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Abstract 
It is of interest to know whether we can solve a singular Fredholm integro-differential equation of the 

second kind with an infinite or semi-infinite range of integrate via Petrov–Galerkin method by using 

Legendre multiwavelet. For this purpose, we directly deal with infinite range of integrate. We introduce 

some change of variables for mapping infinite interval into a finite interval. After that, we use Petrov–

Galerkin method with Legendre multiwavelet basis that yields linear system. Numerical results of our 

example will demonstrate accuracy and efficiency of the proposed method. 

  

Keywords: : Fredholm integro–differential equations, Petrov–Galerkin method, singularity, Legendre 

multiwavelets. 

1. Introduction 

     Many mathematical formulation of physical phenomena often contain singular integro–
differential equation. These equations arise in the Dirichlet problem, potential problem, radiative 
equilibrium, elastic contact problems, and many others. The term "singularity" is usually used for any 
lack of analytically in the problem. The following features make a singular problem:   

    1.  An infinite or semi–infinite range of integrate.  

    2.  A discontinuous derivative in the kernel or driving term like "Green‘s function".  

    3.  An infinite or non–exiting derivative of some finite order like f(t) =  1− t2.  

Singular integral and integro–differential equations can not be analytically solved easily so it is 
required to obtain the approximate solution. In this work, our problem belongs to first group due to  
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belongs to first group due to the range of integral is  0,∞ . In fact, our problem consist of a singular 

Fredholm integro–differential equation of the second kind with two boundary conditions. The general 

form of the equations is:  

 

 ‍2
𝑖=0 𝑎𝑖(𝑡)𝑥

(𝑖)(𝑡) −  ‍
∞

0
𝑘(𝑠, 𝑡)𝑥(𝑠)𝑑𝑠 = 𝑓(𝑡)    ,    0 ≤ 𝑡 ≤ ∞

    𝑥(0) = 𝛼
    𝑥(∞) = 𝛽

 (1) 

 where the function 𝑓(𝑡), the kernel 𝑘(𝑠, 𝑡) and 𝑎𝑖(𝑡) for each 𝑖 = 0,1, . . . , 𝑚 are known and 𝑥(𝑡) the 

exact solution is an unknown. Some methods ignore this singularity but dealing directly with that is 

not difficult. For example, we can use a Nystrom method that a quadrature rule constructed for this 

range (such as Gauss-Laguerre ) or we can use an expansion method. For this method, we should 

choose a set of expansion function defined on the infinite interval. Two choices for interval  0,∞  are  

 
𝑕𝑛(𝑡) = 𝑒−𝛼𝑡𝐿𝑛(𝑡)

𝑕𝑛(𝑡) = (1 + 𝑧)𝑞𝑇𝑛(𝑧)        ,        𝑧 = (
2𝛼

𝑡+𝛼
) − 1

 

where 𝛼, 𝑞 are parameters [3]. An alternative to deal directly with infinite range is mapping onto a 

finite interval and then solve the finite interval equation. In this paper, this rule is used. 

In [1], Alpert constructed a class of like-wavelet basis for 𝐿2 0,1  and applied them for approximating 

the solution of the Fredholm integral equation of the second kind. The numerical method employed in 

[1] was the Galerkin method. In [4,5], the wavelet Petrov–Galerkin schemes based on discontinuous 

orthogonal multiwavelets were described. In‍this‍paper‍we‍use‍Alpert‘s‍multiwavelets‍by‍using‍

Petrov–Galerkin method. 

But numerical methods includes quadrature, collocation and Galerkin methods for Eq. (1) are used ago 

that their analysis may be found in [5,6,7,8]. On the other hand, the‍Petrovâ€“-Galerkin method for 

Fredholm integral equations has been studied in [2]. We can see from [2] that one of the advantages of 

the Petrov-â€“Galerkin‍method‍is‍allowing‍us‍choose‍two‍different‍spaces‍for‍the‍trial‍space‍and‍the‍

test space while the order of convergence be similar to the Galerkin method. We want to use this 

approach in process of solving problem. 

