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Abstract 
     In this paper, we present a deterministic finite element approach for solving a random forced  

Diffusion equation. Separation of random and deterministic variables is done by Karhunen- 

Loeve expansion. Truncating the Karhunen-Loeve expansion of the permeability field leads to a  

finite dimensional approximation of the problem. The problem is discretized, in spatial part,  

using the finite-element method and the polynomial chaos expansion in stochastic part. Finally,  

using Kronecker product preconditioner and thus, preconditioned conjugate gradient method the  

governed system of equation is solved. Numerical experiments are presented for illustrating the  

theoretical results. 

 

Keywords: Stochastic partial differential equation, Karhunen-Loeve expansion, Wiener Chaos expansion, 

finite element method. 

1. Introduction 
Physical problems, often, can be formulated as mathematical models which in many cases contain partial 

differential equations (PDEs). Uncertainty might plagues everything from modeling assumptions to 

experimental data. So, the differential coefficient and source functions in the model might represent as 

functions of the spatial domain and some sample space. In this case we deal with a stochastic partial 

differential equation (SPDE). In this paper, we consider the stochastic steady-state diffusion equation 

along with homogeneous Dirichlet boundary-value conditions. In stochastic engineering, the perturbation 

method is a popular technique, cf., e.g., [7, 10, 11, 13, 14, 16, 21]. Considering certain smoothness 

conditions, the random functions and operators involved in the differential equation are expanded in a 

Taylor series about their respective mean values. In this way, usually good results are obtained only for 

small deviations, cf., e.g., [11,16]. The Neumann expansion series method is another approach. In this 
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approach, the inverse of the stochastic operator is approximated by its Neumann series [4,18]. Recently, a 

method based on a spectral representation of the uncertainty is introduced by Ghanem and Spanos [9], 

where utilizes the Karhunen-Loeve expansion (KLE) of correlated random functions, cf. [12]. In order to 

allow for other representations of the random processes, the spectral finite element scheme is generalized 

by Babuska and et al. [1,2,3]. Here, we follow the Galerkin finite element method of stochastic diffusion 

problems. We use the kronecker product preconditioner presented by Ullmann [20] to clustering the 

eigenvalues of the global matrix gained at the end of variational computation. Thus, using preconditioned 

conjugate gradient method [17], the large scale system of equation is solved, which gives good 

computational results. The organization of this paper is as follow: In Section 2, Karhunen-Loeve 

expansion (KLE) and polynomial chaos expansion (PCE) is presented. In Section 3, stochastic Galerkin 

method, kroneker product preconditioner and computation of statistics is proposed. In Section 4, some 

numerical result is illustrated. 

2 Problem formulation 

Our model problem is a steady state diffusion problem in a 2D domain with inhomogeneous stochastic 

diffusion coefficient 𝑎 𝑥, 𝜔 : 

𝛻.  𝑎 𝑥, 𝜔 𝛻𝑢 𝑥, 𝜔  = 𝑧 𝑥, 𝜔              𝑖𝑛   𝐷 × Ω 

𝑢 𝑥, 𝜔 = 0                                                                                         1  

where 𝐷 is the spatial domain, 𝛺 is probability space and 𝑎 𝑥, 𝜔  is the correlated random 
fields. Hence, the solutions 𝑢 𝑥, 𝜔  of the SPDE (1) are also random fields. As an 
important assumption for the stochastic diffusion equation (1), it is assumed that the 
random coefficient 𝑢 𝑥, 𝜔  satisfies the elliptic condition. That is, there exist a constant 
𝑎𝑚𝑖𝑛  such that 

0 < 𝑎𝑚𝑖𝑛 ≤ 𝑎 𝑥, 𝜔                                                                           (2) 

2.1 Karhunen-Loeve Expansion (KLE)  
Consider a random field 𝑎(𝑥, 𝜔), 𝑥 ∈ 𝐷, with finite second order moment 

 𝐸[
Ω

𝑎2(𝑥, 𝜔)]𝑑𝑥 < ∞ 

Assume that 𝐸 𝑎 = 𝑎 𝑥 . It is possible to expand 𝑎(𝑥, 𝜔), for a given orthonormal basis {𝜓𝑘} in 𝐿2(𝐷), 

as a generalized Fourier series 

𝑎 𝑥, 𝜔 = 𝑎 𝑥 +  𝑎𝑘 𝜔 

∞

𝑘=1

𝜓𝑘 𝑥                                                            (3) 

where 

𝑎𝑘 𝜔 =  𝑎 𝒙, 𝜔 
Ω

𝜓𝑘 𝑥 𝑑𝑥,      𝑘 = 1,2, … 

are random variables with zero means. It is important, now, to find a special basis {𝜙𝑘} that makes 

corresponding 𝑎𝑘  uncorrelated: 𝐸[𝑎𝑖𝑎𝑗 ] = 0 for al l𝑖 ≠ 𝑗. Denoting the covariance function of 𝑎 𝑥, 𝜔  by 

