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Abstract 
This paper deals with transient overvoltage phenomenon which is occurred during induction motors 

(IMs) starting. This power quality (PQ) disturbance can damage motors’ dielectric insulation and affect 
the locally connected other loads. First, effective parameters on these overvoltages are identified. Then, 
an artificial neural network (ANN) is proposed to evaluate them. The most common structures, i.e. 
multilayer perceptron (MLP) and radial basis function (RBF) are adopted to train the ANN. The MLP 
structure is trained with the six learning algorithms, including backpropagation (BP), delta-bar-delta 
(DBD), extended delta-bar-delta (EDBD), directed random search (DRS), quick propagation (QP), and 
levenbergmarquardt (LM). The results show the effectiveness of proposed approach to predict accurate 
value of overvoltage peak. Based on performed comparison among all developed ANNs, it is proven that 
LM and EDBD algorithms have best performance for this goal. 

 
Keywords: Induction motors, multilayer perceptron, radial basis function, transient overvoltages. 

1. Introduction 

The most common motor in various sections of the world is induction motor (IM) which is also called 
asynchronous motor [1-3]. They can be used not only in the industry (usually in three-phase form), 
but also in the household appliances (usually in single-phase form). Because of widely use of these 
motors, their operation must be studied comprehensively. Main advantages of this motor are [4]: 

 It is robust 

 It has simple and rugged construction 

 It is reliable 

 It is relatively cheap 

 It requires little maintenance 
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 It has wide range (from a few watts to values on the order of 10000 hp) 

 It has high efficiency and reasonably good power factor 

 Its speed is nearly constant 

 It has self-starting torque 

In contrast, IM has following major disadvantages: 

 Its speed control is not easy 

 It has low power factor (lagging) in the lightly loaded condition 

 It causes some power quality problems like high starting current, voltage sag, and transient 

overvoltages 

Power quality (PQ) is a major issue in the electrical systems, which is found more importance in 
recent years due to increasing use of power electronic devices and sensitive loads [5-6]. Starting of 
large IMs causes several disturbances to the motor itself and affects the locally connected other 
loads [7]. Transient overvoltage during IM starting is one of the PQ disturbances and fully discussed 
in this paper. This overvoltage will cause the reactive component of the current inside to increase 
causing eddy current heating of the rotor and stress on the insulation. Its peak can reach two times 
of rated voltage, which may seriously harm the motors’ dielectric insulation leading to subsequent 
failures [8]. As a result, this overvoltage should be evaluated properly to avoid its harmful effects. 

This paper proposes an artificial neural network (ANN) to evaluate this overvoltage accurately. Time-
domain simulations considering various system configurations consume a large amount of time and 
are not proper for considering various cases of IM starting. Developed ANNs in this paper help 
manufactures and operators to evaluate a variety of conditions and calculate the worst case of 
overvoltage peak during IM starting real time. This information help them to consider precautionary 
measures during both design and operation stages. The ANN is trained with the most commons 
structures and algorithms. Results of the studies shows that developed ANNs can estimate 
overvoltages peak with good accuracy. 

The rest of the paper is organized as follows. The overvoltages caused by IM starting are discussed in 
Section 2. Section 3 proposes ANNs to evaluate overvoltages. Discussion is presented in Section 4. 
Finally, the paper is concluded in Section 5. 

2. Overvoltages during IM Starting 

One the major concerns during IM starting is occurrence of overvoltages as a result of switching 
procedures. Impedance mismatch between the motor and the long cable causes voltage reflection 
and thus overvoltages occur at motor terminal. Accurate estimation of this overvoltage plays a 
significant role for motor dielectric insulation and optimal design of dv/dtfilters [8-10]. 

2.1. Study System Modelling 

The electrical section of induction machine is represented by a fourth-order state-space model and 
the mechanical section by a second-order system [11]. All electrical variables and parameters are 
referred to the stator. All stator and rotor quantities are in the arbitrary two-axis reference frame (d-
q frame). Usually, cables are modeled using series resistance and inductance and parallel capacitance 
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in the distributed form or in the PI form [12]. In this paper, the model of Fig. 1 is adopted as 
connecting cable model. 

 
 

Fig. 1.Single-phase representation of adopted cable model. 