This paper is organized as follows: at first, we give a brief summary of construction of Legendre 

multiwavelet. In Section 3, we review The Petrov–Galerkin method and its convergence. To facilitate 

access to the individual topics, the 2 and 3 chapters are rendered as self-contained as possible. Section 

4 exhibits a numerical method for transferring a singular integro–differential equation to a linear 

system by Petrov–Galerkin method. Section 5 illustrates some numerical examples to show the 

accuracy and advantages of method presented. Finally Section 6 concludes the paper.  

2.  Legendre multiwavelet 

  In this section ,we want to construct one base for 𝐿2 0,1  that is comprised of dilates and translates of 

a finite set of functions 𝑕1, 𝑕2, . . . , 𝑕𝑘 . In particular, this base consists of orthonormal system  

 𝑕𝑗 .𝑚
𝑛 (𝑥) = 2𝑚/2𝑕𝑗 (2𝑚𝑥 − 𝑛)    ,    𝑗 = 1, . . . , 𝑘;𝑚, 𝑛 ∈ 𝑍 (2) 
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 where the functions 𝑕1, 𝑕2, . . . , 𝑕𝑘  are piecewise polynomial with the following properties:   

    1.  to vanish outside interval  0,1   

    2.  being orthogonal to low–order polynomials (have vanishing moments)  

  ‍
1

0
𝑕𝑗 (𝑥)𝑥𝑖𝑑𝑥 = 0    ,    𝑖 = 0,1, . . . , 𝑘 − 1    ,    𝑗 = 1,2, . . . , 𝑘 

 If we employ the multi–resolution analysis, we will composite 𝑆𝑚
𝑘 . At first, suppose that 𝑘 ∈ 𝑁 and 

𝑚 = 0,1,2, . .., we define a space 𝑆𝑚
𝑘  of piecewise polynomial functions;  

 𝑆𝑚
𝑘 =  𝑓: 𝑓 𝑥 =  

𝑎𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 < 𝑘   
𝑛

2
𝑚 ≤ 𝑥 ≤

𝑛+1

2
𝑚

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

   

where 𝑛 = 0,1, . . . , 2𝑚 − 1. You can see that dim𝑆𝑚
𝑘 = 2𝑚𝑘 and  

 𝑆0
𝑘 ⊂ 𝑆1

𝑘 ⊂⋅⋅⋅⊂ 𝑆𝑚
𝑘 ⊂⋅⋅⋅ 

By this assumption, the 2𝑚𝑘 dimensional space 𝑅𝑚
𝑘  can define as to be the orthogonal complement of 

𝑆𝑚
𝑘  in 𝑆𝑚+1

𝑘 ,  

 𝑆𝑚
𝑘 ⊕𝑅𝑚

𝑘 = 𝑆𝑚+1
𝑘     ,    𝑅𝑚

𝑘 ⊥ 𝑆𝑚
𝑘  

The following decomposition can immediately be obtained:  

 𝑆𝑚
𝑘 = 𝑆0

𝑘 ⊕𝑅0
𝑘 ⊕𝑅1

𝑘 ⊕⋅⋅⋅⊕ 𝑅𝑚−1
𝑘  

If the functions 𝑕1, 𝑕2, . . . , 𝑕𝑘 : 𝑅 → 𝑅 form an orthogonal basis for 𝑅0
𝑘 , the 𝑘 functions 

𝑓1, 𝑓2, . . . , 𝑓𝑘 : 𝑅 → 𝑅 supported on the interval  −1,1  can be constructed by the following form:  

