

Obtain Multiplicative Resupinate Eigenvalue with use Hermitian Matrices

Hooman Fathaliani
University of Applied Sciences, Hamadan, Iran

E-mail: h.fathaliani@ymail.com

Article history:

Received September 2013
Accepted October 2013
Available online October 2013

Abstract

Benefiting from Schur theorem and temple's theories, we exposure new enough conditions for obtaining multiplicative resupinate eigenvalue with use Hermitian matrices.

1. Introduction

Let H_{n} be the set of Hermitian matrices of order n .:

$$
(M H) \operatorname{LetA} A=\left(a_{i j}\right) \in H_{n}
$$

be a positive semi-definite matrix and $\lambda=\left(\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}\right) \in R^{n}$ be a nonnegative vector. The problem is to find a nonnegative diagonal matrix C such that the matrix CA has eigenvalues $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$. We assume in the problem that $a_{i i}=1(i-1,2, \ldots n)$.
(GH) Let $A\left(a_{i j}\right), A_{t}=\left(a_{i j}^{(t)}\right) \in H_{n}(t=1, \ldots, n)$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in R^{n}$. The problem is to find $c=\left(c_{1}, . . c_{n}\right) \in R^{n}$ such that the matrix $A+\sum_{t=1}^{n} c_{t} A_{t}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. We assume in the problem that $a_{i i}^{(i)}=\delta_{i t}(i, t=1, \ldots, n)$.
In this section, main results are introduced. Section 2 contains the proofs.

For $B=\left(b_{i j}\right) \in H_{n}$ andb $=\left(b_{1}, \ldots, b_{n}\right) \in R^{n}$,define :

$$
\begin{array}{ll}
d(b)=\min _{i \neq j}\left\{\left|b_{i}-b_{j}\right|\right\}, & \|b\|=\|b\|_{\infty}, \\
k_{2}(B)=\max _{j}\left\{\left(\sum_{i \neq j}\left|b_{i j}\right|^{2}\right)^{1 / 2}\right\}, & m(B)=\min _{i \neq j}\left\{\left|b_{i j}\right|\right\} .
\end{array}
$$

THEOREM 1. Let $A \in H_{n}$ be positive semi-definite with $a_{i i}=1(i=1, \ldots, n)$ and $0 \leq \lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. Define

$$
\phi \lambda=\left\{\begin{array}{l}
\sqrt{\lambda_{n}\left(\lambda_{n-1}+\ldots+\lambda_{1}\right) .} \\
\lambda_{n} \leq \lambda_{n-1}+\ldots+\lambda_{1} \\
\left(\lambda_{n}+\lambda_{n-1}+\ldots+\lambda_{1}\right) / 2 . \\
0 \leq \lambda_{n}-\left(\lambda_{n-1}+\ldots+\lambda_{1}\right) \leq d(\lambda) / 3 \\
\sqrt{\left[\lambda_{n}-d(\lambda) / 6\right]\left[\lambda_{n-1}+\ldots+\lambda_{1}+d(\lambda) / 6\right]} \\
\lambda_{n} \geq \lambda_{n-1}+\ldots+\lambda_{1}+d(\lambda) / 3 .
\end{array}\right.
$$

Suppose

Then (MH) is solvable.
THEOREM 2. Let A and $\lambda_{i}^{\prime} s$ be the same as in Theorem 1. Suppose

$$
\begin{equation*}
d(\lambda) \geq \sqrt{3}\left(\lambda_{n}+\lambda_{n-1}\right) k_{2}(A) \tag{1.2}
\end{equation*}
$$

Then (MH) is solvable.
REMARK 1. Theorem 5 in [1] is contained in our Theorem 1 in the case when $\lambda_{n} \leq \lambda_{n-1}+\ldots+\lambda_{1}$, and in our Theorem 2.

