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Abstract 
In this paper, a new form of homotopy perturbation method has been adopted for solving the space-

time dependent fractional Fokker-Planck equation. The fractional derivatives are described in the 

Caputo sense. The method gives an analytic solution in the form of a convergent series with easily 

computable components, requiring no linearization or small perturbation. The numerical results show 

that the approaches are easy to implement and accurate when applied to the space-time dependent 

fractional Fokker-Planck equations. The method introduces a promising tool for solving many space-

time fractional partial differential equations. 

Keywords: New Homotopy perturbation method, Fokker-Plank equation, functional equation. 

1. Introduction 

The Fokker–Planck equation (FPE) arises in various fields in natural science, including solid-state 

physics, quantum optics, chemical physics, theoretical biology and circuit theory. The Fokker–

Planck equation was first used by Fokker and Plank to describe the Brownian motion of particles 

[1]. A FPE describes the change of probability of a random function in space and time. Hence it is 

naturally used to describe solute transport. The general FPE for the motion of a concentration field 

 ,u x t of one space variable x at time t has the following form [1,2] 

     
2

2
, ,

u
A x B x u x t

t x x

   
   

   
                                                                            (1) 

with initial condition 

   , , .u x t f x x R                             (2) 
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Where   0B x  is the diffusion coefficient and   0A x   is the drift coefficient. The drift and 

diffusion coefficients may also depend on time. Eq. (1) is a linear second-order partial differential 

equation of parabolic type. 

There is a more general form of FPE which is called nonlinear Fokker–Planck equation. Nonlinear 

FPE has important applicationsin various areas such as plasma physics, surface physics, population 

dynamic, biophysics, engineering, neurosciences, nonlinear hydrodynamics, polymer physics, laser 

physics, pattern formation, psychology and marketing [3–5]. In one variable case, the nonlinear 

FPE is written in the following form 

     
2

2
, , , , , .

u
A x t u B x u t u x t

t x x

   
   

   
                                                               (3) 

In recent years there has been a great deal of interest in fractional diffusion equations. These 

equations arise in continuoustime random walks, modeling of anomalous diffusive and 

subdiffusive systems, unification of diffusion and wave propagation phenomenon, and 

simplification of the results [6]. 

Our concern in this work is to consider the numerical solution of the nonlinear FPE with space- 

time fractional derivatives of the form: 

     
2

2
, , , , , , 0, 0 , 1,

u
A x t u B x t u u x t t

t x x

  

  
 

   
      

   
                   (4) 

where  and  are parameters describing the order of the fractional time and space derivatives, 

respectively. The function  ,u x t is assumed to be a causal function of time and space, i.e., 

vanishing for 0t   and x 0.  The fractional derivatives are considered in the Caputo sense. The 

general response expression contains parameters describing the order of the fractional derivatives 

that can be varied to obtain various responses. In the case of 1  and 1,   the fractional 

equation reduces to the classical nonlinearFPE (3). 

 

In recent years, increasing interest of scientists and engineers has been devoted to analytical 

asymptotic techniques for solving nonlinear problems, and many new numerical techniques have 

been widely applied to nonlinear problems. Based on homotopy, which is a basic concept in 

topology, a general analytical method, namely, the Homotopy Perturbation Method (HPM) was 

established by He [6-8] in 1998, to obtain a series solution of nonlinear differential equations.  

We apply a new version of the HPM that efficiently solves the space and time dependent fractional 

Fokker–Planck equations. He’s HPM has been already used by many mathematicians and 

engineers to solve various functional equations. In this method, the nonlinear problem is 

transferred into an infinite number of sub-problems and, the solution is approximated by the sum 

of the solutions of the first several sub-problems. This simple method has been applied to solve 

linear and nonlinear equations of heat transfer [9-11], fluid mechanics [12], nonlinear Schrödinger 

equations [13], boundary value problems [14], fractional KdV-Burgers equation [15] and the 

nonlinear system of second order boundary value problems [16]. 

In this letter, we use from Riemann–Liouville and Caputo fractional calculus theory [17-20].  

 

2. Basic ideas of the NHPM 

To illustrate the basic ideas of this method, let us consider the following nonlinear differential 

equation [21-22], 
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    , 0, ,A u X t f r r   (5) 

with the following boundary conditions  

 , , 0, ,
u

B u X t r
n

 
  

 
                                                                                (6) 

where A is a general differential operator, B is a boundary operator,  f r  is a known analytical 

function,  is the boundary of the domain ,  and  1 2, , , .nX x x x   The operator A  can be 

divided into two parts, L  and ,N  where L is a linear and N is a nonlinear operator. 

