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Abstract
A quadratic stochastic operator (QSO) describes the time evolution of different species in biology. The main problem with

regard to a nonlinear operator is to study its behavior. This subject has not been studied in depth; even QSOs, which are the
simplest nonlinear operators, have not been studied thoroughly. In this paper we introduce a new subclass of ξ(as)-QSO defined
on 2D simplex. first we classify this subclass into 18 non-conjugate classes. Furthermore, we investigate the behavior of one
class. c©2017 All rights reserved.
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1. Introduction

The departure point of quadratic stochastic operator can be traced back to Bernstein’s work [2]. One
of the most important application of QSO is to study the dynamics properties and modeling in several
branches of science, for example physics [4], biology [3], mathematics, and economics [6]. One such
system related to population genetics is given by a QSO, which is commonly, used to describe the time
evolution of species in biology. The QSO in population genetics appears as follows (see [9, 24]). Take a
population that consists of m species (traits) 1, 2, . . . ,m. If the probability distribution of initial state de-
noted by x(0) = (x

(0)
1 , . . . , x(0)

m ) and let the heredity coefficient Pij,k stand for probability which individual
of the ith and jth species hybridized to give an individual from kth species. Therefore the probability
distribution of first generation x(1) = (x

(1)
1 , . . . , x(1)

m ) can be found by the formula

x
(1)
k =

m∑
i,j=1

Pij,kx
(0)
i x

(0)
j , k = 1,m.

This result means that the relation x(0) → x(1) defines a mapping V called the evolution operator. The
population evolves by starting from an arbitrary state x(0) then passing to the state x(1) = V(x(0)) then
to the state x(2) = V(x(1)) = V(V(x(0))), . . .. Hence, the evolution states of the population system are
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described by discrete dynamical system as follows: x(0), x(1) = V(x(0)), x(2) = V(x(1)) = V(V(x(0))), . . ..
In other words, if the probability distribution of intimal state (generation) was given, then a QSO is used
to find the next state (generation). In this sense, the quadratic stochastic operator is a primary source
for investigations of evolution of population genetics. The detailed exposure of the theory of quadratic
stochastic operators is presented in [6, 11].

One of the main topics in the theory of QSO is an investigation of an asymptotic behavior of QSOs.
Note that even in the small dimensional simplexes, this is a tricky job [3, 5, 12, 21, 25]. Since there is no
general theory for these operators, it is natural to look first at their subclasses. The main problem has been
solved for example for the subclass of Volterra operators [1, 6, 9, 14], `- Volter-QSO [12, 19, 20], bistochastic
QSO [7, 10, 22], etc.. However, all these classes together would not cover a set of all QSOs. Therefore,
many classes of QSO have not been studied. Recently, a new class of QSO called ξ(as) was introduced
[12–14, 17]. This class is defined by some partition of the coupled index set Pm = {(i, j) : i < j} ⊂ I× I,
where I is a set of integer numbers. In case of two dimensional simplex (m = 3), the coupled index set
(the coupled trait set) P3 has five possible partitions. The dynamics of ξ(as)-QSO that correspond to the
point partition (the maximal partition) of P3 have been investigated in [12, 17]. In [13, 16] it has been
studied some class of ξ(as)-QSO. In this paper, we investigate another new subclass of ξ(as)-QSO and
classify them into 18 non-conjugate classes. Moreover, we study the dynamic of QSO taken from one
class, which is a convex combination of two QSO whose dynamics are studied in detail as well.

2. Preliminaries

Recall that a quadratic stochastic operator (QSO) V is a mapping of the simplex

Sm−1 =

x = (x1, · · · , xm) ∈ Rm :
m∑
i=1

xi = 1, xi > 0, i = 1,m


into itself, of the form

(V(x))k =

m∑
i,j=1

Pij,kxixj, k = 1,m, (2.1)

where {Pij,k} are heredity coefficients which satisfy the following conditions

Pij,k > 0, Pij,k = Pji,k,
m∑
k=1

Pij,k = 1. (2.2)

We denote by Fix(V) the set of all fixed points of V . By Brouwer’s fixed point theorem, one always
has Fix(V) 6= ∅ for any QSO V .

Definition 2.1. a point x is called fixed point of an operator V if V(x) = x.

