                        (3.1) 

By assumption, there exists (u, v) ∈ X × X such that 

 𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   ≥ 1     and     𝛼  𝑔𝑥∗, 𝑔𝑦∗ ,  𝑔𝑢, 𝑔𝑣   ≥ 1,                                          (3.2) 

and (gu, gv) is comparable with (gx, gy) and (gx*, gy*). Put 𝑢0 = u, 𝑣0 = v and choose 𝑢1, 𝑣1 ∈ X so that 
𝑔𝑢1 = F(𝑢0, 𝑣0), 𝑔𝑣1 = F(𝑣0, 𝑢0). 

Then, similarly as in the proof of Theorem (2.1), we can inductively define the sequences {𝑔𝑢𝑛 } and 
{𝑔𝑣𝑛 } such that 𝑔𝑢𝑛+1 = F(𝑢𝑛 , 𝑣𝑛 ) and 𝑔𝑣𝑛+1 = F(𝑣𝑛 , 𝑢𝑛 ). 
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Further, set 𝑥0 = x, 𝑦0 = y, 𝑥0
∗ = x*, 𝑦0

∗ = y* and, on the same way, define the sequences {𝑔𝑥𝑛 }, {𝑔𝑦𝑛 } 
and {𝑔𝑥𝑛

∗ }, {𝑔𝑦𝑛
∗}. Then it is easy to show that 

             𝑔𝑥𝑛+1 = F(𝑥𝑛 , 𝑦𝑛 ), 𝑔𝑦𝑛+1 = F(𝑦𝑛 , 𝑥𝑛 ) 

and 

             𝑔𝑥𝑛+1
∗  = F(𝑥𝑛

∗ , 𝑦𝑛
∗), 𝑔𝑦𝑛+1

∗  = F(𝑦𝑛
∗, 𝑥𝑛

∗ ) for all n ≥ 0. 

Since (gu, gv) is comparable with (gx, gy), we may assume (gx, gy) ≥ (gu, gv) = (g𝑢0, g𝑣0). By the 
proof of Theorem 2.1, we obtain inductively (gx, gy) ≥ (g𝑢𝑛 , g𝑣𝑛 ) for all n ≥ 0. 

Since  F is  𝛼  – admissible with respect to g, so from (3.2), we have 

 𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   ≥ 1 ⟹ 𝛼   𝐹 𝑥, 𝑦 , 𝐹 𝑦, 𝑥  ,  𝐹 𝑢, 𝑣 , 𝐹 𝑣, 𝑢    ≥ 1. 

Since u = 𝑢0 and v = 𝑣0, we get 

           𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   ≥ 1 ⟹ 𝛼   𝐹 𝑥, 𝑦 , 𝐹 𝑦, 𝑥  ,  𝐹 𝑢0, 𝑣0 , 𝐹 𝑣0, 𝑢0    ≥ 1. 

Thus, 

                 𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢, 𝑔𝑣   ≥ 1 ⟹ 𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢1, 𝑔𝑣1   ≥ 1. 

Then, using mathematical induction, we obtain 

                                       𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢𝑛 , 𝑔𝑣𝑛   ≥ 1,                               (3.3) 

for all n ∈ N. From (3.2) and (3.3), we get 

 
𝑑 𝑔𝑥 ,𝑔𝑢𝑛+1 +𝑑 𝑔𝑦 ,𝑔𝑣𝑛+1 

2
 = 

𝑑 𝐹 𝑥,𝑦 ,𝐹 𝑢𝑛 ,𝑣𝑛   +𝑑 𝐹 𝑦,𝑥 ,𝐹 𝑣𝑛 ,𝑢𝑛   

2
 

    ≤ 𝛼  𝑔𝑥, 𝑔𝑦 ,  𝑔𝑢𝑛 , 𝑔𝑣𝑛  
𝑑 𝐹 𝑥,𝑦 ,𝐹 𝑢𝑛 ,𝑣𝑛   +𝑑 𝐹 𝑦,𝑥 ,𝐹 𝑣𝑛 ,𝑢𝑛   

2
 

                                                ≤ 𝜓  
𝑑 𝑔𝑥 ,𝑔𝑢𝑛  +𝑑 𝑔𝑦 ,𝑔𝑣𝑛  

2
 . 