𝑅 𝑥, 𝑦 = 𝐸[𝑎 𝑥, 𝜔 𝑎 𝑦, 𝜔 ], the basis functions {𝜙𝑘} should satisfy 
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𝐸 𝑎𝑖𝑎𝑗  =  𝜙𝑖(𝑥)
𝐷

𝑑𝑥 𝑅 𝑥, 𝑦 
𝐷

𝜙𝑗  𝑦 𝑑𝑦 = 0,     𝑖 ≠ 𝑗 

Complete and orthonormality of {𝜙𝑘} in 𝐿2(𝐷) follows that 𝜙𝑘(𝑥) are eigenfunctions of 𝑅 𝑥, 𝑦 :  

 𝑅 𝑥, 𝑦 
𝐷

𝜙𝑗  𝒚 𝑑𝑦 = 𝜆𝑗𝜙𝑗  𝑥 ,                   𝑗 = 1,2,…                                              (4) 

where 𝜆𝑗 = 𝐸 𝑎𝑗
2 > 0. Indeed, by choosing basis functions 𝜙𝑘(𝑥) as the solutions of the eigenproblem 

(4), the random variables 𝑎𝑘 𝜔  will be uncorrelated. Denoting 𝜃𝑘 = 𝑎𝑘/ 𝜆𝑘 , we have the following 

expansion: 

𝑎 𝑥, 𝜔 = 𝑎 𝑥 +   𝜆𝑘𝜃𝑘 𝜔 

∞

𝑘=1

𝜙𝑘 𝑥                                                                      (5) 

where 𝜃𝑘  satisfy 𝐸[𝜃𝑘 ] = 0 and 𝐸[𝜃𝑖𝜃𝑗 ] = 𝛿𝑖𝑗 . In the case that 𝑎 𝑥, 𝜔  is considered as a Gaussian 

process, 𝑎𝑘 𝜔 , 𝑘 = 1,2,… will be independent Gaussian random variables. The expansion (5) is known 

as the Karhunen-Loeve expansion (KLE) of the stochastic process 𝑎 𝑥, 𝜔 . 

Using the KLE (5), the stochastic process can be represented as a series of uncorrelated random variables. 

Since the basic functions 𝜙𝑘(𝒙)  are deterministic, the spatial dependence of the random process can be 

resolved by them. The KLE converges to the random process 𝑎 𝑥, 𝜔  in the mean square sense 

𝑙𝑖𝑚
𝑁→∞

 𝐸 𝑎 𝑥, 𝜔 − 𝑎𝑁 𝑥, 𝜔  2𝑑𝑥 = 0,
𝐷

 

where 

𝑎𝑁 = 𝑎 𝑥 +   𝜆𝑘𝜃𝑘

𝑁

𝑘=1

𝜙𝑘                                                                      (6) 

is a finite term [12,15]. So, among all the Fourier expansions (3), the KLE with the basis function 𝜙𝑘(𝑥) 

determined by the eigen problem (4) has the fastest convergence rate. The convergence rate of the KLE 

only depends on the smoothness of the covariance function, but not on the specific probability structure of 

the process being expanded. The KLE converges fast if the covariance function 𝑅 𝑥, 𝑦  is very smooth. In 

this case, we only need to keep the leading order terms (quantified by the magnitude of 𝜆𝑘) in the finite 

KLE and still capture most of the energy of the stochastic process 𝑎 𝑥, 𝜔 . For the finite KLE (6), we 

define its energy ratio as 

𝑒 𝑁 =
 𝐸 𝑎𝑁 2𝑑𝑥
Ω

 𝐸 𝑎 2𝑑𝑥
Ω

=
 𝜆𝑘

𝑁
𝑘=1

 𝜆𝑘
∞
𝑘=1

 

If the eigenvalues 𝜆𝑘 , 𝑘 = 1,2,…, decay very fast, then the finite term KLE would be good approximation 

of the stochastic process [5,8]. 