2.2. Study System Description 

Fig. 2 shows a sample circuit which is adopted to study overvoltages during IM starting. This system 
includes the induction motor KHV355-2 from VALIADIS company [13]. This motor is a 2 poles, 200 kW 
(270 hp), 3300 V induction motor. Parameters of this motor were calculated using no-load test, 
locked-rotor test, and DC test [14]. This motor is fully simulated using power system blockset (PSB), a 
MATLAB/Simulink-based simulation tool [15]. 

 
 

Fig. 2.Sample system for the overvoltage study. 

Fig. 3 shows terminal voltage of IM during starting period. As shown in this figure, overvoltage peak 
can reach about 2 p.u. As mentioned before, long cable contributes to overvoltages significantly. Fig. 
4 shows the result of the PSB frequency analysis at bus 2. The magnitude of the cable impedance 
shows a parallel resonance peak around 600 Hz. In the other hand, frequency spectrum of terminal 
voltage is also presented in Fig. 5. As shown in this figure, terminal voltage also has significant 
harmonic contents around 600 Hz. It shows the effect of cable impedance on the overvoltage. 

In practical system a number offactors affect the overvoltages peak. In this paper following 
parameters were considered: 

 Supply voltage (V ) 

 Resistance of the connecting cable ( cR ) 

 Reactance of the connecting cable ( cX ) 

 Capacitance of the connecting cable ( cC ) 

 Stator reactance ( lsX ) 
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 Referred rotor reactance ( lrX  ) 

 Switching angle ( ..AS ) 

 

Fig. 3.Three-phase voltage at motor terminal (bus 2). IM starts at t= 0.1 s.  

 

Fig. 4.Impedance at bus 2. 
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Fig. 5.Harmonic analysis of terminal voltage. 

 

Fig. 6. Overvoltage peak as supply voltage while cable resistance 0.004 p.u., cable reactance 0.0188 
p.u., cable capacitance 1μF, referred rotor reactance 0.08 p.u., and switching angle 50°. 

Effect of system and motor parameters on the overvoltage peak is investigated here. In this work, 
adopted overvoltage peak is the largest peak among all three phases to consider the worst case of 
overvoltage for every system configuration. First, Fig. 6 shows effect of supply voltage on the 
overvoltage peak at different stator reactance. As shown in this figure, value of this parameter 
affects overvoltage peak extremely. Effect of cable reactance on the overvoltage peak at different 
switching time is presented in Fig. 7. Also, Fig. 8 shows effect of switching time (angle) on the 
overvoltage peak at different referred rotor reactance. Unlike supply voltage and cable reactance, 
overvoltage peak has non-uniform behavior for increasing switching time. Moreover, effect of cable 
capacitance on the overvoltage peak at different cable resistance is presented in Fig. 9. 

There are other parameters which are not considered here. Fig. 10 shows effect of stator and 
referred rotor resistance, magnetizing reactance, load torque, and total rotor and load inertia on the 
overvoltage peak. As shown in this figure, these parameters don’t have significant effect on the 
overvoltage peak; thus they are not included in this analysis. 
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Fig. 7. Overvoltage peak as cable reactance while supply voltage 1 p.u., cable resistance 0.004 p.u., 
cable capacitance 10 μF, stator reactance 0.12 p.u., and referred rotor reactance 0.1 p.u. 

 

 
Fig. 8. Overvoltage peak as switching time while supply voltage 1.05 p.u., cable resistance 0.004 p.u., 
cable reactance 0.0251 p.u., cable capacitance 10 μF, and stator reactance 0.12 p.u. 

 
 
3. The Artificial Neural Network 

The various types of artificial neural networks (ANNs) are explained in the literature [16-24]. The 
most common structures of ANN are multilayer perceptrons (MLPs) and radial basis functions (RBFs) 
which are examples of feed-forward networks. In spite of being different networks in several 
important respects, these two neural network architectures are capable of accurately mimicking 
each other. These two structures are considered here to evaluate overvoltage peak. MLP is trained 
with six algorithms including back propagation (BP), delta-bar-delta (DBD), extended delta-bar-delta 
(EDBD), directed random search (DRS), quick propagation (QP), and levenberg–marquardt(LM). The 
BP, DBD, EDBD, DRS, QP, and RBF are fully described in [16], and mathematical description of LM can 
be found in [25]. The basic structure of developed ANN is shown in Fig. 11. 
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Fig. 9. Overvoltage peak as cable capacitance while supply voltage 1 p.u., cable reactance 0.0251 p.u., 
stator reactance 0.04 p.u., referred rotor reactance 0.1 p.u., and switching angle 75°. 

