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          Abstract 
 
           In this article it has been tried to show that fuzzy theory performs better than 

probability theory in monitoring the product quality. A method that uses statistical 
techniques to monitor and control product quality is called statistical process control 
(SPC), where control charts are test tools frequently used for monitoring the 
manufacturing process. In this study, statistical quality control and the fuzzy set 
theory are aimed to combine. As known, fuzzy sets and fuzzy logic are powerful 
mathematical tools for modeling uncertain systems in industry, nature and 
humanity; and facilitators for common-sense reasoning in decision making in the 
absence of complete and precise information. In this basis for a textile firm for 
monitoring the yarn quality, control charts according to fuzzy theory by considering 
the quality in terms of grades of conformance as opposed to absolute conformance 
and nonconformance. And then with the same data for a textile factory, the control 
chart based on probability theory is constructed. The results of control charts based 
on two different approaches are compared. It’s seen that fuzzy theory performs 
better than probability theory in monitoring the product quality. 
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     1. Introduction 
 

Successful businesses inevitably place great emphasis on managing quality control - carefully planned 
steps taken to ensure that the products and services offered to their customers are consistent and reliable 
and truly meet their customers' needs. Many quality characteristics (Q.Ch.) are expressed in terms of 
original or its derived measurement units, like weight, length, pressure, etc. for which they are called 
continuous or variable. As normality is a usual assumption of control charts of continuous Q.Ch.s and 
independency of mean and variance is a basic assumption of normal distribution, a separate control chart 
is prepared for monitoring the process average. As the literature of a Shewhartian control chart and fuzzy 
theory is quite famous and available in different related texts and articles we will generally discuss them 
in the following lines. 

2. Quality Control  
 

Quality control is a process employed to ensure a certain level of quality in a product or service. It may 
include whatever actions a business deems necessary to provide for the control and verification of certain 
characteristics of a product or service. The basic goal of quality control is to ensure that the products, 
services, or processes provided meet specific requirements and are dependable, satisfactory, and fiscally 
sound. 

One of the primary tools used in the statistical control of a process is the control chart. Created by 
Walter Shewhart in 1924, the Shewhart control chart gives a crisp picture of the state of a process by 
plotting the data produced by a process on a chart bound by upper and lower specification limits. The 
main function of a control chart is to  

Monitor a process in order to identify whether or not the process is in control. “In control” conditions 
mean that a process is producing parts that are close to the target value with little variation. “Out of 
control” conditions mean that some type of assignable cause has occurred, and the process is, therefore, 
yielding products at either an unacceptable distance from the target value, with an unacceptable amount 
of variation, or both. The control chart consists of three lines: an upper control limit (UCL), a lower 
control limit (LCL), and a center line (CL) (Refer to Fig 1). The upper and lower control limits are the 
maximum and minimum values for a process characteristic to be considered in control while the center 
line is the mean value for the process. For Shewhart charts, 3sigma control limits are used. Three sigma ( 
3σ ) control limits establish bounds on the data that extend above and below the mean of the process by 3 
times the standard deviation of the process statistic being plotted. Data to be plotted on control charts are 
obtained directly from the process. Data points falling outside the set limits indicate a possible out of 
control condition in the process .  

 

 
Fig1.  X Control Chart Using R 

 
The information plotted on control charts consists of either variable or attribute data. Variable data 
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represent measurable characteristics. Examples of variable data are dimensions such as diameters, 
volumes, or lengths. Attribute data are data that refer to either a pass or a fail situation. In other words, if 
a product passes inspection, it is considered a pass, and thus, it conforms to the standards outlined for the 
product. If a product fails, it is considered nonconforming to the standards outlined for the product.  
 

3. Fuzzy Logic and Fuzzy Set Theory  

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with reasoning that is 
approximate rather than accurate. In contrast with "crisp logic", where binary sets have binary logic, 
fuzzy logic variables may have a truth value that ranges between 0 and 1 and is not constrained to the two 
truth values of classic propositional logic. Furthermore, when linguistic variables are used, these degrees 
may be managed by specific functions. Fuzzy logic emerged as a consequence of the 1965 proposal of 
fuzzy set theory by Lotfi Zadeh. Though fuzzy logic has been applied to many fields, from control theory to 
artificial intelligence, it still remains controversial among most statisticians, who prefer Bayesian logic, 
and some control engineers, who prefer traditional two-valued logic.  