IVNERSE EIGENVALUE PROBLEM

Conditions in $[1,2,8]$ show that λ_{n} the largest component of λ, plays a role in the solvability of (MH). In Theorems 1 and 2 we go further to show the effects of the smaller components of λ.

In problem (GH), let

$$
a=\left(a_{1}, \ldots, a_{n}\right)=\left(a_{11}, \ldots, a_{n n}\right)
$$

$$
\begin{gathered}
A^{(0)}=A-\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right), \quad A_{t}^{(0)}=A_{t}-\operatorname{diag}\left(a_{11}^{(t)}, \ldots, a_{n n}^{(t)}\right), \\
A=A^{(0)}-\sum_{t-1}^{n} a_{t} A_{t}^{(0)}, \quad S=\sum_{t=1}^{n}\left|A_{t}\right| ;
\end{gathered}
$$

here, for $B=\left(b_{i j}\right)$, by $|B|$ we denote the matrix $\left(\left|b_{i j}\right|\right)$. Define

$$
k=\|\lambda-a\| k_{2}(S)+k_{2}(A), \quad k^{\prime}=\|\lambda\| k_{2}(S)+k_{2}(A) .
$$

THEOREM 3. Let $A, A_{t} \in H_{n}$ with $a_{i i}^{(t)}=\delta_{i t}(i, t=1, \ldots, n)$ and $\lambda_{1}<\lambda_{2} \ldots<\lambda_{n}$. Suppose

$$
\begin{equation*}
d(\lambda) \geq 2 \sqrt{3} k^{\prime} . \tag{1.3}
\end{equation*}
$$

Then (GH) is solvable.

THEOREM 4. Let $\mathrm{A}, \mathrm{A}_{\mathrm{t}}$, and $\lambda_{i}^{\prime} s$ be the same as in Theorem 3. Suppose $a_{11} \geq a_{22} \geq \ldots \geq a_{n n}$ and

$$
\begin{equation*}
d(\lambda) \geq 2 \sqrt{3} k \tag{1.4}
\end{equation*}
$$

Then (GH) is solvable.

REMARK 2. Considering a suitable congruent permutation of A an A_{t} and reordering of $\left\{A_{t}\right\}$, we see that the condition $a_{11} \geq \ldots \geq a_{n n}$ can always be satisfied in problem (GH). Theorem 4 improves substantially Theorem 8 in [5].

2. PROOF OF THE THEOREMS

We need a lemma deduced from Krylov, Bogoljubov, and Weinstein's and Temple's theories.

LEMMA 1 (See [5, Lemma 5]). Let $B=\left(b_{i j}\right) \in H_{n}$ with $b_{11} \leq \ldots \leq b_{n n}$. Let $k_{2}(B)>0, d \geq 2 k_{2}(B)$, and $\left|b_{i j}-b_{i i}\right| \geq d\left(1-\delta_{i j}\right)$ for $i, j=1, \ldots n$. Then for the eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ of B

$$
\left|\lambda_{i}-b_{i i}\right| \leq \frac{d-\left[d^{2}-4 k_{2}(B)^{2}\right]^{1 / 2}}{2} .
$$

We also need the concept of majorization and the following

LEMMA 2 (See [6,p. 193]). Let $B=\left(b_{i j}\right) \in H_{n}$. Then for the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of B ,

$$
\left(b_{11}, \ldots, b_{n n}\right) \vdash\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

Where $u \longleftarrow v$ means that the real vector v is majorized by the real vector u.

Some properties of quadratic functions are helpful in the proof.