Thus, 

           
𝑑 𝑔𝑥 ,𝑔𝑢𝑛+1 +𝑑 𝑔𝑦 ,𝑔𝑣𝑛+1 

2
 ≤ 𝜓𝑛  

𝑑 𝑔𝑥 ,𝑔𝑢0 +𝑑 𝑔𝑦 ,𝑔𝑣0 

2
 ,                (3.4) 

for each n ≥ 1. Letting n → ∞ in (3.4), we get 

  lim𝑛→∞ 𝑑 𝑔𝑥, 𝑔𝑢𝑛+1 + 𝑑 𝑔𝑦, 𝑔𝑣𝑛+1   = 0. 

This implies 

  lim𝑛→∞ 𝑑 𝑔𝑥, 𝑔𝑢𝑛+1  = lim𝑛→∞ 𝑑 𝑔𝑦, 𝑔𝑣𝑛+1  = 0.               (3.5) 

Similarly, we can show that 

  lim𝑛→∞ 𝑑 𝑔𝑥∗, 𝑔𝑢𝑛+1  = lim𝑛→∞ 𝑑 𝑔𝑦∗, 𝑔𝑣𝑛+1  = 0.                              (3.6) 
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From (3.5) and (3.6), we conclude that 𝑔𝑥 = 𝑔𝑥∗ and 𝑔𝑦 = 𝑔𝑦∗. Thus, we proved (3.1). 

Since 𝑔x = F(x, y), 𝑔y = F(y, x) and the pair (F, 𝑔) is compatible, then by Lemma 3.1, it follows that 

                𝑔𝑔x = 𝑔F(x, y) = F(𝑔x, 𝑔y) and 𝑔𝑔y = 𝑔F(y, x) = F(𝑔y, 𝑔x).                                 (3.7) 

Denote 𝑔x = z, 𝑔y = w. Then by (3.7), 

               𝑔z = F(z, w) and 𝑔w = F(w, z).                     (3.8) 

Thus (z, w) is a coupled coincidence point. 

Then by (3.1) with x* = z and y* = w, it follows that 𝑔z = 𝑔x and 𝑔w = 𝑔y; that is,   

               𝑔z = z, 𝑔w = w.                      (3.9) 

By (3.8) and (3.9), 

                 z = 𝑔z = F(z, w) and w = 𝑔w = F(w, z). 

Therefore, (z, w) is the coupled common fixed point of F and 𝑔. 

To prove the uniqueness, assume that (p, q) is another coupled common fixed point of F and 𝑔. 
Then by (3.1), we have p = 𝑔p = 𝑔z = z and q = 𝑔q = 𝑔w = w. 

Hence, the mappings F and g have a unique coupled common fixed point. 

Theorem 3.2. In addition to the hypotheses of Theorem 2.3, suppose that for every (x, y), (x*, y*) ∈ X 
× X, there exists (u, v) ∈ X × X such that 

  𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   ≥ 1        and   𝛼  𝑥∗, 𝑦∗ ,  𝑢, 𝑣   ≥ 1, 

and also assume that (u, v) is comparable to (x, y) and (x*, y*). Then F has a unique coupled fixed 
point; that is, there exists a unique (x, y) ∈ X × X such that x = F(x, y) and y = F(y, x). 

 

4. Applications to Integral Equations 

      As an application of the results proved in Sections 2 and 3, we study the existence of solutions 
for the following system of integral equations: 

                 
x t =   K1 t, s + K2 t, s  

b

a
 f s, x s  + g s, y s   ds +  h t ,

y t =   K1 t, s + K2 t, s  
b

a
 f s, y s  + g s, x s   ds +  h t ,

                                     

(4.1) 

t ∈ I = [a, b]. 