2.2 Polynomial Chaos Expansion (PCE) 

There are problems, as the solution of a PDE with random inputs, that the covariance function of a 

random process 𝑢 𝑥, 𝜔 , 𝑥 ∈ 𝐷 is not known. The solution of such problems can be represented using a 

polynomial chaos expansion (PCE) given by 

𝑢 𝑥, 𝜔 =  𝑢𝑘 𝑥 

∞

𝑘=1

𝛹𝑘 𝜔                                                                (7) 
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where, the functions 𝑢𝑘 𝑥  are deterministic coefficients, 𝜔 is a vector of orthonormal random variables 

and 𝛹𝑘 𝜔  are multi-dimensional orthogonal polynomials with the following properties: 

 𝛹1 ≡ 𝐸 𝛹1 = 1,           𝛹𝑘  = 0, 𝑘 > 1,           𝛹𝑖𝛹𝑗  = ℎ𝑖𝛿𝑖𝑗                              (8) 

The convergence property of PCE for a random quantity in 𝐿2 is ensured by the Cameron-Martin theorem 

[5, 22], i.e. 

 𝑢 𝑥, 𝜔 −  𝑢𝑘 𝑥 

∞

𝑘=1

𝛹𝑘 𝜔  
𝐿2

→ 0. 

Hence, for the sake of computation, this convergence justifies a truncation of PCE to a finite number of 

terms, 

𝑢 𝑥, 𝜔 =  𝑢𝑘 𝑥 

𝑃

𝑘=1

𝛹𝑘 𝜔                                                                  (9) 

where, the value of 𝑃 is determined by the highest degree of polynomial 𝑑, used to represent 𝑢, and the 

number 𝑁 of random variables – the length of 𝜔 – with the formula 𝑃 + 1 = (𝑁 + 𝑑)! 𝑁! 𝑑!  [22]. 

Generally, the value of 𝑁 is the same as the number of uncorrelated random variables in the system or 

equivalently, the truncation length of the truncated KLE. Typically, the value of 𝑑 is chosen by some 

heuristic method. Indeed, in the case of 𝑑 = 1 and 𝑁 random variables, the KLE is a special case of the 

PCE. 

3 Stochastic Galerkin  

Suppose 𝑊𝑖 ⊂ 𝐿𝜌 𝑖
2  𝛺𝑖  with dimension 𝜌𝑖  for 𝑖 = 1, … , 𝑀 and 𝑉 ⊂ 𝐻0

1(𝐷) with dimension N. In addition; 

let  {𝜓𝑛
𝑖 }𝑛=1

𝑝𝑖  for 𝑖 = 1, … , 𝑀 be basis of 𝑊𝑖  and {𝜙𝑖}𝑖=1
𝑁   a basis of 𝑉. The finite dimensional tensor 

product space 𝑊1 ⊗ …⊗ 𝑊𝑀 ⊗ 𝑉 can be defined as the space spanned by the functions {𝜓𝑛1

1 , … , 𝜓𝑛𝑀
𝑀 𝜙𝑖} 

for all 𝑛1 ∈ {1, … , 𝑝1},…,𝑛𝑀 ∈ {1,… , 𝑝𝑀} and 𝑖 ∈ {1,… , 𝑁}. To simplify notation, let 𝐧 denote a multi-

index whose 𝑘th component 𝑛𝑘 ∈ {1, … , 𝑝𝑘} and 𝑰 denote the set of such multi-indices, then the basis 

functions for the tensor product space have the form 

𝑣𝐧𝑖 𝑥, 𝜔 = 𝜙𝑖(𝑥)𝛹n 𝜔  

where  

𝛹n =  𝜓𝑛𝑘
𝑘

𝑀

𝑘=1

 𝜔𝑘 . 