Given a point x(0) ∈ Sm−1, a trajectory {x(n)}∞n=0 of V : Sm−1 → Sm−1 starting from x(0) is defined

by x(n+1) = V(x(n)). By ωV

(
x(0)

)
, we denote a set of limiting points of the trajectory {x(n)}∞n=0. Since

{x(n)}∞n=0 ⊂ Sm−1 and Sm−1 is compact, one hasωV

(
x(0)

)
6= ∅. Obviously, ifωV(x

(0)) consists of a single
point, then the trajectory converges, and a limiting point is a fixed point of V .

In what follows, we denote I = {1, 2, . . . ,m}. A QSO V defined by (2.1), (2.2) is called Volterra operator
[3] if one has

Pij,k = 0 if k 6∈ {i, j}, ∀i, j,k ∈ I. (2.3)

The biological treatment of condition (2.3) is clear: the offspring repeats the genotype (trait) of one of its parents.
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One can see that a Volterra QSO has the following form:

x ′k = xk

1 +

m∑
i=1

akixi

 , k ∈ I,

where
aki = 2Pik,k − 1 for i 6= k and aii = 0, i ∈ I.

Moreover,
aki = −aik and |aki| 6 1.

This kind of operators are intensively studied in [3–5, 8, 14].
Let ` ∈ I be fixed, and assume that the heredity coefficients {Pij,k} satisfy

Pij,k = 0 if k 6∈ {i, j} for any k ∈ {1, . . . , `}, i, j ∈ I,
Pi0j0,k > 0 for some (i0, j0), i0 6= k, j0 6= k, k ∈ {`+ 1, . . . ,m},

then the corresponding QSO defined by (2.1), (2.2), is called `-Volterra-QSO.

Remark 2.2. Here, we emphasize the following points [19].

1. An `-Volterra-QSO is a Volterra-QSO if and only if ` = m.
2. No periodic trajectory exists for Volterra-QSO. However, such trajectories may exist for `-Volterra-

QSO.

Note that each element x ∈ Sm−1 can be considered as a probability distribution on the set I =
{1, . . . ,m}. Let x = (x1, · · · , xm) and y = (y1, · · · ,ym) be two vectors taken from Sm−1. We say that x is
equivalent to y if xk = 0⇔ yk = 0. We denote this relation by x ∼ y.

Let supp(x) = {i : xi 6= 0} be a support of x ∈ Sm−1. We say that x is singular to y and denote by x ⊥ y,
if supp(x) ∩ supp(y) = ∅. If x,y ∈ Sm−1, then x ⊥ y if and only if (x,y) = 0, where (·, ·) stands for the
standard inner product in Rm.

We denote the set of all coupled indexes by

Pm = {(i, j) : i < j} ⊂ I× I, ∆m = {(i, i) : i ∈ I} ⊂ I× I.

For a given pair (i, j) ∈ Pm ∪∆m, we set a vector Pij =
(
Pij,1, · · · ,Pij,m

)
. It is clear that Pij ∈ Sm−1 (see

(2.2)).

Definition 2.3 ([17]). A QSO V : Sm−1 → Sm−1 given by (2.1), (2.2), is called a ξ(as)-QSO w.r.t. the
partitions ξ1, ξ2 (where the ”as” stands for absolutely continuous-singular) if the following conditions are
satisfied:

(i) for each k ∈ {1, . . . ,N} and any (i, j), (u, v) ∈ Ak, one has Pij ∼ Puv;

(ii) for any k 6= `, k, ` ∈ {1, . . . ,N} and any (i, j) ∈ Ak and (u, v) ∈ A` one has Pij ⊥ Puv;

(iii) for each d ∈ {1, . . . ,M} and any (i, i), (j, j) ∈ Bd, one has Pii ∼ Pjj;

(iv) for any s 6= h, s,h ∈ {1, . . . ,M} and any (u,u) ∈ Bs and (v, v) ∈ Bh one has Puu ⊥ Pvv.