LEMMA 3. Let $Q_{1}(x)=x^{2}-p_{1} x+q_{1}, Q_{2}(x)=x^{2}-p_{2} x+q_{2}$ be polynomials with $p_{1} \geq p_{2} \geq 0$ and $q_{2} \geq q_{1} \geq 0$. Suppose Q_{1} and Q_{2} have real roots $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$, respectively. Then $x_{1} \leq y_{1}, i . e$.

$$
\frac{p_{1}-\left(p_{1}^{2}-4 q_{1}\right)^{1 / 2}}{2} \leq \frac{p_{2}-\left(p_{2}^{2}-4 q_{2}\right)^{1 / 2}}{2} .
$$

Proof. It suffices to show $Q_{1}\left(y_{1}\right) \leq 0$. In fact, since $y_{1} \geq 0$ obviously, then

$$
\begin{aligned}
Q_{1}\left(y_{1}\right) & =y_{1}^{2}-p_{1} y_{1}+q_{1} \\
& =p_{2} y_{1}-q_{2}-p_{1} y_{1}+q_{1} \\
& =\left(p_{2}-p_{1}\right) y_{1}-q_{2}+q_{1} \\
& \leq 0,
\end{aligned}
$$

and we get the result.

LEMMA 4. Let $y(x)=x(a-x)$ be a quadratic function defined on the interval $x \in[c, d]$. Then

$$
\max \{y(x) \mid c \leq x \leq d\}= \begin{cases}y(d), & d \leq a / 2 \\ y(a / 2), & c \leq a / 2 \leq d \\ y(c), & a / 2 \leq c\end{cases}
$$

Proof of Theorem 1. Let

$$
\varepsilon=\frac{d(\lambda)-\left[d(\lambda)^{2}-12 m(A)^{2} \phi(\lambda)^{2}\right]^{1 / 2}}{6}
$$

By the assumption $d(\lambda) \geq 2 \sqrt{3} m(A) \phi(\lambda)$ we have

$$
\begin{equation*}
\varepsilon \leq \frac{m(A) \phi(\lambda)}{\sqrt{3}}, \quad \varepsilon \leq \frac{d(\lambda)}{6} \tag{2.1}
\end{equation*}
$$

Define

$$
K(\varepsilon, \lambda)=\left\{x \in R^{n} \mid\|x-\lambda\| \leq \varepsilon\right\}, \quad D(\lambda)=\left\{x \in R^{n} \mid x \vdash \lambda\right\} .
$$

It can be verified that $V(\varepsilon, \lambda)=K(\varepsilon, \lambda) \cap D(\lambda)$ is a nonempty, bounded, convex, and closed set in R^{n}. For $x=\left(x_{1}, \ldots, x_{n}\right) \in V(\varepsilon, \lambda)$ define the matrix $X=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$. Then X is nonnegative. Define $A(x)=X^{1 / 2} A X^{1 / 2}$. We know that XA and $\mathrm{A}(\mathrm{x})$ have the same set of eigenvalues, denoted by $\lambda_{1}(x) \leq \ldots \leq \lambda_{n}(x) . \quad$ Let $\quad \lambda(x)=\left(\lambda_{1}(x), \ldots, \lambda_{n}(x)\right)$. Since $\quad \varepsilon \leq d(\lambda) / 6 \quad$ and $\quad \lambda_{1}<\ldots<\lambda_{n}, \quad$ then $x_{1} \leq \ldots \leq x_{n}$ for any vector $x \in V(\varepsilon, \lambda)$. With $x \vdash \lambda$ we have $x_{1}+\ldots+x_{n}=\lambda_{1}+\ldots+\lambda_{n}$ for $x \in V(\varepsilon, \lambda)$ and therefore

$$
\begin{aligned}
& k_{2}(A(x))^{2}=\max _{i}\left\{\sum_{j \neq 1}\left|a_{i j}\right|^{2} x_{i} x_{j}\right\} \\
& \leq m(A)^{2} \max _{i}\left\{x_{i} \sum_{j \neq 1} x_{j}\right\} \\
& =m(A)^{2} x_{n}\left(x_{1}+\ldots+x_{n-1}\right) \\
& \quad=m(A)^{2} x_{n}\left(\sum_{j=1}^{n} \lambda_{j}-x_{n}\right)
\end{aligned}
$$