Let Θ denote the class of functions φ : [0, ∞) → [0, ∞) which satisfies the following conditions: 

(i) φ is increasing; 
(ii) for each x ≥ 0, there exists some 𝜓 ∈ Ψ such that φ(x) ≤ 𝜓 x 2  . 
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We assume that K1, K2, f, g satisfy the following conditions. 

Assumption 4.1. (i) K1(t, s) ≥ 0 and  K2(t, s) ≤ 0 for all t, s ∈ [a, b]; 

(ii) There exist λ, μ > 0 and φ ∈ Θ such that for all x, y ∈ ℝ, x ≥ y, 

                        0 ≤ f(t, x) – f(t, y) ≤ λφ(x - y)                                                                                        (4.2) 

and 

                   -μφ(x - y) ≤ g(t, x) – g(t, y) ≤ 0;                                                                                         (4.3) 

(iii)  λ +  μ  . supt∈I   K1 t, s − K2 t, s  
b

a
ds ≤ 1.                                                                        (4.4) 

Definition 4.2. An element  𝜏, β  ∈ X × X with X = C I, ℝ  is called a coupled lower and upper 
solution of the integral equation (4.1) if for all t ∈ I, 

𝜏(t) ≤  K1 t, s 
b

a
 f s, 𝜏 s  + g s, β s   ds +  K2 t, s 

b

a
 f s, β s  + g s, 𝜏 s   ds + h(t) 

and 

β(t) ≥  K1 t, s 
b

a
 f s, β s  + g s, 𝜏 s   ds +  K2 t, s 

b

a
 f s, 𝜏 s  + g s, β s   ds + h(t). 

Theorem 4.3. Consider the integral equation (4.1) with K1, K2 ∈ C I × I, ℝ , f, g ∈ C I × ℝ, ℝ  and h 
∈ C I, ℝ . Suppose that there exists a coupled lower and upper solution  𝜏, β  of (4.1) with 𝜏 ≤ β 
and that Assumption 4.1 is satisfied. Then the integral equation (4.1) has a solution. 

Proof. Consider the natural order relation on X = C I, ℝ ; that is, for x, y ∈ C I, ℝ  

                  x ≤ y ⟺ x(t) ≤ y(t), ∀ t ∈ I. 

It is well known that X is a complete metric space with respect to the sup metric 

                d(x, y) = supt∈I x t − y(t) ,       x, y ∈ C I, ℝ . 

Also, X × X = C I, ℝ  × C I, ℝ  is a partially ordered set under the following order relation in X × X 

         (x, y), (u, v) ∈ X × X, (x, y) ≤ (u, v) ⟺ x(t) ≤ u(t) and y(t) ≥ v(t),   ∀ t ∈ I. 

Define F : X × X → X by 

F(x,y)(t) =  K1 t, s 
b

a
 f s, x s  + g s, y s   ds +  K2 t, s 

b

a
 f s, y s  + g s, x s   ds + h(t) 

for all t ∈ [a, b]. 

We now show that F has the mixed monotone property. For x1(t) ≤ x2(t) for all t ∈ [a, b] we have 

F(x1, y)(t) − F(x2, y)(t) =  K1 t, s 
b

a
 f s, x1 s  + g s, y s   ds 

                                         +  K2 t, s 
b

a
 f s, y s  + g s, x1 s   ds + h(t) 
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                                         −  K1 t, s 
b

a
 f s, x2 s  + g s, y s   ds 

                                         −  K2 t, s 
b

a
 f s, y s  + g s, x2 s   ds − h(t) 

                                      =  K1 t, s 
b

a
 f s, x1 s  − f s, x2 s   ds 

                                          +  K2 t, s 
b

a
 g s, x1 s  − g s, x2 s   ds ≤ 0, 

by Assumption 4.1. Hence F(x1, y)(t) ≤ F(x2, y)(t), ∀ t ∈ I; that is, F(x1, y) ≤ F(x2, y). 