Then, the Galerkin method is looking for a solution 𝑢 ∈ 𝑊1 ⊗ …⊗ 𝑊𝑀 ⊗ 𝑉 such that 

 𝜌 𝜔  𝑎 𝑥, 𝜔 𝛻𝑢ℎ𝑃 𝑥, 𝜔 . 𝛻𝑣𝐧𝑖 𝑥, 𝜔 𝑑𝑥𝑑𝜔 =  𝜌 𝜔  𝑧 𝑥, 𝜔 𝑣𝐧𝑖 𝑥, 𝜔 𝑑𝑥𝑑𝜔

𝐷Ω𝐷Ω

          (10) 

for all 𝐧 ∈ 𝑰 and 𝑖 = 1,… , 𝑁, which 𝜌(𝜔) is the integration weight. Equivalently,plugging in the explicit 

formula for the basic functions, equation (10) can be written as 

 𝜌 𝜔 𝛹𝐧(𝜔)  𝑎 𝑥, 𝜔 𝛻𝑢ℎ𝑃 𝑥, 𝜔 . 𝛻𝜙𝑖 𝑥 𝑑𝑥𝑑𝜔 =  𝜌(𝜔)𝛹𝐧(𝜔)  𝑧 𝑥, 𝜔 𝜙𝑖 𝑥 𝑑𝑥𝑑𝜔         (11)

𝐷Ω𝐷Ω

 

for all 𝐧 ∈ 𝑰 and 𝑖 = 1,… , 𝑁. Now, considering the approximate solution as 
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𝑢ℎ𝑃 𝑥, 𝜔 =   𝑢𝑗𝐦

𝐦∈𝑰

𝑁

𝑗=1

𝜙𝑗  𝑥 𝛹𝐦 𝜔                                         (12) 

and substituting (12)  into the equation (11) yields 

  𝑢𝑗𝐦

𝐦∈𝑰

𝑁

𝑗=1

 𝜌 𝜔 𝛹𝐧 𝜔 

Ω

𝛹𝐦 𝜔  𝑎 𝑥, 𝜔 𝛻𝜙𝑗  𝑥 . 𝛻𝜙𝑖 𝑥 𝑑𝑥𝑑𝜔                                  (13)

D

=  𝜌 𝜔 𝛹𝐧 𝜔  𝑧 𝑥, 𝜔 𝜙𝑖 𝑥 𝑑𝑥𝑑𝜔

𝐷Ω

 

for all 𝐦 ∈ 𝑰 and 𝑖 = 1, … , 𝑁. Let 𝑃 =  𝑰 =  𝑝𝑘
M
k=1 , then, a natural bijection between {1,… , 𝑃} and 𝑰 

can be defined. Thus, equation (13) can be written as 

  𝑢𝑗𝑚

𝑃

𝑚=1

𝑁

𝑗=1

 𝜌(𝜔)𝛹𝑛 𝜔 

Ω

𝛹𝑚  𝜔  𝑎 𝑥, 𝜔 𝛻𝜙𝑗  𝑥 . 𝛻𝜙𝑖 𝑥 𝑑𝑥𝑑𝜔                                      14 

D

=  𝜌(𝜔)𝛹𝑛(𝜔)  𝑧(𝑥, 𝜔)𝜙𝑖 𝑥 𝑑𝑥𝑑𝜔

𝐷Ω

 

Now, if 𝑎 and 𝑧 have the following KLE: 

𝑎 𝑥, 𝜔 = 𝑎0 𝑥 +  𝑦𝑖𝑎𝑖(𝑥)

𝑀

𝑖=1

 

and 

𝑧 𝑥, 𝜔 = 𝑧0 𝑥 +  𝑦𝑖𝑧𝑖(𝑥)

𝑀

𝑖=1

 

Then, we can rewrite equation (14) as  

  𝑢𝑗𝑚

𝑃

𝑚=1

𝑁

𝑗=1

  𝐾0 𝑖,𝑗  𝜌 𝜔 𝛹𝑛 𝜔 

Ω

𝛹𝑚  𝜔 𝑑𝜔 +   𝐾𝑘 𝑖,𝑗

𝑃

𝑚=1

 𝜌 𝜔 𝛹𝑛 𝜔 

Ω

𝛹𝑚  𝜔 𝑦𝑘𝑑𝜔  15 

= (𝑧0)𝑖  𝜌(𝜔)𝛹𝑛(𝜔)𝑑𝜔

Ω

+  (𝑧𝑘)𝑖  𝜌(𝜔)𝛹𝑛(𝜔)𝑦𝑘𝑑𝜔

Ω

𝑃

𝑚=1

 