Since $\lambda_{n}-d(\lambda) / 6 \leq x_{n} \leq \lambda_{n}$, then from Lemma 4 we have

$$
x_{n}\left(\sum_{j} \lambda_{j}-x_{n}\right) \leq\left\{\begin{array}{l}
\lambda_{n}\left(\lambda_{n-1}+\ldots+\lambda_{1}\right) \\
\lambda_{n} \leq\left(\lambda_{1}+\ldots+\lambda_{n}\right) / 2 \\
\frac{\left(\lambda_{n}+\ldots+\lambda_{1}\right)^{2}}{4} \\
\lambda_{n}-\frac{d(\lambda)}{6} \leq \frac{\lambda_{1}+\ldots+\lambda_{n}}{2} \leq \lambda_{n} \\
\left(\begin{array}{l}
\left.\lambda_{n}-\frac{d(\lambda)}{6}\right)\left(\lambda_{n-1}+\ldots+\lambda_{1}+\frac{d(\lambda)}{6}\right) \\
\frac{\lambda_{1}+\ldots+\lambda_{n}}{2} \leq \lambda_{n}-\frac{d(\lambda)}{6}
\end{array} .\right.
\end{array}\right.
$$

Therefore

$$
\begin{equation*}
k_{2}(A(x)) \leq m(A) \phi(\lambda) \tag{2.2}
\end{equation*}
$$

By the assumption in Theorem 1 and (2.1), (2.2)

$$
\begin{align*}
d(\lambda) \geq & 2 \sqrt{3} m(A) \phi(\lambda) \\
& =2 m(A) \phi(\lambda)+(2-2 / \sqrt{3}) \sqrt{3} m(A) \phi(\lambda) \\
\geq & 2 m(A) \phi(\lambda)+2 \varepsilon \\
\geq & 2 k_{2}(A(x))+2 \varepsilon . \tag{2.3}
\end{align*}
$$

Besides, $d(x) \geq d(\lambda)-2 \varepsilon$ for $x \in K(\varepsilon, \lambda)$. Thus for $x \in V(\varepsilon, \lambda)$

$$
d(x) \geq d(\lambda)-2 \varepsilon \geq 2 k_{2}(A(x))
$$

Note that $x_{1}, \ldots x_{n}$ are diagonal elements of $\mathrm{A}(\mathrm{x})$. hence by Lemmas 1 and 3

$$
\begin{align*}
\|x-\lambda(x)\| \leq & \frac{d(x)-\left[d(x)^{2}-4 k_{2}(A(x))^{2}\right]^{1 / 2}}{2} \\
& \leq \frac{[d(\lambda)-2 \varepsilon]-\left\{[d(\lambda)-2 \varepsilon]^{2}-4 m(A)^{2} \phi(\lambda)^{2}\right\}^{1 / 2}}{2} \\
& =\varepsilon . \tag{2.4}
\end{align*}
$$

To verify the late equality of (2.4). we note that ε satisfies

$$
3 \varepsilon^{2}-d(\lambda) \varepsilon+m(A)^{2} \phi(\lambda)^{2}=0,
$$

Which is equivalent to

$$
[d(\lambda)-4 \varepsilon]^{2}=[d(\lambda)-2 \varepsilon]^{2}-4 m(A)^{2} \phi(A)^{2} .
$$

Since $d(\lambda)-4 \varepsilon \geq 0[\operatorname{see}(2.1): \varepsilon \leq d(\lambda) / 6 \leq d(\lambda) / 4]$. Then we have

$$
d(\lambda)-4 \varepsilon=\left\{[d(\lambda)-2 \varepsilon]^{2}-4 m(A)^{2} \phi(\lambda)^{2}\right\}^{1 / 2} .
$$

Thus (2.4) can be verified.

Now define a continuous map $f(x): V(\varepsilon, \lambda) \rightarrow R^{n}$ with

$$
\begin{equation*}
f(x)=\lambda+x-\lambda(x) . \tag{2.5}
\end{equation*}
$$

For the proof of Theorem 1 it suffices to show that $\mathrm{f}(\mathrm{x})$ has a fixed point in $V(\varepsilon, \lambda)$. (See [5].)

