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Abstract 
Trying and mining frequent item sets plays an important role in the mining of association rules .in a 

dataset that stored with items and transactions an items can used for various significance .association rules 

is a important and considerable ways in data mining without presidency . one of discussion that today 

investigate is mining and finding frequent weighted item set and reduce run time of algorithm and reduce 

production frequent item sets is one of problem for research .at this paper we purpose present some 

method and ways for reduce run time of algorithm and reduce production frequent item set .all methods 

and ways applying on WIT algorithm and WIT-Tree structure .in first section we express and description 

classic association rule method (Apriori) and then WIT and then WIT-Diff algorithm and finally explain 

my proposed ways and experimental results. 

 

Keywords: Data mining – Frequent items – Weighted item sets – WIT- Tree – Association rules. 

1. Introduction 

Association Rules Mining (ARM) is an important part in the domain of knowledge discovery in data 

(KDD) [1,2]. Association rule mining is used for finding and mining frequent patterns and relationship 

between transactions in a database or dataset. Association rules used of presidency learning principle, that 

purpose the this principle is obvious and we understand that research what knowledge unlike without 

presidency way than result and purpose the mining not clear. Given a set of items I = {i1, i2,. . . , in}, a 

transaction is defined as a subset of I. The input to an ARM algorithm is a dataset D comprising a set of 

transactions. Given an item set X ⊆ I, the support of X in D, denoted as σ(X), is the number of 

transactions in D which contain X [18]. An item set is described as being frequent if its support is larger 
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than or equal to a user supplied minimum support threshold (min Sup). A ‘‘classical’’ Association Rule 

(AR) is an expression of the form {X→Y (sup, conf)}, where X, Y ⊆ I and X∩Y = Ø. The support of this 

rule is sup = σ(XY) and the confidence is conf=
σ(XY)

σ(X)
 . Given a specific min Sup and a minimum 

confidence threshold (min Conf), we want to mine all association rules whose support and confidence 

exceeds min Sup and min Conf respectively [3, 6].   

However, Classical association rule have some problem that very great run time and many scan of 

database for finding item sets .if we add computation time of items with weight as time of algorithm 

raising .purpose the this paper is expansion WIT algorithm for mining frequent items in view run time 

and reduce product item set. The rest of this paper is organized as follows. Section 2 presents some 

related work about the mining of frequent weighted items and weighted association rules and some terms 

and equations. Section 3 we explain WIT-Tree structure and in Section 4 explain WIT algorithm .in 

Section 5 explain and descript WIT-DIFF algorithm .in Section 6 explain and descript my proposal 

methods. Some experimental results are present in Section 7 .and my conclusion in Section 8.  

 
 
2. Related works 

This section presents some related works. The section begins with a formal definition of weighted 

transaction databases. A weighted transaction database (D) is defined as follows: D comprises a set of 

transactions T={t1,t2,,,tn}, a set of items I={i1,i2,,,in} and a set of positive weights W={w1,w2,,,wn}  

corresponding to each item in I. For example, consider the data presented in Tables 1 and 2. Table 1 

presents a data set comprising six  transactions  T={t1,t2…t6} and five items I = {A,B,C,D,E}. The 

weights of these items are presented in Table 2, W= {0.6 , 0.1 , 0.3 , 0.9 , 0.2} [4,5]. 

 
Table 1:The transaction database 

 
Table 2: Items weight 

 

 

The equations that we used in this paper consist: 

- Calculation weight of transaction (tw
1
). 

                                                           
1 Transaction weight 
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- Calculation weight of items or weighted support (ws). 

For acquire weight of a transaction we must sum of all items weight in transaction and then calculate 

average of items with divide sum of items in count of items in each transactions. See definition 2.1, we 

can compute the transaction weight [7, 8]. 

 

Tw(tk)=
 ijϵtkWj

 tk 
              2.1                      

tk: Transaction k. 

ij: j th items in transaction. 

 tk : Size of transaction k, count of items . 

wj: Weight of j th item. 