where 

(𝐾𝑘)𝑖,𝑗 =  𝑎𝑘 𝑥 𝛻𝜙𝑖 𝑥 . 𝛻𝜙𝑗  𝑥 𝑑𝑥

𝐷

≅  𝑤𝑟𝑎𝑘 𝑥𝑟 𝛻𝜙𝑖 𝑥𝑟 . 𝛻𝜙𝑗  𝑥𝑟 

𝑟

                    (16) 

and  

 𝑧𝑘 𝑖 =  𝑧𝑖 𝑥 𝜙𝑖 𝑥 𝑑𝑥 ≅  𝑤𝑟𝑧𝑖 𝑥𝑟 𝜙𝑖 𝑥𝑟 

𝑟𝐷

                                         (17) 

for 𝑘 = 1, … , 𝑀 and 𝑖 = 1, … , 𝑁 [3]. Equations (16) and (17) are approximated by quadrature rule in 

spatial domain. Now, assume that there exist functions 𝛹𝑛 ,   𝑛 = 1, … , 𝑃 such that 
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 𝜌(𝜔)𝛹𝑛 𝜔 

Ω

𝛹𝑚  𝜔 𝑑𝜔 = 𝛿𝑚𝑛  

and  

 𝜌(𝜔)𝛹𝑛 𝜔 

Ω

𝛹𝑚  𝜔 𝑦𝑘𝑑𝜔 = 𝐶𝑘𝑛𝛿𝑚𝑛 . 

where, for 𝑚 = 𝑛, the above integral is approximated using quadrature rule in random domain as follow: 

 𝜌(𝜔)𝛹𝑛 𝜔 

Ω

𝛹𝑛 𝜔 𝑦𝑘𝑑𝜔 ≅  𝑤𝑠
′𝜌 𝜔𝑠 𝛹𝑛

2 𝜔𝑠 𝑦𝑘 𝜔𝑠 

𝑠

                           (18) 

Then, equation (15) becomes 

  𝑢𝑗𝑚

𝑃

𝑚=1

𝑁

𝑗=1

 (𝐾0)𝑖,𝑗 +  𝐶𝑘𝑛 (𝐾𝑘)𝑖,𝑗

𝑀

𝑘=1

 𝛿𝑚𝑛                                                                                         

= (𝑧0)𝑖  𝜌(𝜔)𝛹𝑛(𝜔)𝑑𝜔

Ω

+   𝑧𝑘 𝑖  𝜌 𝜔 𝛹𝑛 𝜔 𝑦𝑘𝑑𝜔

Ω

𝑀

𝑘=1

                                             (19) 

or, equivalently, 

 𝑢𝒎𝑗

𝑁

𝑗=1

 (𝐾0)𝑖,𝑗 +  𝐶𝑘𝑛 (𝐾𝑘)𝑖,𝑗

𝑀

𝑘=1

 = (𝑧0)𝑖  𝜌(𝜔)𝛹𝑛(𝜔)𝑑𝜔

Ω

+  (𝑧𝑘)𝑖  𝜌 𝜔 𝛹𝑛 𝜔 𝑦𝑘𝑑𝜔         (20)

Ω

𝑀

𝑘=1

 

In equations (19) and (20) we have: 

 𝜌(𝜔)𝛹𝑛(𝜔)𝑑𝜔

Ω

= 0;      for 𝑛 ≠ 0, 

and  

 𝜌(𝜔)𝛹𝑛(𝜔)𝑦𝑘𝑑𝜔

Ω

=  𝜌(𝜔)𝛹0(𝜔)𝛹𝑛(𝜔)𝑦𝑘𝑑𝜔

Ω

= 𝐶𝑘𝑛𝛿0𝑛 = 𝐶𝑘0. 

Finally, equation (20) can be considered as the following block diagonal system: 

 
 
 
 
 
 
 
𝐾0 +  𝐶𝑘1𝐾𝑘

𝑃

𝑘=1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝐾0 +  𝐶𝑘𝑝𝐾𝑘

𝑃

𝑘=1  
 
 
 
 
 
 