Similarly, if y1 ≥ y2, that is, y1(t) ≥ y2(t), for all t ∈ [a, b], we have 

F(x, y1)(t) − F(x, y2)(t) =  K1 t, s 
b

a
 f s, x s  + g s, y1 s   ds 

                                         +  K2 t, s 
b

a
 f s, y1 s  + g s, x s   ds + h(t) 

                                         −  K1 t, s 
b

a
 f s, x s  + g s, y2 s   ds 

                                         −  K2 t, s 
b

a
 f s, y2 s  + g s, x s   ds − h(t) 

                                      =  K1 t, s 
b

a
 g s, y1 s  − g s, y2 s   ds 

                                          +  K2 t, s 
b

a
 f s, y1 s  − f s, y2 s   ds ≤ 0, 

by Assumption 4.1. Hence F(x, y1)(t) ≤ F(x, y2)(t), ∀ t ∈ I; that is, F(x, y1) ≤ F(x, y2). 

Therefore F satisfies  mixed monotone property. 

Next, we verify that F is  𝛼, 𝜓 - weak contraction for some 𝛼: 𝑋2 × 𝑋2 → [0, +∞). For x ≥ u, y ≤ v; 
that is, x(t) ≥ u(t), y(t) ≤ v(t) for all t ∈ I, we have 

F(x, y)(t) – F(u, v)(t) =  K1 t, s 
b

a
 f s, x s  + g s, y s   ds 

                                      +  K2 t, s 
b

a
 f s, y s  + g s, x s   ds 

                                       −  K1 t, s 
b

a
 f s, u s  + g s, v s   ds 

                                       −  K2 t, s 
b

a
 f s, v s  + g s, u s   ds. 

                                    =  K1 t, s 
b

a
 f s, x s  − f s, u s  + g s, y s  − g s, v s   ds 

                                       +  K2 t, s 
b

a
 f s, y s  − f s, v s  + g s, x s  − g s, u s   ds 

                                    =  K1 t, s 
b

a
  f s, x s  − f s, u s   −  g s, v s  − g s, y s    ds 
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                                     −  K2 t, s 
b

a
  f s, v s  − f s, y s   −  g s, x s  − g s, u s    ds 

                                    ≤  K1 t, s 
b

a
 λφ x s − u(s) + μφ v s − y(s)  ds 

                                     −  K2 t, s 
b

a
 λφ v s − y(s) + μφ x s − u(s)  ds.                                  (4.5) 

Since the function φ is increasing and x ≥ u and y ≤ v, we have 

         φ x s − u(s)  ≤ φ supt∈I x t − u(t)   = φ d x, u   

and 

        φ v s − y(s)  ≤ φ supt∈I v t − y(t)   = φ d v, y  . 

Hence, using (4.5) and the fact that K2 t, s  ≤ 0, we obtain 

 F x, y  t − F u, v (t)  ≤  K1 t, s 
b

a
 λφ d x, u  + μφ d v, y   ds 

                                               −  K2 t, s 
b

a
 λφ d v, y  + μφ d x, u   ds.                               (4.6) 

Since all of the quantities on the right hand side of (4.5) are non-negative, (4.6) holds. 

Similarly, we can show that 

 F y, x  t − F v, u (t)  ≤  K1 t, s 
b

a
 λφ d v, y  + μφ d x, u   ds 

                                               −  K2 t, s 
b

a
 λφ d x, u  + μφ d v, y   ds.                                   (4.7) 

Summing (4.6) and (4.7), dividing by 2, and then taking the supremum with respect to t we get, by 
using (4.4) that 

d F x,y +F u,v  +d F y,x +F v,u  

2
 ≤  λ + μ  supt∈I   K1 t, s − K2 t, s  

b

a
ds ∙ 

φ d v,y  +φ d x,u  

2
 

                                                  ≤ 
φ d v,y  +φ d x,u  

2
. 