 𝑓𝑖 𝑥 =  
𝑝𝑘−1 𝑥 0 ≤ 𝑥 ≤ 1

 −1 𝑖+𝑘−1𝑝𝑘−1 −𝑥 −1 ≤ 𝑥 ≤ 0
     ,    𝑖 = 1,2, … , 𝑘 

where 𝑝𝑘−1(𝑥) is a polynomial of degree 𝑘 − 1 with indeterminate coefficients. These functions have 

the following properties:   

    1.  The functions 𝑓1, 𝑓2, . . . , 𝑓𝑘  satisfy the following orthogonality and normality conditions:  

  ‍
1

−1
𝑓𝑖(𝑥)𝑓𝑗 (𝑥)𝑑𝑥 ≡  𝑓𝑖 , 𝑓𝑗  = 𝛿𝑖𝑗     ,    𝑖, 𝑗 = 1, . . . , 𝑘 

    2.  The function 𝑓𝑗  has vanishing moments  

  ‍
1

−1
𝑓𝑖(𝑥)𝑥𝑖𝑑𝑥 = 0    ,    𝑖 = 0,1, . . . , 𝑗 + 𝑘 − 2 

 We can now define 𝑕1, 𝑕2, . . . , 𝑕𝑘  by the following formula  

 𝑕𝑖(𝑥) =  2𝑓𝑖(2𝑥 − 1)    ,    𝑖 = 1, . . . , 𝑘 
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and obtain the equality  

 𝑅0
𝑘 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑠𝑝𝑎𝑛 𝑕𝑖(𝑥): 𝑖 = 1, . . . , 𝑘  

and, more generally,  

 𝑅𝑚
𝑘 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑠𝑝𝑎𝑛 𝑕𝑗 ,𝑚

𝑛 : 𝑕𝑗 ,𝑚
𝑛 (𝑥) = 2𝑚/2𝑕𝑗 (2𝑚𝑥 − 𝑛), 𝑗 = 1, . . . , 𝑘; 𝑛 = 0, . . . , 2𝑚 − 1  

Now, for each positive integer 𝑘, we let 𝑆0
𝑘  the trial space, be the space of polynomials of degree less 

than 𝑘 on the interval  0,1  and them vanish elsewhere. In this case, we suppose  

 𝑆0
𝑘 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑠𝑝𝑎𝑛 𝐿0(𝑥), 𝐿1(𝑥), . . . , 𝐿𝑘−1(𝑥)  

where 𝐿𝑖(𝑥) are orthonormal Legendre polynomials. 

For making 𝑅0
𝑘  the test space, we have to derive all 𝑓𝑖(𝑥) for each 𝑘. For example, suppose 𝑘 = 3 then 

𝑓1 𝑥 =  
𝑎𝑥2 + 𝑏𝑥 + 𝑐 0 ≤ 𝑥 ≤ 1

−𝑎𝑥2 + 𝑏𝑥 − 𝑐 −1 ≤ 𝑥 ≤ 0

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑓2 𝑥 =  
𝑑𝑥2 + 𝑒𝑥 + 𝑓 0 ≤ 𝑥 ≤ 1

𝑑𝑥2 − 𝑒𝑥 + 𝑓 −1 ≤ 𝑥 ≤ 0

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑓3 𝑥 =  
𝑔𝑥2 + 𝑕𝑥 + 𝑖  0 ≤ 𝑥 ≤ 1

−𝑔𝑥2 + 𝑕𝑥 − 𝑖 −1 ≤ 𝑥 ≤ 0

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Under  two above properties, we can make a linear system such that all unknown coefficients derive 

from that. Although this system do not have unique solution, you can uniquely see all 𝑓𝑖(𝑥) for each 𝑘 

in [1]. Then 𝑕1(𝑥), 𝑕2(𝑥), 𝑕3(𝑥) will derive. After that, we can form a basis for 𝑅𝑚
𝑘  with each 𝑚, 𝑘.  