 
𝑢  1

⋮
𝑢  𝑃

 =  
𝑧 1
⋮
𝑧 𝑝

                        (21) 

or briefly, 𝐾𝑢  = 𝑧 . Once 𝑢 has been computed, it can be post-processed to obtain meaningful 

information, such as the mean and variance of 𝑢ℎ𝑃 . Definitions of mean and variance of a 

random field (noting that a random field is a stochastic process) can be found in [14,19]. The 

expected value of 𝑢ℎ𝑃  is given by 

𝐸(𝑢ℎ𝑃) =  𝜌 𝜔    𝑢𝑗𝑚

𝑃

𝑚=1

𝑁

𝑗=1

𝜙𝑗  𝑥 Ψm 𝜔  

Ω

𝑑𝜔 
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=   𝑢𝑗𝑚

𝑃

𝑚=1

𝑁

𝑗=1

𝜙𝑗  𝑥  𝜌 𝜔 Ψm 𝜔 

Ω

𝑑𝜔 

=  𝑢𝑗1

𝑁

𝑗=1

𝜙𝑗  𝑥  

on account that Ψ1 = 1 and the orthogonality conditions (8). Therefore, if 𝑥𝑗  is a node 

corresponding to the basis function 𝜙𝑗 , 𝐸(𝑢ℎ𝑃(𝑥𝑗 , 𝜔)) = 𝑢𝑗1, the variance of 𝑢ℎ𝑃  is given by 

𝑉(𝑢ℎ𝑃) =  𝜌(𝜔)    𝑢𝑗𝑚

𝑃

𝑚=1

𝑁

𝑗=1

𝜙𝑗  𝑥 Ψm 𝜔  

2

Ω

𝑑𝜔 −  𝐸(𝑢ℎ𝑃) 2

=   𝑢𝑗𝑚
2

𝑃

𝑚=1

𝑁

𝑗=1

𝜙𝑗
2 𝑥  𝜌 𝜔 Ψm

2  𝜔 

Ω

𝑑𝜔 −   𝑢𝑗1

𝑁

𝑗=1

𝜙𝑗  𝑥  

2

 

Adopting the notation 

𝑢𝑘 𝑥 =  (𝑢  𝑘)𝑗

𝑁

𝑗=1

𝜙𝑗  𝑥 , 

one can compute the 𝑚𝑡ℎstatistical moments of the solution as 

𝐸 𝑢 . , 𝑥 𝑚  ≈ 𝐸    𝛹𝑘 .  𝑢𝑘 𝑥 

𝑃

𝑘=1

 

𝑚

 =  … 𝐸 𝛹𝑘1
 .  …𝛹𝑘𝑚

 

𝑃

𝑘=1

𝑃

𝑘=1

𝑢𝑘1
 𝑥 …𝑢𝑘𝑚

 𝑥 . 

3.1 Kronecker product preconditioners.  
Rewriting equation (21) as: 

  Gk ⊗ 𝐾𝑘

𝑀

𝑘=0

 
           

𝐾 

𝑢  = 𝑧  

the strategy is to choose P = 𝐺 ⊗ 𝐾0 as a preconditioner, such that 

𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐻 ∈ ℝP×P :  𝐾 − H ⊗ 𝐾0 𝐹} 

where, as mentioned in PCE, P is equals with the degree of polynomial chaos truncation, and  .  𝐹denotes 

the Frobenius norm. The closed form of the solution can be written as follow [6,20], 

𝐺 = 𝐼 +  
𝑡𝑟(𝐾𝑘

𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑃

𝐺𝑘 . 

Which 𝑡𝑟(𝐾𝑘
𝑇𝐾0) =  [𝐾𝑘 ]𝑖,𝑖[𝐾0]𝑖,𝑖

𝑁𝑞

𝑖=1
 and hence, the coefficients in above equality can be computed 

straightforward. In addition, since 𝐾 and 𝐾0 are symmetric and positive definite, so 𝐺 and 𝑃 = 𝐺 ⊗ 𝐾0 

have also these properties. Now, using preconditioned Newton’s conjugate gradient algorithm, we 

can find fast and accurate convergence of the solution [20]. 

In fact 𝑃  can be written as: 
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𝑃 =

 
 
 
 
 
 
 
1 +  𝐶𝑘1

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀

𝑘=1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1 +  𝐶𝑘𝑝

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀

𝑘=1  
 
 
 
 
 
 

 

So 𝑃 −1𝐾 can be expressed as: 

𝑃 −1𝐾 =

 
 
 
 
 
 
 

𝐾0 +  𝐶𝑘1𝐾𝑘
𝑀
𝑘=1

1 +  𝐶𝑘1

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀
𝑘=1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝐾0 +  𝐶𝑘𝑝𝐾𝑘

𝑀
𝑘=1

1 +  𝐶𝑘𝑝
𝑡𝑟(𝐾𝑘

𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀
𝑘=1  

 
 