Remark 2.4 ([17]). If ξ2 is the point partition, i.e., ξ2 = {{(1, 1)}, . . . , {(m,m)}}, then we call the corresponding
QSO by ξ(s)-QSO (where the ”s” stands for singularity), since in this case every two different vectors Pii

and Pjj are singular. If ξ2 is the trivial, i.e., ξ2 = {∆m}, then we call the corresponding QSO by ξ(a)-
QSO (where the ”a” stands for absolute continuous), since in this case every two vectors Pii and Pjj are
equivalent. We note that some classes of ξ(as)-QSO have been studied in [13, 16, 17]. In the present paper,
we investigate the classification and dynamics of a subclass of ξ(a).
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3. Classification of ξ(a)-QSO on 2D simplex

In this section, we are going to classify the subclass of ξ(a)-QSO in two dimensional simplex, i.e.,
m = 3. In this case, we have the following possible partitions of P3

ξ1 = {{(1, 2)}, {(1, 3)}, {(2, 3)}}, |ξ1| = 3, ξ2 = {{(2, 3)}, {(1, 2), (1, 3)}}, |ξ2| = 2,
ξ3 = {{(1, 3)}, {(1, 2), (2, 3)}}, |ξ3| = 2, ξ4 = {{(1, 2)}, {(1, 3), (2, 3)}}, |ξ4| = 2,
ξ5 = {(1, 2), (1, 3), (2, 3)}, |ξ5| = 1.

We note that in [13], it has been investigated ξ(a)-QSO related to the partition ξ1 which is the maximal
partition of P3 and in the paper [17] it has been studied ξ(s)-QSO related to the partitions ξ2, ξ3, ξ4.

Let us recall that two operators V1,V2 are called (topologically or linearly) conjugate, if there is a permu-
tation matrix π such that π−1V1π = V2. We say that two classes C1 and C2 of operators are conjugate if
every operator taken from C1 is conjugate to some operator taken from C2. Using the same argument of
[17, Proposition 5] one can prove the following.

Proposition 3.1. A class of all ξ(a)-QSO corresponding to the partition ξ3 (or ξ4) is conjugate to a class of all
ξ(a)-QSO corresponding to the partition ξ2.

Therefore, it is enough to study a class of all ξ(a)-QSO corresponding to the partition ξ2. Now, we
shall consider some sub-class of a class of all ξ(a)-QSO corresponding to the partition ξ2 by choosing
coefficients (Pij,k)

3
i,j,k=1 in special forms as in Tables 1 and 2, where a,b, c ∈ [0, 1], and a+ b+ c = 1.

Table 1: Construction of subclass of ξ(a)-QSO.
Case P12 P13 P23

I1 (1, 0, 0) (1, 0, 0) (0, 0, 1)
I2 (0, 1, 0) (0, 1, 0) (1, 0, 0)
I3 (1, 0, 0) (1, 0, 0) (0, 1, 0)
I4 (0, 0, 1) (0, 0, 1) (1, 0, 0)
I5 (1, 0, 0) (1, 0, 0) (0, 1, 0)
I6 (0, 1, 0) (0, 1, 0) (1, 0, 0)

Table 2: Construction of subclass of ξ(a)-QSO.
Case P11 P22 P33

II1 (a,b,c) (a,b,c) (a,b,c)
II2 (a,c,b) (a,c,b) (a,c,b)
II3 (b,a,c) (b,a,c) (b,a,c)
II4 (b,c,a) (b,c,a) (b,c,a)
II5 (c,a,b) (c,a,b) (c,a,b)
II6 (c,b,a) (c,b,a) (c,b,a)

Remark 3.2. We notice that in [13] it has been studied ξa)-QSO related to the partition ξ1. In this paper
we will study the subclass of ξ(a)-QSO related to the partitions ξ2, ξ3, ξ4.

The choices of the cases
(
Ii, IIj

)
, where i, j = 1, 6, will give 36 operators from the class of ξ(s)-QSO

corresponding to the partition ξ2. Finally, we obtain 36 parametric operators which are defined as follows:

V1 :


x ′ = a(x2 + y2 + z2) + 2x(1 − x),
y ′ = b(x2 + y2 + z2) + 2yz,
z ′ = c(x2 + y2 + z2),

V2 :


x ′ = b(x2 + y2 + z2) + 2x(1 − x),
y ′ = a(x2 + y2 + z2) + 2yz,
z ′ = c(x2 + y2 + z2),
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V3 :


x ′ = c(x2 + y2 + z2) + 2x(1 − x),
y ′ = a(x2 + y2 + z2) + 2yz,
z ′ = b(x2 + y2 + z2),

V4 :


x ′ = c(x2 + y2 + z2) + 2x(1 − x),
y ′ = b(x2 + y2 + z2) + 2yz,
z ′ = a(x2 + y2 + z2),