3.  The Petrov–Galerkin method and its convergence 

 In this section, we present a brief review of the Petrov-Galerkin method and conditions of its 

convergence. We follow the notations of [1]. If 𝑋 is a Banach space with the norm  .   and 𝑋∗ is its 

dual space, then two different sequences of finite dimensional subspaces 𝑋𝑛 ⊆ 𝐗 and 𝑌𝑛 ⊆ 𝑋∗ can be 

chosen such that satisfying the condition (𝐻): 

(H)     : For each 𝑥 ∈ 𝐗 and 𝑦 ∈ 𝑋∗, there exist 𝑥𝑛 ∈ 𝑋𝑛  and 𝑦𝑛 ∈ 𝑌𝑛  such that   

    •‍ 𝑥𝑛 − 𝑥 → 0 and  𝑦𝑛 − 𝑦 → 0 as 𝑛 → ∞  

    •‍dim𝑋𝑛  =dim𝑌𝑛   𝑛 = 1,2, . ...  

In Petrov-Galerkin method, that is a numerical method, we seek 𝑥𝑛 ∈ 𝑋𝑛  so as each yn ∈ Yn  be 

orthogonal on both sides of Eq. (1).  
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  ( ‍𝑚
𝑖=0 𝑎𝑖(𝑡)𝐷

(𝑖) − 𝐾)𝑥𝑛 , 𝑦𝑛  =  𝑓, 𝑦𝑛          𝑓𝑜𝑟𝑎𝑙𝑙    yn ∈ Yn  (3) 

On the other hand, for 𝑥 ∈ 𝑋, an element 𝑝𝑛𝑥 ∈ 𝑋 is called a generalized best approximation from 𝑋𝑛  

to 𝑥 with respect to 𝑌𝑛  if it satisfies the equation  

  𝑥 − 𝑝𝑛𝑥,  𝑦𝑛   = 0        𝑓𝑜𝑟𝑎𝑙𝑙    𝑦𝑛 ∈ 𝑌𝑛  (4) 

Thereupon, the Petrov-Galerkin method is a projection method with a generalized best approximation 

projection. For existence and uniqueness of the generalized best approximation, the following 

proposition exists: 

For each x ∈ X, the generalized best approximation from Xn  to x with respect to Yn  exists uniquely if 

and only if  

 Yn ∩ Xn
⊥ =  0  (5) 

 where Xn
⊥ denotes the annihilator of Xn  in X∗ that is the set of all functions satisfying a given set of 

conditions which is zero on every member of a given set and say that Xn ⊥ Yn  if Yn ∩ Xn
⊥ ≠  0 . By 

this condition pn  is a projection.  

For the proof we refer the reader to [1]. 

But this condition is not sufficient for insurance every x ∈ X has a unique Petrov–Galerkin 

approximation. Therefore, we have to introduce a new concept the regular pair.  If there exists a linear 

operator Πn : Xn → Yn  with ΠnXn = Yn  such that satisfying the condition  

 
(H − 1)                xn ≤ c1 xn , Πnxn 

1/2          forall      xn ∈ Xn

(H − 2)                           Πnxn ≤ c2 xn           forall      xn ∈ Xn
 

where c1 and c2 are positive constants independent of n. The  Xn , Yn  is called a regular pair.  

On the other hand, if Xn  and Yn  satisfy the condition (H) and  Xn , Yn  be a regular pair, we have the 

following statements:   

    1.   Pnx − x → 0        as    n → ∞,    forall    x ∈ X.  

    2.  ∥ Pnx − x ∥≤ C ∥ Qnx − x ∥ for some constant C > 0 independent of n.  

 It means, for ensuring existence and uniqueness of approximation solution for every x ∈ X, we have to 

consider the condition (H), and the conditions (H − 1) , (H − 2) for each construction separately. 