 
 

 
Fig. 10. Overvoltage peak as (a) stator and referred rotor resistance, (b) magnetizing reactance, (c) 
load torque, (d) total inertia, while supply voltage 1.05 p.u., cable resistance 0.01 p.u., cable 
reactance 0.0188 p.u., cable capacitance 10 μF, stator reactance 0.08 p.u., referred rotor reactance 
0.12 p.u., and switching angle 45°. 
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Fig. 11.Basic structure of developed artificial neural network. 

 

3.1. Training of Artificial Neural Network 

For an ANN training, first input and output parameters should be selected properly. In this work as 
shown in Fig. 11, supply voltage, cable resistance/reactance/capacitance, stator/referred rotor 
reactance and switching time are adopted as ANN output. In the other hand, overvoltage peak (the 
worst case among three phases) is selected as ANN unique output. For training process, different 
system configuration must be considered. Thus, ANN input parameters are varied in different steps 
(depend on the parameter) and associated overvoltage peak is calculated using PSB to create input-
output patterns. These patterns form training and testing sets. 20% of these sets are randomly 
selected as training sets and other 80% of these sets are used for testing developed ANNs. Each ANN 
is trained with the goal of mean square error (MSE) 5e-5. Fig. 12 shows the training of neural 
network for developed ANNs. Specifications of developed ANNs are presented in Table 1. 

Relative error is calculated by the difference of PSB output and ANN output: 

100
OV

OVOV
(%)Er

PSB

PSBANN
Relative 


                                                       (1) 

and absolute error is calculated as: 

,OVOVEr PSBANNAbsolute                                                            (2) 
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Fig. 12. Squared error against epoch curve for developed ANNs. 

 
Table 1. Specifications of developed ANNs 

 

ANN model 
Number of neurons 
in the hidden layer 

Training time 
[epochs] 

BP 11 77 

DBD 17 508 

EDBD 20 128 

DRS 15 46 

LM 15 117 

QP 17 381 

RBF 11 153 

where OVANN is the overvoltage peak calculated by ANN, and OVPSB refers to the overvoltage peak 
calculated by PSB. 

The relative error for training and testing sets for LM algorithm is shown in Fig. 13. Also, the results 
for a sample test data for all developed ANNs are presented in Table 2 and Figs. 14-16. Calculated 
errors for different ANNs in Table 2 are relative errors. Fig. 14 shows overvoltage peak against the 
supply voltage, while Fig. 15 presents the overvoltage peak against the stator reactance. Finally, 
overvoltage peak against the referred rotor reactance is shown in Fig. 16. 

4. Discussion 

In this section a comparison is performed between all developed ANNs to investigate their ability to 
estimate overvoltage peak during IM starting. Table 2 shows that all developed ANNs can estimate 
these overvoltages properly. Table 3 presents a comparison between these ANNs from average 
relative and absolute point of view. In this Table, these errors are calculated for sample data of Table 
2. The result shows that LM and EDBD algorithms can evaluate overvoltage peak with better 
accuracy. Therefore these algorithms are first choice for predicting overvoltage peak during IM 
starting for manufactures and operators. 
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Fig. 13.Relative errors of learning and testing sets for LM algorithm. 

 

 

Fig. 14. Overvoltage peak vs. supply voltage simulated by ANNs and PSB while cable resistance 0.01 
p.u., cable reactance 0.0314 p.u., cable capacitance 100 μF, stator reactance 0.14 p.u., referred rotor 
reactance 0.08 p.u., and switching angle 30°. 

5. Conclusion 

This paper attends one of the PQ disturbances during IM starting. Because of harmful effect of 
switching overvoltage on the insulation and the locally connected other loads, this phenomenon is 
studied in this paper. Also, these overvoltages are estimated by ANN. Both MLP and RBF structures 
have been employed for this purpose. MLP is trained with BP, DBD, EDBD, DRS, QP, and LM 
algorithms. Effectiveness of this approach is verified by simulation studies. Among all developed 
ANNs, LM and EDBD algorithms presents better performance. Proposed tool can be used by 
manufactures and operators during both design and operation stages to predict accurate value of 
overvoltage peak to adopt proper cautionary measures. 
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Table 2. Some sample testing data and output 