The inequality (2.4) means for $x \in(\varepsilon, \lambda)$

$$
\begin{aligned}
& \|f(x)-\lambda\|=\|x-\lambda(x)\| \\
& \leq \varepsilon \\
& \leq d(\lambda) / 6
\end{aligned}
$$

Thus $f(x) \in(\varepsilon, \lambda)$ and $f_{1}(x) \leq \ldots \leq f_{n}(x)$, where $\mathrm{f}_{\mathrm{i}}(\mathrm{x})$ is the ith component of $\mathrm{f}(\mathrm{x})$. Since $x \vdash \lambda(x)$ (Lemma 2) and $\left\{\mathrm{f}_{\mathrm{i}}(\mathrm{x})\right\},\left\{x_{i}\right\}$, and $\left\{\lambda_{i}(x)\right\}$ are all in increasing order, it can be verified that $f(x) \vdash$ λ, i.e. $f(x) \in D(\lambda)$. Therefore $f(x) \in V(\varepsilon, \lambda)$. Applying Brouwer's fixed-point theorem, we conclude that there is a fixed point $c=\left(c_{1}, \ldots c_{n}\right) \in V(\varepsilon, \lambda)$ such that $f(c)=c, i . e . \lambda(c)=\lambda$. The proof of Theorem 1 is completed.

Proof of Theorem 2. We just give an outline for conciseness. Define

$$
\varepsilon_{1}=\frac{d(\lambda)-\left[d(\lambda)^{2}-3 k_{2}(A)^{2}\left(\lambda_{n}+\lambda_{n-1}\right)^{2}\right]^{1 / 2}}{6},
$$

$V\left(\varepsilon_{1}, \lambda\right)=K\left(\varepsilon_{1}, \lambda\right) \cap D(\lambda)$, and consider the map $f(x): V\left(\varepsilon_{1}, \lambda\right) \rightarrow R^{n}$ with (2.5). for $x \in\left(\varepsilon_{1}, \lambda\right)$ we have

$$
\begin{gather*}
k_{2}(A(x))^{2}=\max _{j}\left\{x_{i} \sum_{j \neq i}\left|a_{i j}\right|^{2} x_{j}\right\} \\
\leq x_{n} x_{n-1} \max _{i}\left\{\sum_{j \neq 1}\left|a_{i j}\right|^{2}\right\}, \\
k_{2}(A(x))=\sqrt{x_{n} x_{n-1}} k_{2}(A) \tag{2.6}\\
\leq k_{2}(A) \frac{x_{n}+x_{n-1}}{2} \\
\leq k_{2}(A) \frac{\lambda_{n}+\lambda_{n-1}}{2}
\end{gather*}
$$

The value $k_{2}(A)\left(\lambda_{n}+\lambda_{n-1}\right) / 2$ plays the same role as $m(A) \phi(\lambda)$ in Theorem 1. Replacing ε and (2.2) by ε_{1} and (2.6) in the proof of Theorem 1. Respectively, we can get the result by similar arguments.

Proof of Theorem 3. Let

$$
\varepsilon^{\prime}=\frac{d(\lambda)-\left[d(\lambda)^{2}-12 k^{\prime 2}\right]^{1 / 2}}{6}
$$

It can be verified that

$$
\begin{equation*}
\varepsilon^{\prime} \leq \frac{d(\lambda)}{6}, \quad \varepsilon^{\prime} \leq \frac{k^{\prime}}{\sqrt{3}} \tag{2.7}
\end{equation*}
$$

Define

$$
\begin{gathered}
K\left(\varepsilon^{\prime}, \lambda, a\right)=\left\{x \in R^{n}\|\mid x+a-\lambda\| \leq \varepsilon^{\prime}\right\} . \\
D(\lambda, a)=\left\{x \in R^{n} \mid x+a \vdash \lambda\right\} .
\end{gathered}
$$

