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Abstract
In this paper, we show that the standard finite difference scheme can generate numerical drawbacks such
as spurious oscillations in the solution of the famous Black-Scholes partial differential equation, in the
presence of discontinuities. We propose a modification of this scheme based on a nonstandard
discretization. The proposed scheme is free of spurious oscillations and satisfies the positivity requirement,
as is demanded for the financial solution of the Black-Scholes equation.
Keywords: Black-Scholes equation, Nonstandard finite differences, Positivity preserving, Stability.

1. Introduction
The famous Black-Scholes equation is an effective model for option pricing, i.e. to compute a fair value
for the double barrier knock-out call option. A modified version of this model for the European option
pricing in the form of initial value problem can be written [8, 9, 10, 11] as:
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where V (S, t) is the price of the option and endowed with initial and boundary conditions:

V(S,0) = max(S-K,0) I, ;(S),
V(St)—>0 as S—0 or S—> o,

with updating of the initial condition at the monitoring dates t; ,i=1, ..., F:
V(S )=V (St 4, (S), 0=t <t <---<t =T,

where 1, ;(S) is the indicator function, i.e.,
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where the parameter r > Qis the interest rate and the reference volatility is > 0.

To obtain the finite difference approximation for equation (1), let the computational domain
[0,S v |<[0.T ] is discretized by a uniform mesh with steps AS, At in order to obtain grid points
GAaS,nAt), j=1---,M and n=0,1,---,N so that 5, =S__ =M AS and T =N At. By the
forward difference for ZY_and centered difference for discretization of %and 62\/2 and
ot 0 oS
approximationsV " of v at the grid points, we have the following explicit finite difference method:

V_n+1 _V n V_n _V n V_n _N_n +V n
_J—J+51M+l(o—3j)2 1z L2 _pw,"=0. (3)
At 2AS 2 AS

This method has low accuracy and often generates numerical drawbacks such as spurious oscillations
and negative values in the solution whenever the financial parameters of the Black-Scholes model o
and r satisfy the relationship o 0 r, see Figure 1. In the case of larger time step, we see the same
behavior, see Figure 2. The values of the parameters used in our simulation are taken from [§].
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Figure 1. Truncated call option value for explicit method with AS =0.01, At =10°. parameters:
L =90, K =100,U =110, r =0.05, 0=0.001,T =0.01, S =120.
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Figure 2. Truncated call option value for explicit method with AS =0.01, At =103. parameters:
L =90, K =100,U =110, r =0.05, =0.001, T =0.01, S, =120.

2. Scheme construction

To overcome the drawbacks mentioned above, we develop an explicit nonstandard finite difference
method [2,3,4,5,6,7] within the strategy suggested by Milev in [8]. We propose our nonstandard finite
difference scheme as:

Vv Vv V-V
— oyrs, a Vi Lgg y2lin T TV in gy
At 2AS 2 AS

+V " )-r@l-2aVv " =0, (4)
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Where it can be written in the following form:

Ly B @iy ey (o (e ra2ay (o 2 (Zy pay
At ! 2AS 2 AS at At AS 2AS 2 AS 41
(5)

Theorem 1. Sufficient for scheme (5) to be positive is

a<—_" A<t . (6)
(oj) +r(1—2a)

Proof. From (5) it is enough to show that

_5i l(aS 1)2 _ra>0, (7)
2AS 2 AS
i 1(08 1)2 _ra=0, (8)

2AS 2 AS
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From (7) we can write

ra<1(O'S )Z_rSj’
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now, the last inequality in (10) shows sufficiency of g < _szor (6), (as a consequence (8) holds too),
8o

1
(cj) +r(l-2a)

1

on the other hand from (9) we have — > ( S ) +r(l—2a), from which At < and
At

this completes the proof.

Theorem 2. Under the conditions (6), the proposed scheme is stable and convergent with local
truncation error O (At,AS?).

Proof. Using the Fourier stability method [1] put

an :eanAteiﬂjAS (11)
Where i =+/—1, and g is an arbitrary real. Substituting of (11) into (5) we obtain
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and taking the real part it is seen that the absolute value of the amplification factore *** <1.

Therefor the scheme is stable and convergent with local truncation error:

Vv (S tn+1) -V (Sj’ n) V( j+1 n) -V (SJ -1 n)

TJ.n =— +rS .
At ! 2AS
+1(O_SJ)2 ( j-17 ) N(S 2t )+V (SJ+1' )
2 AS
—ral (S;..,t,)+V (S 1, t,))—r@—2ayV (S, t,), (14)

by Taylor’s expansion, we have
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substitution into the expression for T then gives

oo N sV lozszazvz—rv L [BVY rans? 62\/2 e (15)
J ot s 2 ES 27 La? ), as? ),

ButV is the solution of the Black-Scholes equation so

N s N 1azszazvz—rv =0.
ot T es 2 s j

Therefor the principle part of the local truncation error is

Hence T" =O (At,AS?).
3. Numerical Results

In this section, we present the numerical results using the proposed scheme (5). Here, we
corroborate the properties of our new scheme for Eq.(1). These numerical results are obtained with
o? [ r and different values for At . (See Figure 3-4).
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Figure 3. Truncated call option value for nonstandard explicit method with AS =0.01, At =10°.
parameters: L =90, K =100, U =110, r =0.05, =0.001,T =0.01, S, =120.
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Figure 4. Truncated call option value for nonstandard explicit method with AS =0.01, At =1073.
parameters: L =90, K =100, U =110, r =0.05, =0.001,T =0.01, S, =120.

We have programed these methods in MATLAB.
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4. Conclusions and discussion

We constructed an explicit method based on a nonstandard discretization scheme to solve option
valuation problem with double barrier knock-out call option. In particular, the proposed method uses a
nonstandard discretization in reaction term and the spatial derivatives are approximated using standard
finite difference scheme. It is shown that the proposed nonstandard numerical scheme preserve the
positivity as well as stability and consistence. Furthermore, the proposed scheme performs well with
larger stepsizes. Future work will include extending the method to nonlinear Black-Scholes equation.
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