Fuzzy logic and probabilistic logic are mathematically similar – both have truth values ranging 
between 0 and 1 – but conceptually distinct, due to different interpretations. Fuzzy logic corresponds to 
"degrees of truth", while probabilistic logic corresponds to "probability, likelihood"; as these differ, fuzzy 
logic and probabilistic logic yield different models of the same real-world situations. Both degrees of truth 
and probabilities range between 0 and 1 and hence may seem similar at first. It is essential to realize that 
fuzzy logic uses truth degrees as a mathematical model of the vagueness phenomenon while probability is 
a mathematical model of ignorance. The same could be achieved using probabilistic methods. A basic 
application might characterize sub ranges of a continuous variable. For instance, a temperature 
measurement for anti-lock brakes might have several separate membership functions defining particular 
temperature ranges needed to control the brakes properly. Each function maps the same temperature 
value to a truth value in the 0 to 1 range. These truth values can then be used to determine how the 
brakes should be controlled. 

 

Fig2. Temperature scale 

In this image, the meaning of the expressions cold, warm, and hot is represented by functions mapping 
a temperature scale. A point on that scale has three "truth values"—one for each of the three functions. 
The vertical line in the image represents a particular temperature that the three arrows (truth values) 
gauge. Since the red arrow points to zero, this temperature may be interpreted as "not hot". The orange 
arrow (pointing at 0.2) may describe it as "slightly warm" and the blue arrow (pointing at 0.8) "fairly 
cold". 

Fuzzy sets are sets whose elements have degrees of membership. In classical set theory, the 
membership of elements in a set is assessed in binary terms according to a bivalent condition — an 
element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual 
assessment of the membership of elements in a set; this is described with the aid of a membership 
function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical sets, since the indicator 
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functions of classical sets are special cases of the membership functions of fuzzy sets, if the latter only 
take values 0 or 1. Classical bivalent sets are in fuzzy set theory usually called crisp sets. The fuzzy set 

theory can be used in a wide range of domains in which information is incomplete or imprecise.  

4. Constructing Quality Control Charts by using Probability and Fuzzy Approaches 

There are many situations in which the simultaneous control of two or more related quality 
characteristics is necessary. For example, suppose that a bearing has both an inner diameter(x1) and an 
outer diameter (x2) that together determine the usefulness of the part. Controlling these two quality 
characteristics independently can be very misleading. And the distortion in the control procedure 
increases as the number of quality characteristics increases (Montgomery 1991). Like that quality control 
problems in which several related variables are interest are sometimes called multivariate quality control 
problems. Different procedures are proposed to monitor multinomial processes when products are 
classified into mutually exclusive categories. Marcucci proposed two procedures using Shewart type 
control charts. The first type is used when quality proportions are designed to be specific values, where 
any change in these proportions must be detected by the monitoring procedure. The second type allows 
for one-sided monitoring of quality proportions and is designed to detect only an increase in all but one 
quality proportions. When specific values of process proportions are not known, the Pearson goodness-
of-fit statistic is not applicable. An appropriate statistical procedure that is a test of homogeneity of 
proportions between the base period (0) and each monitoring period (i) is defined as follows: 
 

                                (1) 
 
where k={0,1}, pkj = Xkj/nk, j=1,2,3,…,t are the sample proportions and ni is the sample size. Raz 
andWang proposed an alternative approach based on fuzzy theory. Fuzzy sets are assigned to each 
linguistic term, and then using rules of fuzzy arithmetic they are combined for each sample. The result is a 
single fuzzy set. A measure of centrality of this aggregate fuzzy set is then plotted on a Shewart-type 
control chart. In order to retain the standard format of control charts and to facilitate the plotting of 
observations on the chart, it is necessary to convert the fuzzy sets associated with the linguistic values 
into scalars, which will be referred to as representative values (Wang and Raz 1990). This may be done in 
a number of ways, as long as the result is intuitively representative of the range of the base variable 
included in the fuzzy set. Four ways, which are similar in descriptive statistics, are presented. 