For compute weighted support must compute sum of transaction weight (table 3) and divide to sum of 

transaction. See definition 2.2, we can compute the transaction weight. 

 

WS X =
 tw(tk)tkϵt(x)

 tw(tk)tkϵT
          2.2 

X: The item. 

tw tk : Weight of transaction tk . 

t X : Transaction consist item (X). 

T: total of dataset. 

Table 3: Transaction weight for transaction in table 1 

 

Example for  calculation transaction weight and weighted Support. For transaction weight used of table 1 

, table 2 and definition 2.1, we can compute the transaction weight: 

tw=
0.6+0.1+0.9+0.2

4
=0.45 
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And Table 3 shows all tw values of transactions in Table 1. 

From Tables 1 and 3, and Definition 2.2, we can compute the ws(BD) value as follows: Because BD 

appears in transactions {1, 3, 5, 6}, ws(BD) is computed: 

 

WS BD =
0.45+0.45+0.42+0.43

2.25
≈0.78 

 From equation 2.1 and 2.2 using in all algorithm and my proposal methods .in all methods a input value 

(threshold) used for filter algorithm input, we used this value for comparison and evaluation run time of 

algorithm and methods. The mining of FWI requires identification all item sets whose weighted support 

satisfies a user specified minimum weighted support threshold (minws
2
). 

 

FWI={X⊆I|WS(X) ≥ minWS}        2.3 

3. WIT-Tree structure 

The structure that we used to explain my methods is WIT structure .for description this structure we  first 

explain some terms [9].  

X:  set of items. 

t(X): Set of transaction contain item(X). 

ws: Value of weighted support for item(X). 

for show a node of my tree used <X,T(x),ws> style. In this style x is my item and T(x) is transactions id 

which item X member of them. And ws is value of weighted support. For more description see Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

In fig 1 level ∅ or root display with two accolade { } .if items member of a transaction consist same 

prefix they are called equivalence class items and display them with [ ] ,for example if item X is prefix 

item in some items we illustrate it with [X].in root level my prefix item is ∅ and equivalence class is 

                                                           
2 Minimum weighted support 

Figure 1: WIT-Tree structure example 
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[∅].in this figure we see for all levels and items we compute transaction weight and weighted support. 

For compute number of all items in dataset used of 2
k
-1 equation that variable k is all items in dataset 

and too for number of items in each level we used of combination equation  k

L
  .variable k is number of 

items and variable L is level numeral [2,19]. 

In this structure for create next level must used of two top level items or parent item. For example level 1 

on fig 1 consist {A,B,C,D,E} items and a part of level 2 consist items with equivalence class [A] 

,{AB,AC,AD,AE} .this process resume for all items. Inspection of Fig. 1 suggests that all item sets 

satisfy the downward closure property. So, we can prune an equivalence class in the WIT-tree if its ws 

value does not satisfy the minws. For example, suppose that minwus = 0.4, because ws(ABC) = 0.32 < 

minws we can prune the equivalence class with the prefix ABC, i.e., all child nodes of ABC can be 

pruned. In nest sections explain WIT and WIT-Diff methods. 

 

4. WIT algorithm 

In classic association rule (Apriori) for mining frequent weighted items we must for all items compute 

transaction weight and ws and too scan dataset for transaction id and location of each item in dataset. But 

in WIT we proceed to reduce repetitive calculation and whereupon reducing run time of my algorithm 

and methods. For this purpose we explain some theorems. we propose algorithms for mining FWI from 

weighted transaction databases [11,12]. First  an algorithm for directly mining FWI from WIT-trees is 

presented. It uses a minws threshold and the downward closure property to prune nodes that are not 

frequent. Some theorems are then derived and based on these theorems, an improved algorithm is 

proposed. Finally, the algorithm is further developed, by adopting a Diffset strategy to allow for fast 

computating the weighted support of item sets in a memory efficient way. If we have two item set X ,Y 

that transaction id of item set X equal item set Y, otherwise t X =t(y)  .in result can deduction for two 

item set X and Y , value of Weighted support is equal. Or otherwise WS X =WS(Y).  