V  [p.u.] 0.95 0.95 0.95 0.95 1 1 1 1 1.05 1.05 1.05 1.05 

cR [p.u.] 0.008 0.008 0.008 0.008 0.014 0.014 0.02 0.02 0.01 0.01 0.01 0.006 

cX [p.u.] 0.012566 0.012566 0.037699 0.037699 0.037699 0.01885 0.01885 0.006283 0.006283 0.006283 0.025133 0.025133 

cC [μF] 1 100 100 10 10 10 10 1 1 100 100 100 

lsX [p.u.] 0.1 0.1 0.1 0.16 0.16 0.16 0.06 0.06 0.06 0.06 0.18 0.18 

lrX [p.u.] 0.14 0.14 0.06 0.06 0.06 0.06 0.1 0.1 0.1 0.12 0.12 0.12 

S.A. [°] 45 80 80 80 80 25 25 25 55 55 55 10 

PSB [p.u.] 1.717644 1.67326 1.441619 1.594234 1.659036 1.78054 1.700629 1.870158 1.792409 1.618178 1.725252 1.84487 

LM [p.u.] 1.718721 1.675442 1.439808 1.598089 1.660675 1.778328 1.697848 1.875454 1.79138 1.613185 1.724679 1.847724 

Error [%] 0.062723 0.130414 0.125625 0.2418 0.09881 0.124272 0.163548 0.283204 0.057455 0.308529 0.033262 0.154695 

EDBD 
[p.u.] 

1.71718 1.673087 1.436707 1.599005 1.659982 1.773452 1.705883 1.874853 1.791789 1.617077 1.733438 1.844017 

Error [%] 0.026989 0.010309 0.340739 0.299314 0.057015 0.398123 0.308925 0.251068 0.034639 0.068004 0.474446 0.046199 

BP [p.u.] 1.716743 1.670642 1.446141 1.590177 1.662431 1.774757 1.71178 1.873507 1.788774 1.626522 1.728777 1.846399 

Error [%] 0.052481 0.156436 0.313679 0.254451 0.204639 0.324812 0.655701 0.1791 0.202851 0.515688 0.204287 0.082872 

DBD [p.u.] 1.717813 1.670984 1.439287 1.588348 1.667455 1.78277 1.707634 1.875832 1.813397 1.621418 1.735818 1.852732 

Error [%] 0.009865 0.136016 0.161767 0.369204 0.507494 0.125191 0.411857 0.303404 1.170921 0.200272 0.612422 0.426175 

QP [p.u.] 1.725915 1.668102 1.424554 1.604909 1.654405 1.777943 1.690434 1.853129 1.829908 1.605933 1.729118 1.855918 

Error [%] 0.48155 0.308253 1.183771 0.669635 0.279124 0.145876 0.599505 0.910584 2.092071 0.756684 0.224087 0.598859 

RBF [p.u.] 1.773207 1.695042 1.445017 1.642118 1.66082 1.800964 1.699123 1.881493 1.833834 1.624152 1.737575 1.867207 

Error [%] 3.234832 1.301746 0.235697 3.003581 0.107558 1.147049 0.088563 0.606117 2.311128 0.369231 0.714261 1.210766 

DRS [p.u.] 1.661736 1.717255 1.522482 1.648887 1.681343 1.730432 1.727565 1.839833 1.879747 1.678563 1.71202 1.79911 

Error [%] 3.254908 2.629283 5.60916 3.428183 1.344585 2.814242 1.583876 1.621532 4.872626 3.731673 0.766955 2.480349 
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Fig. 15. Overvoltage peak vs. stator reactance simulated by ANNs and PSB while supply voltage 1 p.u., 
cable resistance 0.01 p.u., cable reactance 0.0188 p.u., cable capacitance 1 μF, referred rotor 
reactance 0.1 p.u., and switching angle 60°. 

 

 

Fig. 16. Overvoltage peak vs. referred rotor reactance simulated by ANNs and PSB while supply 
voltage 1.05 p.u., cable resistance 0.016 p.u., cable reactance 0.0503 p.u., cable capacitance 10 μF, 
stator reactance 0.12 p.u., and switching angle 90°. 
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Table 3. Average of relative and absolute errors for Table 2 sample data 

ANN Model 
Average of relative 
peak error [%] 

Average of 
absolute peak 
error [p.u.] 

BP 0.2622 0.0044 

DBD 0.3695 0.0064 

EDBD 0.1930 0.0033 

DRS 2.8448 0.0477 

LM 0.1487 0.0025 

QP 0.6875 0.0117 

RBF 1.1942 0.0205 
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