1. Fuzzy mode, fmode: The fuzzy mode of a fuzzy set F is the value of the base variable where the 
membership function equals 1. This is stated. 

                                                                    (2) 
2. α-Level fuzzy midrange, fmr(α): This is defined as the midpoint of the ends of the α level cut. An α 

level cut denoted by Aα is a non fuzzy set which comprises all elements whose membership is 
greater than or equal to α. If aα and bα, are the end of points of Aα then. 

                                                                                             (3) 
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3. Fuzzy median, fmed : This is the point which partitions the curve under the membership function 
of a fuzzy set into equal regions satisfying the following equations. where a and b are the end 
points in the base variable of fuzzy set F such that a < b. 

 

                                                 (4) 

4. Fuzzy average, favg: based on Zadeh, the fuzzy average is (Wang and Raz 1990). 

                                                                       (5) 
It should be pointed out that there is no theoretical basis supporting any one specifically. The selection 
among them should be mainly based on the ease of computation or the user’s preference (Gülbay and 
Kahraman 2007). After transforming the each fuzzy subset into their representative values, Wang and Raz 
developed two approaches called the membership approach and the fuzzy probabilistic approach. In the 
membership approach, membership control limits are based on membership functions. For m samples of 
size n,Wang and Raz described the centerline (CL) (Eq. 6) as the grand average of means of the samples 
initially available and calculated the mean deviation for a given fuzzy set A (δ(A)) (Eq. 8) by using the sum 
of the left mean deviation (δl), and the right mean deviation (δr ). 

                                                                                                  (6) 
where Mj (Eq. 7) is the sample mean of the jth sample, M j is the average sample mean, and m is the 
number of sample initially available: 

                                                                                                                      (7)           

where kij is the number of products categorized with the linguistic term L in the sample j; ri is the fuzzy 
representative value of the linguistic term i and nj is the size of sample j. 

                                                           (8) 
where α is the value of membership. The control limits (Eq. 9) are located below and above the central 
line at distances expressed as multiples of the mean deviation. Because the representative value of each 
sample will be range [0,1]. 
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                                                                                                                                              (9) 
In the fuzzy probabilistic approach, fuzzy subsets Fi associated with the linguistic terms Li are 
transformed into their respective values ri with one of the transformation methods. The sample mean Mj 
(Eq. 10) is calculated as the average of the sample linguistic representative values, ri. For each sample j, 
the standard deviation SDj (Eq. 11) is calculated as the standard deviation of the representative values of 
the observations in the sample:          

                                                                  (10) , (11) 
where t is the number of linguistic term in the term set, ri is the representative value of the fuzzy set 
associated with the linguistic term Li and Mj is the mean of the representative values in the sample j. The 
mean of the representative of them samples, MSD, is then, 

                                                                                                   (12) 
The centerline calculated as the grand mean of the sample means Mj as follows: 

                                                                   (13)   
Because the points plotted on the charts are sample means of representative values, they should lie 
within the range [0,1]. Consequently, assuming the sampling distribution is approximately normal or the 
sample size n is relatively large (>25), by applying the standard formula from variables control charts 
control limits are derived as (Gülbay et al. 2004): 

                                                                          (14)                                 
 
5. An Application in a Textile Company  
 
he  data  are  taken  one  of  the  biggest  textile company in Iran. This company produces cotton yarn 
called Ne30 and following data shows the quality of Ne30 cotton yarn. The company classifies the yarn 
quality into four categorizes; standard, 1th preferences, 2th preferences and useless. Data 30 samples of 
different sizes taken every day is shown in Table 1. 
 