 

 

If    t X =t Y     Then      WS X =WS Y                4.1 

 

If item set X member of collection Y and too number of transaction common together equal, in result 

weighted support value of two item set X and Y is unify. 

 

if       X⊆Y       and       t(X) = t(Y)                     4.2 

then WS X =WS(Y) 
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Figure 2: Example of WIT 

For more description can see figures 2 and 3. 

In Fig 2, first selection all items that satisfy min ws
3
 and then sort them with increasing by their 

weighted support and set them in frequent weighted items (FWI) list. In line 4 of WIT algorithm Fig 3 

call extend function for produce next item set from combination top level items. Too equation 4.1 and 

4.2 used in 9 , 10 , 11 lines. With inspection In fig 2 for item <A, 1345, 0.72>  and that combination with 

item set <B,123456,1> and item set <AB,1345,?>  value of weighted support of item set AB with 

definition 4.1 and 4.2 equal with item A weighted support and not require for computing ws for item set 

AB .this process continue for next level and item sets to pending remain one item set in level. 

 

Input: Database D and minimum weighted support threshold minws. 

Output: FWI contains all frequent weighted Item sets that satisfy minws from D. 

Method: 

WIT () 

1. 𝐿𝑟=All items that their ws satisfy minws. 

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟  increasing by their ws. 

3. 𝐹𝑊𝐼 = ∅. 

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend with the parameter is 𝐿𝑟 . 

FWI-Extend (𝐿𝑟) 

5. Consider each node 𝑙𝑖  in 𝐿1 DO. 

6. Add(𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠)   to   FWI. 

7. Create a new set 𝐿𝑖  by join 𝑙𝑖  with all 𝑙𝑗  following it in 𝐿1by: 

8. Set  X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 and  𝑌 = 𝑡(𝑙𝑖) ∩ 𝑡(𝑙𝑗 ) 

9. If   𝑡(𝑙𝑖) = 𝑌  then ws(X)=ws(𝑙𝑗 ) 

10. Else  if  𝑡(𝑙𝑗 ) = 𝑌  then ws(X)=ws(𝑙𝑗 ) 

11. If    𝑌 = ∅ 𝑡𝑕𝑒𝑛      𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖) 

12. Else  𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆(𝑌) 

13. 𝑖𝑓 𝑤𝑠 𝑋  satisfies minws then 

                                                           
3 Weighted Support 
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14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖  

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛 

       16. Call recursive the function FWI-Extend with the parameter is 𝐿𝑖       

 
Figure 3: WIT algorithm 

5. WIT-Diff algorithm 

Proposed the Diffset
4
 strategy for fast computing the support of item sets and saving memory to store 

Tidsets
5
. We recognize that it can be used for fast computing the ws values of item sets (1). Diffset 

computes the difference set between two Tidsets in the same equivalence class. In a dense database, 

the size of Diffset is smaller than the Tidset. Thus, using Diffset will consume less storage and allow 

for the fast computing of weighted support values. In this algorithm difference between PX and PY 

illustrated d(PXY) that X and Y are my items and P is prefix that illustrated equivalence class of items 

[13,15].(Fig 4) 

 

𝑑 𝑝𝑥𝑦 =
𝑡(𝑝𝑥)

𝑡(𝑝𝑦)
                                         5.1 

 
If have values of d(PX) and d(PY) and I will compute d(PXY) ,can used bellow equation: 

 

d pxy =
d(py)

d(px)
                                              5.2 

Beneficial of equation 5.1 and 5.2 can reach an equation for calculate weighted support in this method: 

WS pxy =ws px -
 tw(t)t∈d(pxy)

 tw(t)t∈T

               5.3 

If value of d(PXY)=∅ then value of ws(PXY)=ws(PX) , this denote if d(PXY)=∅ then value of ws is 

equal parent ws value. 