If we choose Sm
k  and Sm′

k′  such that dimSm
k = dimSm′

k′ , the condition (H) will satisfy and by assumption 

linear operation Πn : Sm
k → Sm′

k′  as follow:  

 Πn(xn(t)) = Πn   ‍2
m k

j=1 cjbj(t) =  ‍2
m′ k′

j=1  cjdj(t)  (6) 

 where  



S. Akhavan / J. Math. Computer Sci.    ( ), -  

 

326 
 

 
Sm

k = Linearspan b1(x), b2(x), . . . , b2
m k(x) 

Sm′
k′ = Linearspan d1(x), d2(x), . . . , d2

m′ k′ (x) 
 (7) 

the conditions (H − 1) , (H − 2) will prove in two subsections.  

 3.1.  Convergence of Legendre multiwavelet 

 The conditions (H − 1) , (H − 2) must separately prove for each basis containing a regular pair.   

    By definition ΠnXn = Yn  and the norm  .  , we have  

 
 xn , Πnxn =  ‍

1

0
xn(t)Πn(xn (t))dt

                =  ‍
1

0
  ‍2

m k
j=1 cjbj(t)   ‍2

m′ k′
j=1  cjdj(t)  dt

 

By assumption 2m k = dimSm
k = dimSm′

k′ = 2m′ k′, we can write  

 =  ‍
1

0
  ‍2

m k
j=1 cjbj(t)   ‍2

m k
j=1  cjdj(t)  dt 

If we rewrite this relation in matrices form, we will have  

 =  ‍
1

0
CTΦ(t)ΨT(t)Cdt 

where  

 

Φ(t) =  b1(x), b2(x), . . . , b2
m k(x) T

Ψ(t) =  d1(x), d2(x), . . . , d2
m′ k′ (x) 

T

C =  c1, c2, . . . , c2
m k 

T

 

By definition  B i,j =  ‍
1

0
bi(t)dj(t)dt, we have  

 = CTBC 

where matrices B are diagonal with N positive integer as its diagonal entries that they are eigenvalues 

of B. Therefore  

 = c1
2b11 + c2

2b22 + ⋯+ cN
2 bNN  

We can realize  

 ≥ λ(minB )(c1
2 + c2

2 + ⋯+ cN
2 ) = λ(minB ) xn  

With choosing c1 =
1

 λ(minB )

, this relation can be rewrite as follow  

  xn ≤
1

 λ(minB )

 xn , Πnxn 
1/2 



S. Akhavan / J. Math. Computer Sci.    ( ), -  

 

327 
 

Clearly, we have  

  Πnxn 2
2 =  ‍

1

0
  ‍2

m′ k′
j=1  cjdj(t)  

2

dt 

By assumption 2m k = dimSm
k = dimSm′

k′ = 2m′ k′, we can write  

 

=  ‍
1

0
  ‍2

m k
j=1  cjdj(t)  

2

dt

=  ‍
1

0
 CTΨ(t) 

2
dt =  ‍

1

0
 CTΨ(t)ΨT(t)C dt

= CT   ‍
1

0
 Ψ(t)ΨT(t) dt C

 

By orthonormality of basis  

 = CTIC =  xn 2
2 

This relation shows that the choice of an integer for c2 ≥ 1 yields (H − 2) condition.  

4.  Numerical method 

 In this section, we perform procedure with an algorithm consisting of three stages: the first stage "A" 

mapping the range of integrate  0, ∞  to a finite interval  0, R . The second stage "B" finds the infinite 

number of boundary condition x(∞) , and the third stage "C" solves the Fredholm integro-differential 

equation‍of‍the‍second‍kind‍with‍singularity‍via‍Petrovâ€“Galerkin‍method‍by‍Legendre‍multiwavelet‍

basis. The details of the new algorithm is as follows:   

 At first, to map the range of integrate  0, ∞  into a finite interval  0, R , we can introduce the change 

of variables;  

  
𝑠 =

𝑅

𝑠+1
𝑑𝑠 =

−𝑅

𝑠 2
𝑑𝑠 

𝑡 =
𝑅

𝑡+1
𝑑𝑡 =

−𝑅

𝑡 2
𝑑𝑠 
  (8) 