Table 1 . Data for the quality of yarn in a cotton industry 

Sample Standard 
1th 

Preference 
2th 

Preference 
Useless Size 

1 5 9 6 4 24 
2 9 4 6 5 24 
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3 11 5 5 3 24 
4 5 4 13 4 24 
5 7 6 2 9 24 
6 7 5 7 5 24 
7 11 7 4 2 24 
8 1 11 2 10 24 
9 5 6 9 4 24 

10 6 5 4 9 24 
11 9 4 5 6 24 
12 5 11 1 7 24 
13 8 9 4 3 24 
14 4 2 5 13 24 
15 5 11 3 5 24 
16 2 10 4 4 20 
17 4 9 6 5 24 
18 5 12 3 4 24 
19 6 12 3 3 24 
20 3 11 2 8 24 
21 4 10 2 6 24 
22 6 13 1 4 24 
23 3 9 0 4 16 
24 7 6 6 5 24 
25 3 12 4 5 24 
26 5 10 6 3 24 
27 4 11 3 6 24 
28 4 8 4 0 16 
29 8 9 3 4 24 
30 2 4 9 9 24 

 

The textile example corresponds to the second type of Marcucci procedures. Suppose that the process is 
in control in the period corresponding to sample 8. We can estimate the sample proportions for the base 
period as follows: 

 
The statistics to be plotted in the control chart for each sample is calculated according to the Eq. 1. The 
obtained results for 30 samples are shown in Table 2. 
 

Table 2 .  statistics to be plotted in the quality control chart for 30 samples 
Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
3.114 3.340 0.461 8.754 6.763 3.348 6.006 0.003 14.561 3.181 9.901 4.852 2.348 15.342 11.207 

Sample 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 
9.239 5.312 3.541 2.233 9.954 11.616 7.566 8.434 2.695 9.534 5.465 6.584 3.805 0.981 10.057 
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The resulting generalized p chart is illustrated in Fig. 3. The upper control limit is taken to be the 95th 
percentile of the (3) distribution which is 7,815. In a generalized p-chart the upper control limit does 
not change for all multinomial processes that have the same number of categories.  

 

 
Fig3. Generalized p chart for yarn process 

 
 

Set 1 

 
Table 3. Membership functions for yarn process (for set 1) 

 

Set 2 
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Table 4. Membership functions for the yarn process (for Set 2) 

 
 

Table 5 . Representative values of linguistic terms for two sets 

 Fuzzy mode Fuzzy median 
Set 1 Set 2 Set 1 Set 2 

Standard 0 0 0.143 0.073 
1th Preference 0.25 0.25 0.317 0.25 
2th Preference 0.5 0.5 0.57 0.5 
Useless 1 1 0.854 0.75 

 
 

6. Wang and Raz Approach 
In this study Standard (S), 1th Preferences (1P), 2th Preferences (2P), Useless (U) are determined as the 
term set and then membership functions are expressed for each term. Two sets of membership functions 
with different shapes are used and shown in Tables 3 and 4 . In our study fuzzy mode and fuzzy median 
are used as a transformation method. Fuzzy mode and fuzzy median for two sets of memberships are 
calculated with the help of Eqs. 2 and 4. Results obtained are shown in Table 5. 
 
 

7. Probabilistic Approach 

 
As can be seen from Table 5, the value of fuzzy modes for two sets of membership functions is the same so 
the representative values of fuzzy subsets for two sets are same. But the values of fuzzy median for two 
sets of membership are different so the representative values of fuzzy subsets are different. Because of 
this reason, control charts produced by different sets are the same when the fuzzy mode is used and are 
different when the fuzzy median is used. For probabilistic approach, mean and standard deviation of each 
sample are calculated according to Eqs. 10 and 11. Mean of standard deviation (MSD) is calculated from 
Eq. 12 and then upper and lower control limits are obtained from Eq. 13. The results obtained for 30 
samples are shown in Table 6. The constructed fuzzy probabilistic control chart using fuzzy mode can be 
seen in Fig. 4. The upper and lower control limits for sample 16, 22, 23 and 28 are different from other 
samples’. Because their sample sizes are different from others so they have different upper and lower 
control limits. Sample 14 is out of the control. The same calculation steps are repeated again for 
constructing fuzzy probabilistic chart by using fuzzy median as a representative of fuzzy subsets. As can 
be mentioned before, the representative values of each fuzzy subset for two sets are different when fuzzy 
median method is used so constructed control charts for two sets are different. But in this study only 
control charts for set 2 are shown. Table 7 is related with set 1 and shows mean and standard deviation of 
each sample and lower and upper control limits of each sample. And Table 8 is related with set 2 and 
shows mentioned parameters. The fuzzy probabilistic control chart for set 2 is shown in Fig. 5.  
 