Input: Database D and minimum weighted support threshold minws. 

Output: FWI contains all frequent weighted Itemsets that satisfy minws from D. 

Method: 

WIT-Diff() 

1. 𝐿𝑟=All items that their ws satisfy minws. 

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟  increasing by their tid. 

3. 𝐹𝑊𝐼 = ∅. 

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff with the parameter is 𝐿𝑟 . 

FWI-Extend-Diff (𝐿𝑟) 

5. Consider each node 𝑙𝑖  in 𝐿1 DO. 

6. Add(𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠)   to   FWI. 

7. Create a new set 𝐿𝑖  by join 𝑙𝑖  with all 𝑙𝑗  following it in 𝐿1by: 

8. Set  X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 

                                                           
4 Difference set 
5 Transaction id number sets 
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9. If  𝐿𝑟  is the first Level Then  𝑌 =
𝑡 𝑙𝑖 

𝑡 𝑙𝑗  
 

10. Else  𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗 )
    

11. If    𝑌 = ∅ 𝑡𝑕𝑒𝑛      𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖) 

12. Else  𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹(𝑌) 

13. 𝑖𝑓 𝑤𝑠 𝑋  satisfies minws then 

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖  

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛 

       16.Call recursive the function FWI-Extend-Diff with the parameter is 𝐿𝑖       

 
Figure 4: WIT-Diff algorithm 

For description example of this algorithm used of table 1, table 2 and fig 5.for compute difference 

between item B and D we must compute d(BD): 

d BD =
t(B)

t(D)
                           5.4 

That t(B)=123456 and t(d)=1356 then difference of two items is 24 , while that result of unlike 

combination of item B and item D is null. 

 

Figure 5: WIT-Diff example 

Using the example data presented in Tables 1 and 3, and the algorithm in Fig. 5, we illustrate the WIT-

DIFF algorithm with minws = 0.4 as follows. Level 1 of the WIT-tree contains single items, their tids
6
, 

and their ws. They are sorted in increasing order by their |tids|. The purpose of this work is to compute 

Diffset faster [16,17]. 

 

A join D: 

d AD =
t A 

t D 
=

1345

1356
=4⇒ws AD  

                                                           
6
 Transaction identity number 
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=ws A -
 tw(t)tϵd(AD)

 tw(t)t∈T

=0.72-
0.3

2.25
=0.59 

A join B: 

d AB =
t(A)

t(B)
=

1345

123456
=∅ 

⇒       ws AB =ws A =0.72 

 

 

6. The proposed methods: 

In explained ways and methods we used of datasets that cleaned and removed the duplicate items and 

preprocessing with other tools such as Microsoft excel ,Clementine ,Weka or with other tools. We 

modified WIT-Diff algorithm at first remove duplicate items in each transactions and reduce transactions 

weight computations for similar transactions. 

6.1 . WIT-Odd or Even method: 

 In this way at first scanning dataset and selection all items that not repetitive and unique then classify all 

items in two group, odd items and even items .in continue of process the algorithm done individually for 

even items and odd items .and at the end we have two run times, one for even items and other run time for 

odd items .and have compounds of only odd and even items .in result we reducing run time and produce 

frequent item sets. (Fig 6) 

 

Input: Database D and minimum weighted support threshold minws. 

Output: FWI contains all frequent weighted Itemsets that satisfy minws from D and Even  and odd 

weight. 

Method: 

WIT-Diff-even and odd() 

𝐼𝐹    𝑤𝑖     𝑀𝑂𝐷   2 ≠  0 𝑡𝑕𝑒𝑛                              // odd items. 

    Else if    𝑤𝑖     𝑀𝑂𝐷   2 =  0 𝑡𝑕𝑒𝑛                   //even items. 