Therefore Eq. (5) can be rewritten as 

      0.L u N u f r                                                                                                      (7) 

By the homotopy technique, we construct a homotopy    , : 0,1 ,U r p     which satisfies 

               0, 1 0, 0,1 , ,H U p p L U u p A u f r p r x                     (8) 

or equivalently, 

        0 0, 0,H U p L U u pu p N U f r     
 

                                         (9) 

where  0,1 ,p  is an embedding parameter, 0u  is an initial approximation of the solution of Eq. 

(5). Clearly, we have from Eqs. (8) and (9) 

     0,0 0,H U L U L u   (10) 

     ,1 0.H U A U f r   (11) 

According to the HPM, we can first use the embedding parameter ,p  as a small parameter, and 

assume that the solutions of Eqs. (8) and (9) can be represented as a power series in p  as 

   
0

, , .n

n

n

U X t p U X t




 (12) 

 

Now let us write the Eq. (9) in the following form  

 

           0 0, , , , .L U X t u X t p f r u X t N U X t      (13) 

 

By applying the inverse operator, 
1,L

 to both sides of Eq. (13), we derive 

 

             1 1 1 1

0 0, , , , .U X t L u X t p L f r L u X t L N U X t         (14) 

 

Suppose that the initial approximation of Eq. (5) has the following form 
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     0

0

, ,n n

n

u X t a X p t




 (15) 

 

where      0 1 2, , , ,a X a X a X   are unknown coefficients and      0 1 2, , , ,p t p t p t   are 

specific functions depending on the problem. Now by substituting (12) and (15) into the Eq. (14), 

we get  

 

     

        

1

0 0

1 1 1

0 0

,

, .

n

n n

n n

n

n n

n n

p U X t L a X p t

p L f r L a X p t L N p U X t

 


 

 
  

 

 
  

 

    
      

    

 

 

(16) 

 

Comparing coefficients of terms with identical powers of ,p leads to 

 

     

           

      

        

0 1

0

0

1 1 1 1

1 0

0

2 1

2 0 1

1

0 1 1

: , ,

: , , ,

: , , , , ,

: , , , , , , , ,

n n

n

n n

n

j

j j

p U X t L a X p t

p U X t L f r L a X p t L N U X t

p U X t L N U X t U X t

p U X t L N U X t U X t U X t







  









 
  

 

 
   

 

 

 











(17) 

 

Now if we solve these equations in such a way that  1 , 0,U X t  then Eq. (17) results in 

   2 3, , 0.U X t U X t    Therefore the exact solution may be obtained as the following 

       1

0

0

, , .n n

n

u X t U X t L a X p t






 
   

 
  

It is worthwhile to mention that if  f r and 0u  are analytic at 0 ,x x  then their Taylor series 

defined as 

 

         *

0 0 0

0 0

, , ,
n n

n n

n n

u X t a X t t f r a X t t
 

 

      

 

can be used in Eq. (16), where      * * *

0 1 2, , , ,a X a X a X   are known coefficients and 

     0 1 2, , , ,a X a X a X   are unknown ones, which must be computed. 
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4. NHPM applied to the fractional Fokker–Planck equation 
 

To solve the fractional Fokker–Planck equation by means of NHPM, rewrite Eq. (1) in the form 

   
2

* *

2
, , , , 0, 0, 0,

u
A x t u B x t u t x

t x x

  

  

  
     

  
      (18) 

 

where      *0 1, 1, , , , , ,A x t u A x t u u x t      and 

     * , , , , , .B x t u B x t u u x t with the initial condition as follows 

 

   , .u x t f x                   (19) 

 

To solve Eq. (18) by homotopy perturbation method, we construct the following homotopy: 

     
2

* *

0 2
1 , , , , 0.

U U
p u p A x t U B x t U

t t x x

   

   

      
        

      
                      (20) 

Applying the operator ,J 
the inverse of the operator ,

t








 to both sides of Eq. (20), yields to 

 

       
2

*

0 0 2
, ,0 , , * , , U .U x t U x J u pJ u A x t U B x t

x x

 
 

 

  
     

  
             (21) 

 

Substituting Eq. (12) into Eq. (21), collecting the terms with the same powers of ,p  and equating 

each coefficient of p  to zero, results in 

 

   

     

     

     

0

0 0

2
1 * *

1 0 0 02

2
2 * *

2 0 1 0 12

2
* *

0 1 1 0 1 12

: , ,0 ,

: , , , , , ,

: , , , , , , , ,

: , , , , , , , , , , , ,j

j j j

p U x t U x J u

p U x t J u A x t U B x t U
x x

p U x t J A x t U U B x t U U
x x

p U x t J A x t U U U B x t U U U
x x



 