 

Table 6 . Results of applying fuzzy probabilistic approach (fuzzy mode) 

Sample Mj SDj LCL UCL Samples Mj SDj LCL UCL 

1 0.376 0.337 0.212 0.619 16 0.481 0.321 0.192 0.639 

2 0.354 0.392 0.212 0.619 17 0.439 0.343 0.212 0.619 

3 0.237 0.298 0.212 0.619 18 0.364 0.324 0.212 0.619 

4 0.464 0.309 0.212 0.619 19 0.298 0.309 0.212 0.619 
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5 0.501 0.412 0.212 0.619 20 0.501 0.331 0.212 0.619 

6 0.397 0.324 0.212 0.619 21 0.574 0.358 0.212 0.619 

7 0.445 0.438 0.212 0.619 22 0.342 0.302 0.203 0.628 

8 0.258 0.296 0.212 0.619 23 0.412 0.336 0.165 0.667 

9 0.604 0.273 0.212 0.619 24 0.426 0.367 0.212 0.619 

10 0.412 0.410 0.212 0.619 25 0.461 0.312 0.212 0.619 

11 0.519 0.389 0.212 0.619 26 0.352 0.323 0.212 0.619 

12 0.422 0.351 0.212 0.619 27 0.441 0.342 0.212 0.619 

13 0.303 0.342 0.212 0.619 28 0.231 0.197 0.165 0.667 

14 0.691 0.297 0.212 0.619 29 0.319 0.325 0.212 0.619 

15 0.457 0.335 0.212 0.619 30 0.501 0.302 0.212 0.619 

       MSD = 0.33    

 
 

 
Fig4.  Fuzzy probabilistic control chart (fuzzy mode) 

 
 
 

Table 7 . Results of applying fuzzy probabilistic approach (fuzzy median for set 1) 

Samples Mj SDj LCL UCL Samples Mj SDj LCL UCL 

1 0.431 0.273 0.288 0.608 16 0.473 0.252 0.273 0.623 

2 0.419 0.312 0.288 0.608 17 0.413 0.236 0.288 0.608 

3 0.333 0.236 0.288 0.608 18 0.438 0.245 0.288 0.608 

4 0.512 0.245 0.288 0.608 19 0.373 0.231 0.288 0.608 

5 0.503 0.327 0.288 0.608 20 0.509 0.267 0.288 0.608 

6 0.448 0.281 0.288 0.608 21 0.553 0.290 0.288 0.608 

7 0.501 0.347 0.288 0.608 22 0.421 0.223 0.281 0.615 

8 0.318 0.224 0.288 0.608 23 0.437 0.286 0.251 0.645 

9 0.579 0.218 0.288 0.608 24 0.452 0.277 0.288 0.608 

10 0.421 0.301 0.288 0.608 25 0.487 0.266 0.288 0.608 

11 0.537 0.310 0.288 0.608 26 0.419 0.252 0.288 0.608 

12 0.418 0.274 0.288 0.608 27 0.434 0.250 0.288 0.608 

13 0.408 0.253 0.288 0.608 28 0.325 0.168 0.251 0.645 

14 0.652 0.242 0.288 0.608 29 0.379 0.258 0.288 0.608 

15 0.479 0.263 0.288 0.608 30 0.499 0.231 0.288 0.608 



Hamid Reza Feili, Pooyan Fekraty  / TJMCS Vol .1 No.4 (2010) 257-272 

 

268 
 

 
 
 
 

Table 8 . Results of applying fuzzy probabilistic approach (fuzzy median for set 2) 