V5 :


x ′ = a(x2 + y2 + z2) + 2x(1 − x),
y ′ = c(x2 + y2 + z2) + 2yz,
z ′ = b(x2 + y2 + z2),

V6 :


x ′ = b(x2 + y2 + z2) + 2x(1 − x),
y ′ = c(x2 + y2 + z2) + 2yz,
z ′ = a(x2 + y2 + z2),

V7 :


x ′ = a(x2 + y2 + z2) + 2x(1 − x),
y ′ = b(x2 + y2 + z2),
z ′ = c(x2 + y2 + z2) + 2yz,

V8 :


x ′ = b(x2 + y2 + z2) + 2x(1 − x),
y ′ = a(x2 + y2 + z2),
z ′ = c(x2 + y2 + z2) + 2yz,

V9 :


x ′ = c(x2 + y2 + z2) + 2x(1 − x),
y ′ = a(x2 + y2 + z2),
z ′ = b(x2 + y2 + z2) + 2yz,

V10 :


x ′ = c(x2 + y2 + z2) + 2x(1 − x),
y ′ = b(x2 + y2 + z2),
z ′ = a(x2 + y2 + z2) + 2yz,

V11 :


x ′ = a(x2 + y2 + z2) + 2x(1 − x),
y ′ = c(x2 + y2 + z2),
z ′ = b(x2 + y2 + z2) + 2yz,

V12 :


x ′ = b(x2 + y2 + z2) + 2x(1 − x),
y ′ = c(x2 + y2 + z2),
z ′ = a(x2 + y2 + z2) + 2yz,

V13 :


x ′ = a(x2 + y2 + z2) + 2yz,
y ′ = b(x2 + y2 + z2) + 2x(1 − x),
z ′ = c(x2 + y2 + z2),

V14 :


x ′ = b(x2 + y2 + z2) + 2yz,
y ′ = a(x2 + y2 + z2) + 2x(1 − x),
z ′ = c(x2 + y2 + z2),

V15 :


x ′ = c(x2 + y2 + z2) + 2yz,
y ′ = a(x2 + y2 + z2) + 2x(1 − x),
z ′ = b(x2 + y2 + z2),

V16 :


x ′ = c(x2 + y2 + z2) + 2yz,
y ′ = b(x2 + y2 + z2) + 2x(1 − x),
z ′ = a(x2 + y2 + z2),

V17 :


x ′ = a(x2 + y2 + z2) + 2yz,
y ′ = c(x2 + y2 + z2) + 2x(1 − x),
z ′ = b(x2 + y2 + z2),

V18 :


x ′ = b(x2 + y2 + z2) + 2yz,
y ′ = c(x2 + y2 + z2) + 2x(1 − x),
z ′ = a(x2 + y2 + z2),

V19 :


x ′ = a(x2 + y2 + z2),
y ′ = b(x2 + y2 + z2) + 2x(1 − x),
z ′ = c(x2 + y2 + z2) + 2yz,

V20 :


x ′ = b(x2 + y2 + z2),
y ′ = a(x2 + y2 + z2) + 2x(1 − x),
z ′ = c(x2 + y2 + z2) + 2yz,

V21 :


x ′ = c(x2 + y2 + z2),
y ′ = a(x2 + y2 + z2) + 2x(1 − x),
z ′ = b(x2 + y2 + z2) + 2yz,

V22 :


x ′ = c(x2 + y2 + z2),
y ′ = b(x2 + y2 + z2) + 2x(1 − x),
z ′ = a(x2 + y2 + z2) + 2yz,

V23 :


x ′ = a(x2 + y2 + z2),
y ′ = c(x2 + y2 + z2) + 2x(1 − x),
z ′ = b(x2 + y2 + z2) + 2yz,

V24 :


x ′ = b(x2 + y2 + z2),
y ′ = c(x2 + y2 + z2) + 2x(1 − x),
z ′ = a(x2 + y2 + z2) + 2yz,

V25 :


x ′ = a(x2 + y2 + z2) + 2yz,
y ′ = b(x2 + y2 + z2),
z ′ = c(x2 + y2 + z2) + 2x(1 − x),

V26 :


x ′ = b(x2 + y2 + z2) + 2yz,
y ′ = a(x2 + y2 + z2),
z ′ = c(x2 + y2 + z2) + 2x(1 − x),

V27 :


x ′ = c(x2 + y2 + z2) + 2yz,
y ′ = a(x2 + y2 + z2),
z ′ = b(x2 + y2 + z2) + 2x(1 − x),