 

 


 

 


  

 

  
    

  

  
   

  

  
   

  



 



     (22) 
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Assuming        0

0

( , ) , , ,0 ,0 .n

n

n

u x t a x t t U x u x f x




   By solving equation 

 1 , t 0,U x   and to obtain the unknown coefficients  , 0,1,2, ,ia i    the exact solution can 

be obtained as follows:   

     0

0

, , .n

n

n

u x t U x t f x J a t




 
    

 
 (23) 

 

5. Numerical Examples 
 

Example 1.Consider the linear space fractional FPE [23] 

 
2 2

2
.x . , , 0, 0,

2

u x
u x t t x

t x x

 

 

   
     

   
                                                      (24) 

where    *0 1, A , , . , ,x y t x u x t   and    
2

* , , . , .
2

x
B x y t u x t  Subject to the initial 

condition 

 ,0 .u x x                  (25) 

To solve Eq. (24) by NHPM, we construct the following homotopy: 

 

   
2 2

0 2
1 0.

2

U U x U
p u p xU

t t x x

 

 

      
        

       
                                       (26) 

According to the Eq. (22), for Eq. (24) we derive 

 

     

      
 

    
 

    
 

0

0 0
0

22
01

1 0 0 20

22
12

2 1 20

22
1

1 2

: , ,0 , ,

,
: , , , ,

2

,
: , , ,

2

,
: , ,

2

t

t

t

jj

j j

p U x t U x u x d

x U x
p U x t u x xU x d

x x

x U x
p U x t xU x d

x x

x U x
p U x t xU x

x x

 

 

 

 

 

 

 


  


 








 

   
          

   
         

   
         









0
,

t

d






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Now assume that  0

0

( , ) , ,n

n

n

u x t a x t t




    ,0 ,0 ,U x u x x  and 1( , ) 0.U x t  Then we 

have 

     

 

22 3 2 2
2 0

1 0 1 02 2

22 3

1
2 1 2

,
2 2 2

0.
2 3

x ax t
U x t a x t a x a

x x x x

x a t
a x a

x x

   

   

 

 

        
            

         

   
       

    


 

It can be easily shown that 

   

 

   

 

   

 

   

 

   

   

     

   

   

   

   

2 3 2

0

3 2 4 3 4 3 5 4

1

7 6

2

2 3
,

3 4 2

2 4 3 5 2 5 3 6 2
,

4 2 3 4 2 5 3 3 5 3 2 4 2 6 4

3 6 2 8 4 3 6 2 7 4 3 5 2 7 3

8 4 2 6 4 8 6 4 4 2 6 4 4 4 2 5 3

x x
a

x x x x
a

x
a

 

   



 

   

       

     

      

 

   



  
   

       
   
               

           
               




   

     

   

   

   

   

   

     

   

     

6 5

4 35 4

5 7 3 4 6 2 3 5 2 6 3

4 3 5 3 7 5 2 3 4 2 2 4 2 5 3

5 6 3 4 5 2
,

2 3 6 4 6 4 3 4 2 5 3

x

xx





     

      

   

     





           
                 

       
            


 

This implies that 

   

   

 

   

 

   

 

   

 

   

2 31 2
0 0

3 22 3 2

4 3 4 3 5 4 2

, ,
2 3

2 42 3

3 4 2 4 2 3

3 5 2 5 3 6 2
.

4 2 5 3 3 5 3 2 4 2 6 4 2

a a
u x t U x t x a t t t

xx x
x t

x x x t

 

  



   

  

     

 

  

     

    
      

         

     
   
            





(27) 

Setting 1,  in (27), we reproduce the solution of problem as follows 

 

2 3

( , ) 1 ,
2! 3!

t t
u x t x t

 
     

 
                                                                                        (28) 

where this  is equivalent to the exact solution in closed form 
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( , ) .tu x t xe  

 

It is clear that no linearization or perturbation was used and a closed form solution is obtainable by 

adding more terms to the homotopy perturbation series. 

 

Example 2.Consider the nonlinear time-fractional FPE 

 
2

2

4
. . , , 0, 0,

3

u u x
u u x t t x

t x x x





    
       

    
                                            (29) 

where  
2

* 4
0 1, A , , ,

3

u xu
x y t

x


 
    

 
 and  * 2, , .B x y t u Subject to the initial 

condition 

  2, .u x t x  

To solve Eq. (29) by NHPM, we construct the following homotopy: 

 

 
2 2

2

0 2

4
1 . .U 0.