Samples Mj SDj LCL UCL Samples Mj SDj LCL UCL 

1 0.362 0.235 0.232 0.510 16 0.412 0.203 0.219 0.523 

2 0.331 0.270 0.232 0.510 17 0.378 0.210 0.232 0.510 

3 0.264 0.227 0.232 0.510 18 0.350 0.214 0.232 0.510 

4 0.439 0.198 0.232 0.510 19 0.301 0.215 0.232 0.510 

5 0.399 0.265 0.232 0.510 20 0.451 0.216 0.232 0.510 

6 0.383 0.246 0.232 0.510 21 0.460 0.241 0.232 0.510 

7 0.415 0.288 0.232 0.510 22 0.337 0.212 0.226 0.516 

8 0.267 0.218 0.232 0.510 23 0.353 0.233 0.200 0.542 

9 0.493 0.162 0.232 0.510 24 0.365 0.245 0.232 0.510 

10 0.352 0.273 0.232 0.510 25 0.409 0.213 0.232 0.510 

11 0.339 0.248 0.232 0.510 26 0.327 0.213 0.232 0.510 

12 0.435 0.244 0.232 0.510 27 0.384 0.221 0.232 0.510 

13 0.376 0.231 0.232 0.510 28 0.275 0.154 0.200 0.542 

14 0.538 0.186 0.232 0.510 29 0.302 0.224 0.232 0.510 

15 0.384 0.216 0.232 0.510 30 0.432 0.189 0.232 0.510 
 

 
Fig5. Fuzzy probabilistic quality control chart (fuzzy median, set 2) 

 

8. Membership Approach 

 
The membership functions of the fuzzy subsets for the mean of the samples are determined. By using the 
first sample to illustrate the calculation, the fuzzy subset MF1 associated with the sample mean can be 
represented by (a1, b1, c1) where,  
a1 = [(0×6)+(0×9)+(0.25×4)+(0.50×5)]/24=0.146…left 
b2 = [(0×6)+(0.25×9)+(0.5×4)+(1×5)]/24=0.385…mode 
c2 = [(0.5×6)+(0.75×9)+(1×4)+(1×5)]/24=0.781…right 
The resulting left ends, modes and right ends of these 30 samples are given in Table 9. The fuzzy subsets 
associated with the linguistic terms are all triangular fuzzy subsets. Then the corresponding 
representative value is calculated. The result obtained is shown in last column of Table 9. Fuzzy mode is 
used as a transformation method. The mean deviation is calculated according to Eq. 8. Since the fuzzy 
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subset GMF can be represented by a triplet (0.162, 0.416, 0.793), and the mean deviation is calculated as 
0.315. The centerline is obtained by transforming GMF into a representative value. The resulting value is 
0.416. Then control limits are calculated with Eq. 9.While calculating these limits, the value of k which is 
the number of mean deviations that the control limits will be located away from centerline is taken as 0.7. 
The representative value to be plotted on the chart, center line, upper and lower control limits are shown 
in Table 10. Control chart following the membership approach according to fuzzy mode transformation 
method is constructed and shown in Fig. 4. As can be from Fig. 4, the samples 3, 8, 14 are out of the 
control. The sample 14 is out of control at both fuzzy probabilistic and membership control chart. And the 
samples 3 and 8 which are out of control in fuzzy membership control chart are very close the upper 
control limit at fuzzy probabilistic control charts. With the comparison between fuzzy probabilistic chart 
and the fuzzy membership chart constructed for Set 1 by using fuzzy mode as a transformation method in 
other words comparison of  those  two control charts  it can be seen that membership approach always 
produces narrower band between control limits than the probabilistic approach. Fuzzy probabilistic and 
membership control charts produce approximately same result for yarn quality. 
 
 
 
 
 

Table 9 . Parameters of the fuzzy subset with each sample (for set 1) 

Samples 
Left 
end 

Mode Right end Fuzzy mode Samples Left end Mode Right end 
Fuzzy 
Mod 

1 0.143 0.389 0.779 0.385 16 0.163 0.471 0.835 0.475 

2 0.159 0.379 0.763 0.374 17 0.171 0.432 0.815 0.427 

3 0.097 0.265 0.701 0.242 18 0.145 0.364 0.803 0.375 

4 0.217 0.448 0.877 0.456 19 0.098 0.302 0.744 0.302 

5 0.199 0.493 0.810 0.498 20 0.178 0.489 0.853 0.490 

6 0.182 0.404 0.810 0.402 21 0.251 0.571 0.841 0.563 

7 0.222 0.463 0.798 0.481 22 0.101 0.360 0.784 0.352 

8 0.080 0.247 0.700 0.242 23 0.137 0.401 0.751 0.391 

9 0.243 0.596 0.871 0.606 24 0.159 0.386 0.803 0.396 

10 0.177 0.406 0.775 0.383 25 0.173 0.487 0.813 0.458 

11 0.229 0.501 0.837 0.521 26 0.105 0.351 0.776 0.344 

12 0.147 0.386 0.751 0.407 27 0.165 0.436 0.802 0.427 

13 0.118 0.333 0.749 0.333 28 0.071 0.240 0.749 0.250 

14 0.319 0.698 0.921 0.690 29 0.112 0.298 0.730 0.302 

15 0.160 0.438 0.797 0.453 30 0.194 0.52 0.830 0.490 

     Average 0.171 0.426 0.793 0.416 

 
 