V28 :


x ′ = c(x2 + y2 + z2) + 2yz,
y ′ = b(x2 + y2 + z2),
z ′ = a(x2 + y2 + z2) + 2x(1 − x),
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V29 :


x ′ = a(x2 + y2 + z2) + 2yz,
y ′ = c(x2 + y2 + z2),
z ′ = b(x2 + y2 + z2) + 2x(1 − x),

V30 :


x ′ = b(x2 + y2 + z2) + 2yz,
y ′ = c(x2 + y2 + z2),
z ′ = a(x2 + y2 + z2) + 2x(1 − x),

V31 :


x ′ = a(x2 + y2 + z2),
y ′ = b(x2 + y2 + z2) + 2yz,
z ′ = c(x2 + y2 + z2) + 2x(1 − x),

V32 :


x ′ = b(x2 + y2 + z2),
y ′ = a(x2 + y2 + z2) + 2yz,
z ′ = c(x2 + y2 + z2) + 2x(1 − x),

V33 :


x ′ = c(x2 + y2 + z2),
y ′ = a(x2 + y2 + z2) + 2yz,
z ′ = b(x2 + y2 + z2) + 2x(1 − x),

V34 :


x ′ = c(x2 + y2 + z2),
y ′ = b(x2 + y2 + z2) + 2yz,
z ′ = a(x2 + y2 + z2) + 2x(1 − x),

V35 :


x ′ = a(x2 + y2 + z2),
y ′ = c(x2 + y2 + z2) + 2yz,
z ′ = b(x2 + y2 + z2) + 2x(1 − x),

V36 :


x ′ = b(x2 + y2 + z2),
y ′ = c(x2 + y2 + z2) + 2yz,
z ′ = a(x2 + y2 + z2) + 2x(1 − x).

Theorem 3.3. The above obtained 36 operators from the class of ξ(a)-QSO, corresponding to the partition ξ2, are
classified into 18 non-conjugate classes:

C1 = {V1,V11}, C2 = {V2,V12}, C3 = {V3,V10}, C4 = {V4,V9},
C5 = {V5,V7}, C6 = {V6,V8}, C7 = {V13,V29}, C8 = {V14,V30},
C9 = {V15,V28}, C10 = {V12,V27}, C11 = {V17,V25}, C12 = {V18,V26},
C13 = {V19,V35}, C14 = {V20,V36}, C15 = {V21,V34}, C16 = {V22,V33},
C17 = {V23,V32}, C18 = {V24,V32}.

Proof. The proof is straightforward. One can see the partition

ξ2 = {{(2, 3)}, {(1, 2), (1, 3)}}

is invariant under only one permutation π =

(
1 2 3
1 3 2

)
. Therefore, we just perform π1.

4. Dynamics of operator taken from class C1

In this section, we are going to study the dynamics of the operator V1 taken from the class C1 when
b = 0. In this case, we denote the corresponding operator by Va (since c = 1 − a). Then one can see that
Va = aW1 + (1 − a)W2, where

W1 :


x ′ = x2 + y2 + z2 + 2xy+ 2xz,
y ′ = 2yz,
z ′ = 0,

W2 :


x ′ = 2xy+ 2xz,
y ′ = 2yz,
z ′ = x2 + y2 + z2.

One can see immediately that the operators W1 and W2 are two `-Volterra QSOs on S2.
Now we are aiming to study the dynamics of both operators.

Lemma 4.1. For the operator W1 one has Fix(W1) = e1. Moreover, ωW1(x) = e1, for any x ∈ S2, where
e1 = (1, 0, 0).

Proof. A direct substitution gives us that e1 = (1, 0, 0) is a fixed point of W1. Moreover, Wn
1 (x(0)) goes to

e1.
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Now let us define the following regions:

B1 : = {(x,y, z) : x >
1
2

, 0 6 z 6
1
3
},

B2 : = {(x,y, z) : x 6
1
2

, 0 6 z 6
1
3
},

B3 : = {(x,y, z) : 0 6 x 6
1
3

,
1
2
6 z 6 1, 0 6 y 6

1
3
},

B4 : = {(x,y, z) : 0 6 x 6
1
2

,
1
3
6 z 6

1
2

, 0 6 y 6
1
2
}.

One can see that
⋃4

i=1 Bi = S
2.