It can be verified that $V\left(\varepsilon^{\prime}, \lambda, a\right)=K\left(\varepsilon^{\prime}, \lambda, A\right) \cap D(\lambda, a)$ is a nonempty. Bounded, convex, and closed set in R^{n}. With (2.7) and $\lambda_{1}<\ldots<\lambda_{n}$ we have $x_{1}+a_{1} \leq \ldots \leq x_{n}+a_{n}$ for $x=\left(x_{1}, \ldots x_{n}\right) \in V\left(\varepsilon^{\prime}, \lambda, a\right)$. Let $A(x)=A+\sum_{t-1}^{n} x_{t} A_{t}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$ in $V\left(\varepsilon^{\prime}, \lambda, a\right)$. By $\lambda_{1}(x) \leq \ldots \leq \lambda_{n}(x)$ we donote the eigenvalues of $A(x)$.let $\lambda(x)=\left(\lambda_{1}(x), \ldots, \lambda_{n}(x)\right)$, Since $A(x)=A+\sum_{t=1}^{n}\left(x_{t}+a_{t}\right) A_{t}$ and $x+a \vdash \lambda$, we have $\left|x_{i}+a_{i}\right| \leq\|\lambda\|$ and therefore

$$
\begin{gather*}
k_{2}(A(x)) \leq k_{2}(A)+\|\lambda\| k_{2}(S) \tag{2.8}\\
=k^{\prime} .
\end{gather*}
$$

Define the continuous map $f(x): V\left(\varepsilon^{\prime}, \lambda, a\right) \rightarrow R^{n}$ with (2.5). for the proof of Theorem 3 it suffices to show that f has a fixed point in $V\left(\varepsilon^{\prime}, \lambda, a\right)$ (see [5]). Similarly to (2.3) we have

$$
\begin{aligned}
d(\lambda) \geq & 2 k^{\prime}+2 \varepsilon^{\prime} \\
& \geq 2 k_{2}(A(x))+2 \varepsilon^{\prime}
\end{aligned}
$$

With the assumption in Theorem 3. On the other hand, for $x \in V\left(\varepsilon^{\prime}, \lambda, a\right)$ we have $d(x+a) \geq d(\lambda)-2 \varepsilon^{\prime}$. Thus

$$
\begin{align*}
d(x+a) & \geq d(\lambda)-2 \varepsilon^{\prime} \\
& \geq 2 k^{\prime} \tag{2.9}\\
& \geq 2 k_{2}(A(x)) .
\end{align*}
$$

By Lemmas 1 and 3 we have $\|(x+a)-\lambda(x)\| \leq \varepsilon^{\prime}$ for $x \in V\left(\varepsilon^{\prime}, \lambda, a\right)$. The deduction is similar to
(2.4). On the other hand $\|f(x)+a-\lambda\|=\|(x+a)-\lambda(x)\|$.

Thus $f(x) \in K\left(\varepsilon^{\prime}, \lambda, a\right)$. With $\quad \varepsilon^{\prime} \leq d(\lambda) / 6$ and $\lambda_{1}<\ldots<\lambda_{n}$ we have $f_{1}(x)+a_{1} \leq \ldots \leq f_{n}(x)+a_{n}$.

Since $\quad x+a \vdash \lambda(x)$ we can verify that $f(x)+a \vdash \lambda$ and therefore $f(x) \in K\left(\varepsilon^{\prime}, \lambda, a\right) \cap D(\lambda, a)=V\left(\varepsilon^{\prime}, \lambda, a\right)$. Brouwer's fixed-point theorem implies that there is a vector $c=\left(c_{1}, \ldots, c_{n}\right)$ such that $f(c)=c, i e . \lambda(c)=\lambda$. In other words, $A(c)=A+\sum_{t=1}^{n} c_{t} A_{t}$ has eigenvalues $\lambda_{1}, \ldots \lambda_{n}$. The proof is completed.