 
 
 
 

 

Finally, after preconditioning the problem, we are interested in solving the following equation: 

 
 
 
 
 
 
 

𝐾0 +  𝐶𝑘1𝐾𝑘
𝑀
𝑘=1

1 +  𝐶𝑘1

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀
𝑘=1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝐾0 +  𝐶𝑘𝑝𝐾𝑘

𝑀
𝑘=1

1 +  𝐶𝑘1

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀
𝑘=1  

 
 
 
 
 
 

 
u  1

⋮
u  P

 =

 

 
 
 
 

z 1

1 +  𝐶𝑘1

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀
𝑘=1

⋮
z P

1 +  𝐶𝑘1

𝑡𝑟(𝐾𝑘
𝑇𝐾0)

𝑡𝑟(𝐾0
𝑇𝐾0)

𝑀
𝑘=1  

 
 
 
 

. 

Using Newton’s conjugate gradient algorithm we can find fast and accurate convergence of the 

solution. 

4 Experimental results 

Example 1- 2D Poisson Equation: The first example is a Poisson equation in two spatial 

dimensions with one constant random parameter. Let 𝐷 = { 𝑥, 𝑦 : −1 ≤ 𝑥 ≤ 1, −1 ≤ 𝑦 ≤ 1} be 

the spatial domain of the problem and  𝛺  the sample space. Then we seek a solution 

𝑢 𝑥, 𝑦, 𝜔 such that satisfies 

𝑎 𝜔  𝑢 𝑥, 𝑦, 𝜔 𝑥𝑥 + 𝑢 𝑥, 𝑦, 𝜔 𝑦𝑦  = 𝑒𝑥 𝑝  −64 ∗   𝑥 −
1

2
 

2

+  𝑦 −
1

2
 

2

      𝑖𝑛   𝐷 × 𝛺 

     𝑢 𝑥, 𝑦, 𝜔 = 0                                  𝑜𝑛𝐷 × 𝜕𝛺 

where 𝑎 𝜔  is a random variable distributed uniformly over the interval [1,3]. First we express 𝑎 

in terms of a uniform random variable on [−1,1], i.e. 

𝑎 = 𝜉 + 2         where 𝜉~𝑈 −1,1 . 

Figure 1, illustrates approximated solution, standard deviation and expectation counter plot and 

global matrix sparsity, for 50*50 mesh points of spatial domain, d=3, (number of random 

variables) and N=4 (degree of polynomials) . 

 



R. Naseri, A. Malek / J. Math. Computer Sci.    ( ), -  

 

279 
 

 
Fig 1.Illustration of the approximated solution and its mean value, standard deviation and global 

matrix sparsity for d=3, N=4, 50*50 mesh points in Example 1. 

Example 2: consider the following SPDE 

−𝛻.  𝑎 𝑥, 𝑦, 𝜔 𝛻𝑢 𝑥, 𝑦, 𝜔  = 𝑧 𝑥, 𝑦             𝑥, 𝑦 𝜖𝐷, 𝜔𝜖Ω 

where 𝐷 = [−1,1]2, Ω~U[−1,1], the boundary condition is given as 

𝑢 = 1.1𝑠𝑖𝑔𝑛 𝑠𝑖𝑛 𝜋𝑥 𝑠𝑖𝑛 𝜋𝑦  . 

and  

𝑧 𝑥, 𝑦 = sin 𝜋𝑥 sin 𝜋𝑦 + 𝑥. 

The random field 𝑎 𝑥, 𝑦, 𝜔  is characterized by its mean and covariance function 

𝐸 𝑎 = 10,            𝑅 𝑥1,𝑥2 = 𝑒−(𝑥1,𝑥2),     𝑥1,𝑥2 ∈  −1,1 . 

The truncated KLE of 𝑎 𝑥, 𝑦, 𝜔  can be expressed as: 

𝑎 𝑥, 𝑦, 𝜔 = 10 +   𝜆𝑗𝜔𝑗𝜙𝑗  𝑥 .

𝑁

𝑗=0

 

The eigenpairs 𝜆𝑗 , 𝜔𝑗  in truncated KLE solve the integral equation 

 𝑒−(𝑥1,𝑥2) 𝜙𝑗  𝑥2 𝑑, 𝑥2 = 𝜆𝑗𝜙𝑗  , 𝑥1  

For this special case of the covariance function, we have explicit expression for 𝜆𝑗  and 𝜙𝑗  [9]. 