Since φ is increasing, 

         φ d x, u   ≤ φ d x, u + d v, y  ,       φ d v, y   ≤ φ d x, u + d v, y   

and hence 

         
φ d v,y  +φ d x,u  

2
 ≤ φ d x, u + d v, y   

                                      ≤ 𝜓  
d x,u +d v,y 

2
 , 

by the definition of φ. Thus 

          
d F x,y +F u,v  +d F y,x +F v,u  

2
 ≤ 𝜓  

d x,u +d v,y 

2
 .                                                               (4.8) 
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Define the mapping 𝛼: 𝑋2 × 𝑋2 → [0, +∞) by 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 1, if the pairs  𝑥, 𝑦  and  𝑢, 𝑣  are comparable with respect to the ordering in       

X × X and 𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   = 0, otherwise. 

Then, for all  𝑥, 𝑦 ,  𝑢, 𝑣  ∈ X × X, by the mixed monotone property of F, we have 

𝛼  𝑥, 𝑦 ,  𝑢, 𝑣   ≥ 1 ⟹    x ≥ u and y ≤ v    or    x ≤ u and y ≥ v 

⟹ 𝐹 𝑥, 𝑦  ≥ 𝐹 𝑢, 𝑣  and 𝐹 𝑦, 𝑥  ≤ 𝐹 𝑣, 𝑢     or    𝐹 𝑦, 𝑥  ≥ 𝐹 𝑣, 𝑢  and 𝐹 𝑥, 𝑦  ≤ 𝐹 𝑢, 𝑣  

⟹ 𝛼   𝐹 𝑥, 𝑦 , 𝐹 𝑦, 𝑥  ,  𝐹 𝑢, 𝑣 , 𝐹 𝑣, 𝑢    ≥ 1. 

Therefore, F is 𝛼-admissible. Moreover, by the definition of 𝛼 and (4.8), F is  𝛼, 𝜓 - weak 
contraction. 

Suppose that  un  and  vn  be two convergent sequences in X, converging to u and v respectively. 
Let un  ≤ un+1 and vn  ≥ vn+1 for all n > 0. 

Then by definition of 𝛼, we have 𝛼  𝑢𝑛(𝑡), 𝑣𝑛 (𝑡) ,  𝑢𝑛+1(𝑡), 𝑣𝑛+1(𝑡)   ≥ 1, for all t ∈ I and n > 0. 

Since  un  is an increasing sequence in X converging to u, so that un  ≤ u for all n. Similarly,  vn  is a 
decreasing sequence in X converging to v, so that v ≤ vn  for all n. Again by definition of 𝛼, we have 

𝛼  𝑢𝑛 , 𝑣𝑛 ,  𝑢, 𝑣   ≥ 1 for all n. Therefore, the space (X, d, ≤) is 𝛼-regular. 

Further, for any x, y ∈ X, max. x t , y(t)  and min. x t , y(t) , for each t ∈ I, are in X and are the 
upper and lower bounds of x, y, respectively. Therefore, for every (x, y), (u, v) ∈ X × X, there exists a 
 max.  x, u , min.  y, v)   ∈ X × X that is comparable to (x, y) and (u, v). Then, again by the definition 

of 𝛼, 𝛼  x, y ,  max.  x, u , min.  y, v)    ≥ 1 and 𝛼  u, v ,  max.  x, u , min.  y, v)    ≥ 1. 

Finally, let (𝜏, β) be a coupled lower and upper solution of the integral equation (4.1), then we have 
𝜏(t) ≤ F(𝜏, β)(t) and β(t) ≥ F(β, 𝜏)(t) for all t ∈ [a, b], that is, 𝜏 ≤ F(𝜏, β) and   β ≥ F(β, 𝜏). Then, by the 

definition of 𝛼, 𝛼  𝜏, β ,  F(𝜏, β), F(β, 𝜏)   ≥ 1. Therefore, Theorems 2.3 and 3.2 yield that F has a 

unique coupled fixed point (x, y) and hence the system (4.1) has a unique solution. 
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