Figure 1: Sub-regions of simplex.

Denote

Γ1 := {(x,y, z) : x = 0}, Γ2 := {(x,y, z) : y = 0}, Γ3 := {(x,y, z) : z = 0}.

Proposition 4.2. Let f(x) = x− 2x2 and g(x, z) = x2 + (1 − x− z)2 + z2. Then the following statements hold.
(i) The function f is decreasing when x ∈ ( 1

2 , 1] and increasing when x ∈ [0, 1
2).

(ii) If x(0) ∈ B2, then the minimum value of the function g(x, z) is 1
3 .

(iii) One has 1
3 6 g(x, z) 6 1

2 , one B4.

Proof. The proof is obvious.

We are now in the position to study the dynamic of W2.

Theorem 4.3. The following statements hold.
(i) Fix(W2) = {e3, (0, 1

2 , 1
2), (

1
2 , 0, 1

2)}, where e3 = (0, 0, 1).
(ii) Γ1 and Γ2 are invariant.

(iii) B4 is invariant region.
(iv) If x ∈ S2 \B4 then there exist nk ∈ N such that Wnk

2 (x) ∈ B4.

Proof.

(i). To find fixed point of W2 we have to solve the following system

x = 2x− 2x2, y = 2yz, z = x2 + y2 + z2.

It is easy to see that x ∈ {0, 1
2 } and from the second equation of above system, we obtain y = 0 or z = 1

2 . If
y = 0 we have the fixed points {e3, ( 1

2 , 0, 1
2)}. If z = 1

2 we have the fixed point (0, 1
2 , 1

2).

(ii). This statement is obvious.

(iii). We are going to prove if x(0) ∈ B4 then W2(x
(0)) ∈ B4. To end this job, let us consider the functions

f(x) = 2x− 2x2, and g(x, z) = x2 + (1 − x− z)2 + z2. Here we have to find the minimum and maximum
values of f and g over the region B4. After long, but simple calculations, we obtain that 0 6 f(x) 6 1

2 , and
1
3 6 g 6 1

2 which imply that B4 is invariant.
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(iv). Let us first consider x(0) ∈ B1. Then by (i) of Proposition 4.2 we have W2(x
(0)) in B2 ∪ B3 ∪ B4. Now

let x(0) ∈ B2. Then by (ii) of Proposition 4.2 one has the minimum value of next iteration is 1
3 it follows

that the next iteration will be in B3 ∪B4.
Due to (iii) it is enough to consider x ∈ B3. To prove the statement, we suppose the region B3 is

invariant, i.e. for any x ∈ B3 one has Wn
2 (x) ∈ B3, for all n ∈ N. It is clear that the sequence {xn} is

increasing and converges to 1/2. Furthermore, the sequence {yn} is bounded and increasing, since B3 is
invariant and z > 1

2 . Therefore, it is convergent to a fixed point. The only possible (belonging to B3) fixed
point is 1

2 . It follows that {zn} goes to zero which is impossible because the point ( 1
2 , 1

2 , 0) is not a fixed
point. Therefore, there is nk ∈ N such that Wnk

2 ∈ B4. It follows that for any initial point x /∈ Fix(W2) the
trajectory Wn

2 (x) will be in B4.

Theorem 4.4. Let W2 : S2 → S2 be a QSO defined above, and let x /∈ Fix(W2) be an initial point, then

ωW2(x
(0)) =

{
( 1

2 , 0, 1
2) : x ∈ S

2 \ Γ1,
(0, 1

2 , 1
2) : x ∈ Γ1.

Proof. Let x ∈ S2 \ Γ1. Then by Theorem 4.3, it is enough to study the behavior of W2 on B4. Let us
consider the function f(x) = x− 2x2. By Proposition 4.2 we have that fn(x) converges to 1/2. In addition,
the sequence {yn} is decreasing and bounded, which means that it is convergent to fixed point y = 0. It
follows that the trajectory Wn

2 (x) tends to ( 1
2 , 0, 1

2).
Let us now consider x ∈ Γ1. Then y(n) converges to 1/2. Finally we get the trajectory Wn

2 (x) goes to
(0, 1

2 , 1
2).

Now, we consider the following l-Volterra QSO on the two-dimensional simplex

Va :


x ′ = a(x2 + y2 + z2) + 2xy+ 2xz,
y ′ = 2yz,
z ′ = (1 − a)(x2 + y2 + z2).