Proof of Theorem 4. Define

$$
\varepsilon^{\prime \prime}=\frac{d(\lambda)-\left[d(\lambda)^{2}-12 k^{2}\right]^{1 / 2}}{6}
$$

$V\left(\varepsilon^{\prime \prime}, \lambda, a\right)=K\left(\varepsilon^{\prime \prime}, \lambda, a\right) \cap D(\lambda, a)$ and consider the map $f(x): V\left(\varepsilon^{\prime \prime}, \lambda, a\right) \rightarrow R^{n}$ with (2.5). For $x=\left(x_{1}, \ldots x_{n}\right) \in V\left(\varepsilon^{\prime \prime}, \lambda, a\right)$ we have $\lambda_{1} \leq x_{i}+a_{i} \leq \lambda_{n}(i=1, \ldots, n), \quad$ since $x+a \vdash \lambda$. Thus with the assumption $a_{1} \geq \ldots \geq a_{n}$ we have $\|x\| \leq\|\lambda-a\|$ and

$$
\begin{gather*}
k_{2}(A(x)) \leq k_{2}(A)+\|x\| k_{2}(S) \tag{2.10}\\
\leq k
\end{gather*}
$$

Then replacing ε^{\prime} and k^{\prime} by $\varepsilon^{\prime \prime}$ and k in the proof of Theorem 3, respectively, we can get the result by similar arguments.

3. NUMERICAL EXAMPLES

EXAMPLE 1. Let $\lambda=(0,1,2)$ and

$$
A=I+0.19\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Consider problem (MH).

Apply Theorem 1. Since

$$
\begin{gathered}
d(\lambda)=1, \quad \phi(\lambda)=\sqrt{\left(\lambda_{3}-\frac{d(\lambda)}{6}\right)\left(\lambda_{2}+\lambda_{1}+\frac{d(\lambda)}{6}\right)}=\frac{\sqrt{77}}{6} \\
m(A)=0.19,
\end{gathered}
$$

and thus $2 \sqrt{3} m(A) \phi(\lambda)=0.9625833<d(\lambda)=1$, we know by Theorem 1 that problem (MH) in this example is solvable. In fact $\mathrm{C}=\operatorname{diag}(0,1.081552,1.9184448)$ is a numerical solution. We also see that the vector $\mathrm{c}=\operatorname{diag}(\mathrm{C})$ satisfies $\|c-\lambda\| \leq \varepsilon=0.1401566$ and $\mathrm{c} \longleftarrow \lambda$. This agrees with our theoretical analysis.

In some cases, reordering of the rows and columns of matrix A may affect the question of solvability when sufficient conditions shown in [2] and [8] are applied. (See also [3].) The matrix in Example 1, hewever, does not change under arbitrary congruent permutation, For this we use this kind of matrices in our numerical tests.

EXAMPLE Let $\lambda=(2.5,5,7.5,10,12.4)$ and $\mathrm{A}=\mathrm{I}+0.039 \mathrm{~B}$. where

$$
B=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Consider problem (MH).

Apply Theorem 1. Since $\phi(\lambda)=\sqrt{\lambda_{5}\left(\lambda_{4}+\lambda_{3}+\lambda_{2}+\lambda_{1}\right)}=17.606816, m(A)=0.039$, and

$$
2 \sqrt{3} m(A) \phi(\lambda)=2.3786803<d(\lambda)=2.4
$$

The problem is solvable. $\mathrm{C}=\operatorname{diag}(2.5197887,5.0386475,7.5492414,10.039076,12.252945)$ is a numerical solution. The vector $\mathrm{c}=\operatorname{diag}(\mathrm{C})$ satisfies $\|c-\lambda\|<\varepsilon=0.3468022$ and $c \vdash \lambda$.