 We find out ((1)) takes the form:  

 

 𝑎 𝑖 𝑡  𝑥 
 𝑖  𝑡  2

𝑖=0 ‍ −  
𝑘  𝑠 ,𝑡  𝑥  𝑠   −𝑅 

𝑠 2
𝑅

0
‍𝑑𝑠 = 𝑓  𝑡     ,    0 ≤ 𝑡 ≤ 𝑅

    𝑥  𝑅 = 𝛼
    𝑥  0 = 𝛽

 (9) 

 We can now suppose R = 1 due to the range of Legendre multiwavelet. But other choices are R ≥ 2 

which make the change of variables, whereas the ranges of integrates are  0,1 . In fact, we truncate the 

interval  0, R  to  0,1 . It is possible that R > 2 but we will not develop this point here. 

We know x n ∈ Xn  and Sm
k  forms a basis for the trial space Xn . Further, let x n(t ) be an approximation 

of exact solution x (t ). We can write  

 x n(t ) =  ‍N
i=1 cibi(t) 
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If we substitute x n(t ) instead of x (t ) in ((1)), we derive  

  ‍2
j=0 aj(t) ‍N

q=1 cqbq
(j)(t) −  ‍

1

0
k(s, t)  ‍N

q=1 cqbq(s) ds = f(t)    ,    0 ≤ t ≤ 1 (10) 

 or  

  ‍2
j=0 aj(t)CTΦ(j)(t) −  ‍

1

0
k(s, t)CTΦ(s)ds = f(t) 

This relation can be simplified as follow:  

 CTWG− CTK = f(t) (11) 

where  

 

W =

 
 
 
 
 b1 t b1

 1  t ⋯ b1
 m  t 

b2 t b2
 1  t ⋯ b2

 m  t 
⋮ ⋮ ⋮ ⋮

bN t bN
 1  t ⋯ bN

 m  t  
 
 
 
 

, G =  

a0 t 

a1 t 
⋮
am t 

 

K =

 
 
 
 
 
  k s, t b1 s 

1

0
‍ ds

 k s, t b2 s 
1

0
‍ ds

⋮

 k s, t bN s 
1

0
‍ ds 

 
 
 
 
 

 

We now inner multiply both side in each element of Yn  basis, where Sm′
k′  forms a basis for Yn  ( where 

2m k = dimSm
k = dimSm′

k′ = 2m′ k′ and   k ≥  
m + 1 m = 2k1 − 1

m + 2 m = 2k1

 . 

 CT  ‍
1

0
WGΨT(t)dt − CT  ‍

1

0
KΨT(t)dt =  ‍

1

0
f(t)Ψ(t)dt (12) 

 where Ψ(t) = (d1(t), d2(t), . . . , dN (t))T. The system (12) have the following matrix form  

 CT[R − M] = F (13) 

 or  

 [R − M]TC = F (14) 

 where  

 [R]i,j =  ‍
1

0
[WG]idj(t)dt       ,  

 [M]i,j =  ‍
1

0
[K]idj(t)dt =  ‍

1

0
 ‍

1

0
k(s, t)bi(s)dj(t)dsdt 

In the ((14)) system, we could use two exact equations instead of some two row of approximation 

equations. These two additional equations derive from boundary conditions. 
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 bi 0 

N
i=1 ‍ = α

 bi 1 
N
i=1 ‍ = β

  (15) 

 Solution of new system will derive the approximation solution.  

5.  Numerical results 

In the following examples, we use Legendre multiwavelet basis for Petrov–Galerkin method with 

different values of k, n, R = 1. The computations associated with the examples were performed using 

Mathematica 8 software on a personal computer.  