(4.1)

In [19, 20] `-Volterra QSOs have been introduced and some of them are also studied. But, the QSO
given by (4.1) is not studied yet. In general, still it is an open problem to investigate whole trajectories of
`-Volterra QSOs.
Remark 4.5. As we pointed out that Va is a convex combination of W1 and W2, and both of them are
regular, therefore, it is expected that Va is also regular. In general, it is an open problem to study the
behavior of convex combination of two regular QSOs. In this paper, we are partially going to study the
mentioned problem.

Theorem 4.6. Let Va : S2 → S2 be a QSO given by (4.1). Then the following statements hold:
(i)

Fix(Va) =

{
{( 2a−1−

√
−4a2+4a+1

4a−4 , 0, 2a−3+
√

−4a2+4a+1
4a−4 ), e3} : a 6= 1,

(1, 0, 0) : a = 1.

(ii) Eigenvalues(Va) = {2, l1, l2}, a 6= 1, where l1 = 2 − 2x∗, l2 = 2(1 − a)(1 − 2x∗), here

x∗ =
2a− 1 −

√
−4a2 + 4a+ 1

4a− 4
.

(iii) Let a ∈ (0, 1). Then the fixed point is attracting, i.e. |λ1| < 1, |λ2| < 1.

Proof.

(i). To find the fixed points of Va we have to solve the following system of equations. Namely,

x = a(x2 + y2 + z2) + 2x(1 − x), y = 2yz, z = (1 − a)(x2 + y2 + z2).

First of all let a 6= 1, then from the second equation of the above system we obtain y = 0 or z = 1
2 . If
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y = 0, then the first equation of system becomes (2a− 2) x2 + (−2a+ 1) x+ a = 0. It is not difficult to
see the solutions of last quadratic equation are x1 = 2a−1−

√
−4a2+4a+1

4a−4 , x2 = 2a−1+
√
−4a2+4a+1

4a−4 . If a = 0
then we have the fixed point e3 and ( 1

2 , 0, 1
2). It is clear that x1 ∈ [0, 1] but x2 /∈ [0, 1]. Therefore, we have

the fixed point ( 2a−1−
√
−4a2+4a+1

4a−4 , 0, 2a−3+
√
−4a2+4a+1

4a−4 ). Now if z = 1
2 , then the first equation of above

system takes the following form (2a− 2) x2 + (−a+ 1) x+ 1/2a. It is easy to find the solutions of last
quadratic equation are x1 = a−1+

√
−3a2+2a+1
4a−4 , x2 = a−1−

√
−3a2+2a+1
4a−4 . One can have x1 /∈ [0, 1] and the

minimum value of x2 is 1
2 , this means that y 6 0, which is impossible. Hence if a 6= 1, we have the only

fixed point ( 2a−1−
√
−4a2+4a+1

4a−4 , 0, 2a−3+
√
−4a2+4a+1

4a−4 ). If a = 1, then we immediately have the fixed point
e1 = (1, 0, 0).

(ii). The Jacobian of the fixed point is

J(Va) =

2ax+ 2y+ 2z 2ay+ 2x 2az+ 2x
0 2z 2y

2(1 − a)x 2(1 − a)y 2(1 − a)z

 .

Then its eigenvalues are solutions of the equation

λ3 −Aλ2 +Bl+C = 0,

where

A = 6 − 6 x∗ − 2a+ 4ax∗,

B = −20ax∗ + 8ax∗2 − 8 x∗2 − 12 + 24 x∗ + 8a,

C = −8 + 8a+ 24 x∗ − 24ax∗ + 16ax∗2 − 16 x∗2.

Then one can calculate that the eigenvalues are λ0 = 2, λ1 = 2 − 2x∗, and λ2 = 2(1 − a)(1 − 2x∗), where
x∗ = 2a−1−

√
−4a2+4a+1

4a−4 .

(iii). This statement is clear.

Remark 4.7. If a = 1, then the eigenvalues of the fixed point e1 are λ0 = 2, λ1 = λ2 = 0. If a = 0 then the
fixed point e3 is repelling, since its eigenvalues are λ0 = λ1 = λ2 = 2.

Note: The trajectory of Va where a ∈ (0, 1) goes to the fixed point (x∗, 0, 1 − x∗) as shown in Figure 2.

Figure 2: The trajectory of Va, where a ∈ (0, 1).
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