Let 𝜔𝑗𝑒𝑣𝑒𝑛  and 𝜔𝑗𝑜𝑑𝑑  solve the equations 

1 − 𝜔𝑗𝑒𝑣𝑒𝑛 tan 𝜔𝑗𝑒𝑣𝑒𝑛  = 0, 𝜔𝑗𝑜𝑑𝑑 + tan 𝜔𝑗𝑜𝑑𝑑  = 0 
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Then the even and odd indexed eigenfunctions are given by: 

𝜙𝑗𝑒𝑣𝑒𝑛
 𝑥 =

cos(𝜔𝑗𝑒𝑣𝑒𝑛 𝑥)

 1 +
sin (2𝜔𝑗𝑒𝑣𝑒𝑛 )

2𝜔 𝑗𝑒𝑣𝑒𝑛

𝜙𝑗𝑜𝑑𝑑
 𝑥 =

sin(𝜔𝑗𝑜𝑑𝑑 𝑥)

 1 −
sin (2𝜔 𝑗𝑜𝑑𝑑

)

2𝜔 𝑗𝑜𝑑𝑑

 

and corresponding eigenvalues are given by: 

𝜆𝑗𝑒𝑣𝑒𝑛  𝑥 =
2

𝜔𝑗𝑒𝑣𝑒𝑛
2 + 1

𝜆𝑗𝑜𝑑𝑑  𝑥 =
2

𝜔𝑗𝑜𝑑𝑑
2 + 1

 

We choose 𝜔𝑗 = (𝜔1,… , 𝜔𝑁)𝑇 to be independent random variables uniformly distributed over 

the interval  −1,1 . First of all, we find numerical approximations of 𝜔𝑗𝑒𝑣𝑒𝑛  and 𝜔𝑗𝑜𝑑𝑑 with 

bisection method, and then, with the eigenpairs evaluated with these 𝜔𝑗𝑒𝑣𝑒𝑛  and 𝜔𝑗𝑜𝑑𝑑 , we 

construct the KLE of  𝑑 = 2, 𝑁 = 6, which emphasis  that 𝑃 = 28. Figure 2, illustrates mean 

value representation, standard deviation and expectation counter plot and global matrix sparsity, 

for 20*20 mesh points 

 
Fig 2. Illustration of the approximated solution and its mean value, standard deviation and global 

matrix sparsity for d=2, N=6, 20*20 mesh points in Example 2. 

 

Example 3: similar to Example 2, consider the following SPDE 

−𝛻.  𝑎 𝑥, 𝑦, 𝜔 𝛻𝑢 𝑥, 𝑦, 𝜔  = 𝑧 𝑥, 𝑦                𝑥, 𝑦 𝜖𝐷, 𝜔𝜖Ω 

where 𝐷 = [−1,1]2, Ω~U[−1,1], with the boundary condition  

 𝑢 𝑥, 𝑦, 𝜔 = 0                                         𝑜𝑛   𝐷 × 𝜕𝛺 

and  

𝑧 𝑥, 𝑦 = 2π2sin 𝜋𝑥 sin 𝜋𝑦             𝑖𝑛  𝐷 × 𝛺 
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Figure 3, illustrates mean value representation, standard deviation and expectation counter plot 

and global matrix sparsity, for 50*50 mesh points of spatial domain, d=1, (number of random 

variables) and N=3 (degree of polynomials) which emphasis  that P=4. 

 

 
Fig 3. Numerical solution of example 3 with 50*50 mesh points, d=1, N=3 

 

5 Conclusion 
We described a deterministic finite element (FE) solution algorithm for the stochastic elliptic 

boundary value problem, whose coefficient are assumed to be random field. Separation of 

random and deterministic variables is achieved via Karhunen-Loeve Expansion (KLE). Finite 

element discretization utilized in both spatial space and probability space. Using the Polynomial 

Chaos Expansion (PCE) and constructing the solution based on orthogonal basis and truncating 

the KLE of the permeability field lead to find a finite dimensional approximation. Finally, since 

the resulted system of equation governed by discretizing the problem is large and sparse, we use 

Kronecker product preconditioner and Newton’s conjugate gradient method to solve this system 

of equation more accurate and fast. Numerical results presented for illustrating the theoretical 

results. 
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