Example 5.1  

 

 1 + 𝑡 2𝑥′′  𝑡 −  1 + 𝑡 𝑥′ 𝑡 + 𝑥 𝑡 −   𝑡𝑠2 − 𝑡 𝑒−3𝑠𝑥 𝑠 
∞

0
‍d𝑠 =

4

1+𝑡
+

2

9
𝑡  

                                        0 ≤ 𝑡 ≤ ∞
    𝑥 0 = 1

    𝑥 ∞ = 0

 (16) 

 with exact solution x(t) =
1

1+t
. After substituting the change of variables ((8)) takes the following 

form:  

 

𝑡 4

𝑅2 
𝑅

𝑡 
 

2
𝑥 ′ 

′
 𝑡  
−  

−𝑡 2

𝑅 
𝑅

𝑡 
 

+
−2𝑡 

𝑅 
𝑅

𝑡 
 

2 𝑥
′  𝑡  + 𝑥  𝑡  +

 
𝑅

𝑠2  
𝑅−𝑡 

𝑡 
  

𝑅−𝑠 

𝑠 
 

2

−
𝑅−𝑡 

𝑡 
 𝑒

−3 
𝑅−𝑠 
𝑠 

 
𝑥  𝑠  

d𝑠 
𝑅

0
‍ =

4𝑡 

𝑅
+

2

9 
𝑅−𝑡 

𝑡 
 

  0 ≤ 𝑡 ≤ 𝑅

    𝑥  𝑅 = 1

    𝑥  0 = 0

 

with exact solution x (t ) =
t 

R
. In Tables 1 the value of  x n(tj) − x (tj) ∞

 are computed where tj =

j

10
, 0 ≤ j ≤ 10 with R = 1.  

Example 5.2  

 x′′(t) − 2x′(t) − 8x(t) −  ‍
∞

0
(ts2 + t)x(s)ds = −

3

4
t  , 0 ≤ t ≤ ∞ (17) 

 with exact solution x(t) = e−2t. After substituting the change of variables ((8)) takes the following 

form  
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𝑡 4

𝑅2
𝑥′ 

′
 𝑡  +  −

2𝑡 

𝑅
+

2𝑡 2

𝑅
 𝑥′  𝑡  − 8𝑥  𝑡  +  

𝑅

𝑠 2  
𝑅−𝑡 

𝑡 
  

𝑅−𝑠 

𝑠 
 

2

+
𝑅−𝑡 

𝑡 
 𝑥  𝑠  

d𝑠 
𝑅

0
‍

                    = −
3

4 
𝑅−𝑡 

𝑡 
 

                                      0 ≤ 𝑡 ≤ 𝑅

𝑥  𝑅 = 1

𝑥  0 = 0

 

with exact solution x (t ) = e−2(
R−t 

t 
)
. In Table 2 the values of  x n(tj) − x (tj) ∞

 are computed where 

tj =
j

10
, 1 ≤ j ≤ 10 with R = 1.  

Table 1. results of exp 1 with 𝑹 = 𝟏   Table 2. results of exp 2 with 𝑹 = 𝟏 

𝑋𝑛 , 𝑌𝑛   x n(tj) − x (tj) ∞
 𝑋𝑛 , 𝑌𝑛   x n(tj) − x (tj) ∞

 

S0
4, S1

2 6.56710*10
-4 

  S0
4, S1

2 9.27298*10
-2 

S0
6, S1

3 7.12546*10
-4 

  S0
6, S1

3 2.30143*10
-2 

S0
8, S1

4 7.19971*10
-4 

  S0
8, S1

4 3.19595*10
-3 

S1
4, S2

2 2.850981*10
-4 

  S1
4, S2

2 1.27511*10
-1 

 

6.  Conclusion 

In this paper, we solve the singular Fredholm integro–differential equations of the second kind which 

the interval of integrate is an infinite interval. Two change of variables are used to map  0, ∞  into 

 0,1 .  The choice of  0,1   lies in the fact that support of Legendre multiwavelets is  0,1 . We use 

Petrov–Galerkin approach by using Legendre multiwavelet basis for discretization technique. Its 

accuracy and applicability were checked on some examples.  
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