Table 10 . Results of applying fuzzy membership approach (fuzzy mode) 

Samples Repr. value CL UCL LCL Samples Repr. value CL UCL LCL 

1 0.374 0.416 0.259 0.574 16 0.483 0.416 0.259 
0.57

4 

2 0.365 0.416 0.259 0.574 17 0.432 0.416 0.259 
0.57

4 

3 0.239 0.416 0.259 0.574 18 0.381 0.416 0.259 
0.57

4 

4 0.452 0.416 0.259 0.574 19 0.302 0.416 0.259 
0.57

4 
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5 0.486 0.416 0.259 0.574 20 0.486 0.416 0.259 
0.57

4 

6 0.403 0.416 0.259 0.574 21 0.573 0.416 0.259 
0.57

4 

7 0.480 0.416 0.259 0.574 22 0.352 0.416 0.259 
0.57

4 

8 0.251 0.416 0.259 0.574 23 0.402 0.416 0.259 
0.57

4 

9 0.579 0.416 0.259 0.574 24 0.396 0.416 0.259 
0.57

4 

10 0.401 0.416 0.259 0.574 25 0.464 0.416 0.259 
0.57

4 

11 0.536 0.416 0.259 0.574 26 0.353 0.416 0.259 
0.57

4 

12 0.412 0.416 0.259 0.574 27 0.432 0.416 0.259 
0.57

4 

13 0.333 0.416 0.259 0.574 28 0.256 0.416 0.259 
0.57

4 

14 0.688 0.416 0.259 0.574 29 0.307 0.416 0.259 
0.57

4 

15 0.448 0.416 0.259 0.574 30 0.490 0.416 0.259 
0.57

4 
 

9. Conclusion 

 
Control charts have an efficient usage field to keep the process under control. Control charts are accepted 
as graphical analysis method which determines the products whether to remain in the acceptable limits 
or not and as a graphical analysis method which gives a signal in the case of product to be out of these 
limits. In this paper control chart and fuzzy logic are tried to combine. Because the most important 
difference of fuzzy logic from the other logic systems is that it allows the using linguistic variables. 
Linguistic variables provide the concepts which cannot be expressed clearly to be qualified 
approximately. In this study to supplement the binary classification, several intermediate levels which 
describe product quality are used. These intermediate levels are expressed in the form of linguistic terms 
with the help of fuzzy logic. Fuzzy probabilistic and membership control charts which were proposed by 
Wang and Raz are constructed. At the same time generalized p chart which depends on probability theory 
is constructed. With comparison of probability and fuzzy theory, fuzzy theory performs better than 
probability theory in monitoring the multinomial process for the textile industry. Construction of fuzzy 
control chart has some advantages and disadvantages. The major contribution of fuzzy set theory is its 
capability of representing vague data. With the help of the fuzzy set theory, flexibility of the system is 
improved. In general, big variations in the fuzzy system’s output can also be achieved by directly 
manipulating the membership functions and overlap properties. Contrarily to other intelligent techniques 
such as neural networks, the lengthy training phases are not necessary for fuzzy systems and their design 
can be interpreted as being more semantic than the design of other intelligent techniques. The main 
difficulty of constructing fuzzy control chart is selecting suitable membership function of linguistic 
variables. The assignment of membership function to each linguistic variable is not easy for process and 
quality engineers. The shape of membership function should be based on system behavior and user’s 
preferences. And also increasing and decreasing number of linguistic variables affect the performance of 
fuzzy control chart. In the result of this study, it’s possible to say that building fuzzy control charts have 
more flexible and more appropriate mathematical description frame than control chart approach and give 
more meaning results than traditional quality chart. 
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