3

U U U xU
p u p

t t x x x

 

 

       
          

       
 (30) 

According to the Eq. (22), the following results will be obtained 

   

 

   

 

0

0 0

2 2
1 20

1 0 0 02

2
2 0 1

2 1 0 12

1

1 2
0

1 12
0

: , ,0 ,

4
: , . . ,

3

8
: , . . 2 ,

3

4

: , . .
3

j

k j k

kj

j j k j k

k

p U x t U x J u

U x
p U x t J u U U

x x x

U U x
p U x t J U U U

x x x

U U
x

p U x t J U U U
x x x











 



  



 

   
      

   

   
     

   

  
  

      
  
 
 





1

,
j 

 
 

   
      

 
 





 

 

Assuming       2

0

0

( , ) , , ,0 ,0 .n

n

n

u x t a x t t U x u x x




    By solving equation 

 1 , t 0,U x   unknown coefficients , 0,1,2, ,ia i    are obtained as follows, 
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 

 

 

 

2 2

2 1 2 2

0 1 2

2 3
, , , .

2 1 2 3 1

x x
a x a t a t  

 

 
   

  
   

 (31) 

 

Therefore the following solution will be derived  

 

   
     

           

1 2
2

0 0 1 2

2 2 2 2 3 2 3
2 2

2
, ,

1 2 3

1 .
1 2 1 3 1 1 2 1 3 1

t t t
u x t U x t x a a a

x t x t x t t t t
x x

  

     

  

     

 

     
     

 
                       



 

(32) 

 

Setting 1,   in (32), the solution of problem is obtained as follows 

 

2 3
2( , ) 1 .

2! 3!

t t
u x t x t

 
     

 
  

This solution is equivalent to the exact solution in closed form 

 

2( , ) .tu x t x e  

 

Example 3.Consider the linear space- time dependent fractional FPE 

 

 
2 2

2

x
. . , , 0, 0,

6 12

u x
u x t t x

t x x

  

  

     
       

      
                                            (33) 

 

where  *0 , 1, A , , ,
6

xu
x t u    and  

2
*A , , .

12

x u
x t u  Subject to the initial condition 

 

  2, .u x t x            (34) 

 

To solve Eq. (33) by NHPM, construct the following homotopy: 

 

 
2 2

0 2

xU
1 . . 0.

6 12

U U x U
p u p

t t x x

   

   

        
          

        
                                  (35) 

According to the Eq. (22), we have 
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   

   

 

 

0

0 0

22
1 0 0

1 0 2

22
2 1 1

2 2

22
1 1

2

: , ,0 ,

: , , ,
6 12

: , ,
6 12

: , ,
6 12

j jj

j

p U x t U x J u

xU x U
p U x t J u x

x x

xU x U
p U x t J

x x

xU x U
p U x t J

x x



 


 

 


 

 


 



 

 

    
      

     

    
     

     

    
             





                                      (36) 

 

Let's consider       2

0

0

( , ) , , ,0 ,0 ,n

n

n

u x t a x t t U x u x x




   by solving equation 

 1 , t 0,U x   unknown coefficients , 0,1,2, ,ia i    are obtained as follows 

   

 

   

 

 

 

   

 

   

 

 

4 2 3

0

4 2 6 4 15 3

1

2
,

5 2 4

5 6 2 6 7 2 2
,

6 4 5 2 3 5 2 12 4 6 3 6 5 2 7 4 2 1

x x
a

x x tx
a

 

  

 

    

       

 

  

 
   

           
                        



 

 

Therefore, we gain the following solution of Eq. (33) 

 

   
     

     

 

   

 

 

 

   

 

     

1 2
2

0 0 1 2

4 24 2 3 5 3
2

6 4 2

2
, ,

1 2 3

5 6 2 62

5 2 4 1 6 4 5 2 3 5 2 12 4 6 3

7 2
.

6 5 2 7 4 2 1

t t t
u x t U x t x a a a

xx x t x
x

x t

  

   

 

  

  

       



  

 

  



     
     

        
                            

 
 

     





(37) 

 

Setting 1,   and 1,   in (37), we reproduce the solution of problem as follows 

 

2 3

2 2 2
( , ) 1 ,

2 2! 3!

t t

t
u x t x

    
    

             
 
 


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which is equivalent to the following closed form 

 

2 2( , ) x .tu x t e

 

 

6. Conclusion  

In this paper, the NewHomotopy perturbation method is implemented to solve the space- time 

dependent fractional Fokker-Planck equation. It may be concluded that the method is verypowerful 

and efficient in finding analytical as well as numericalsolutions for wide classes of space-time 

fractional partial differentialequations.The study shows that the technique requires less 

computational work than existing approaches while supplying quantitatively reliable results. 

Finally, the NewHomotopy perturbation method is more effective and overcome the difficulty of 

traditional methods. 
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