EXAMPLE 3. Let $\lambda=(0,0.333,0.666,1,7)$ and $\mathrm{A}=1+0.012 \mathrm{~B}$. Where B is the same as in Example 2. Consider problem (MH).

Apply Theorem 2. With $\mathrm{k}_{2}(\mathrm{~A})=0.024$ and

$$
\sqrt{3}\left(\lambda_{5}+\lambda_{4}\right) k_{2}(A)=0.3325537<d(\lambda)=0.333
$$

we know the problem is solvable. The matrix $\mathrm{C}=\operatorname{diag}(0,0.3332137,0.6662960,0.9998153,6.9996749)$ is a numerical solution. The vector $\mathrm{c}=\operatorname{diag}(\mathrm{C})$ is in $V\left(\varepsilon_{1}, \lambda\right)$, where $\varepsilon_{1}=0.0526277$.

REMARK 3. Examples 1-3 show that our results are not contained in those of [1], [2], or [8]. The following examples, however. Show the converse.

Let

$$
\lambda=(0.5,1) \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & \frac{1}{4} \\
\frac{1}{4} & 1
\end{array}\right]
$$

This example satisfies [2, Theorem 3] and [8, Theorem 2], but does not satisfy our Theorem 1 or 2.

Let

$$
\lambda=(5,6,7) \quad \text { and } \quad A=I+\frac{1}{42}\left[\begin{array}{lll}
0 & \sqrt{2} & 0 \\
\sqrt{2} & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

This example (note that $\lambda_{3}<\lambda_{1}+\lambda_{2}$) satisfies [1, Theorem 5],
but does not satisfy our Theorem 1.

Our results do not contain those in [3], which can be applied to non-symmetric matrices.

EXAMPLE 4. Let $\lambda=(0,0.4), A=\operatorname{diag}(-1,1), A_{1}=e_{1} e_{1}^{T}+0.05 B$, and $A_{2}=e_{2} e_{2}^{T}+0.1 B$, where e_{i} is the ith column of I_{2} and $B=\left[e_{2}, e_{1}\right]$. Consider problem (GH).

Since $S=0.15 B, A=-0.05 B$, then

$$
\begin{aligned}
2 \sqrt{3} k^{\prime} & =2 \sqrt{3}\left[k_{2}(A)+\|\lambda\| k_{2}(S)\right] \\
& =0.3810511 \\
& <0.4=d(\lambda)
\end{aligned}
$$

By Theorem 3 problem (GH) is solvable. $\mathrm{c}=(1.0002507,-0.6002507)$ is a numerical solution. For this example, assumptions in [5, Theorem 5] are not satisfied.

REMARK 4. Theorem 6 in [5] is not contained in our Theorem 3. See the numerical example shown in [5].

Our theorems 3-4 are not contained in the results of [7] and vice versa.

REFERENCES

[1] K. P. Hadeler, Multiplikative inverse Eigenwertprobleme, Linear Algebra Appl. 2:65-86 (1969).
[2]. K. P. Hedeler, Existenz- und Eindeutigkeitssatze fur inverse Eigenwertaufgaben mit Hilfe des topologischen Abbildunqsqrades, Arch. Rational Mech. Anal. 42: 317-322 (1971).
[3]. C. N. De Oliveira, On the multiplicative inverse eigenvalue problem, Canad, Math. Bull. 15:189-193 (1972).
[4]. S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl. 17: 15-31 (1980).
[5]. F. W. Biegler- Konig, Sufficient conditions for the solubility of inverse eigenvalue problems, Linear Algebra Appl. 40: 89100 (1990).
[6]. R. Horn and C. Johnson, Matrix Analysis, Cambridge U.P., Cambridge,(1997).
[7]. Jiguang Sun, On the sufficient conditions for the solubility of algebraic inverse eigenvalue, Math. Numer. Sinica 9:49-59 (2001).
[8]. Biswa nath data, Numerical linear algebra,App1.09:620-700 (2007)