1. 𝐿𝑟= All items that their ws satisfy minws. 

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟  increasing by their ws. 

3. 𝐹𝑊𝐼 = ∅. 

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff –even and odd with the parameter is 𝐿𝑟 . 

             FWI-Extend-Diff-even and odd(𝐿𝑟) 

5. Consider each node 𝑙𝑖  in 𝐿1 DO. 

6. Add (𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠)   to   FWI. 

7. Create a new set 𝐿𝑖  by join 𝑙𝑖  with all 𝑙𝑗  following it in 𝐿1by: 

8. Set  X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 

9. If  𝐿𝑟  is the first Level Then  𝑌 =
𝑡 𝑙𝑖 

𝑡 𝑙𝑗  
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10. Else  𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗 )
    

11. If    𝑌 = ∅ 𝑡𝑕𝑒𝑛      𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖) 

12. Else  𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹 − 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑜𝑑𝑑(𝑌) 

13. 𝑖𝑓 𝑤𝑠 𝑋  satisfies minws then 

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖  

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛 

       16.Call recursive the function FWI-Extend-Diff –even and odd with the parameter is 𝐿𝑖  

 
Figure 6: WIT-Diff-even and odd algorithm 

 

6.2. WIT-Max of Even or odd method: 

The previous method ,we use of two variables for keeping count of even and odd items then at the end 

counting down count of two variables and then each of have maximum count and value ,my algorithm 

run with it. In this way purpose is reduce more calculations. (Fig 7) 

Input: Database D and minimum weighted support threshold minws. 

Output: FWI contains all frequent weighted Item sets that satisfy minws from D With Max. 

Method: 

WIT-Diff-MAX() 

1.𝐹𝑜𝑟 𝐴𝑙𝑙 𝑖𝑡𝑒𝑚𝑠 𝑜𝑓 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷𝑜 

2.     𝐼𝐹 𝑖𝑡𝑒𝑚𝑊𝑒𝑖𝑔𝑕𝑡 = 𝑂𝐷𝐷  𝐷𝑂 

3.             max𝑜𝑑𝑑 + +  

4.            𝐸𝑙𝑠𝑒 𝑖𝑓 𝑖𝑡𝑒𝑚𝑤𝑒𝑖𝑔 𝑕𝑡 = 𝐸𝑉𝐸𝑁 𝐷𝑜 

5.             max𝑒𝑣𝑒𝑛 + + 

6. 𝐼𝐹   𝑚𝑎𝑥𝑜𝑑𝑑 > 𝑚𝑎𝑥𝑒𝑣𝑒𝑛    𝑡𝑕𝑒𝑛  
7.          FWI-Extend-Diff-ODD() 

8.         𝐸𝑙𝑠𝑒 𝑖𝑓 𝑚𝑎𝑥𝑒𝑣𝑒𝑛 > 𝑚𝑎𝑥𝑜𝑑𝑑  𝑡𝑕𝑒𝑛  
9.          FWI-Extend-Diff-EVEN() 

 
Figure 7: WIT-Diff-max of even or odd algorithm 

6.3 . WIT-Percent method: 

In third method , In first counting each of items in total dataset and then compute percent of each item 

in all items. And then run method with specified percent of items. (Fig 8) 

Input: Database D and minimum weighted support threshold minws. 

Output: FWI contains all frequent weighted Item sets that satisfy minws from D. 

Method: 

WIT-Diff-Percent ( ) 

Array 1[  ][  ]= count of all items. 

Array 2[  ][  ]=percent of each items in dataset. 

Computing   Percent of each item in dataset. 

Input user threshold for percent of items. 

1. 𝐿𝑟=All items that their ws satisfy minws. 

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟  increasing by their ws. 



A. Rashidi, A. G. Delavar/ J. Math. Computer Sci.     ( ), -  

 

292 
 

3. 𝐹𝑊𝐼 = ∅. 

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff-Percent with the parameter is   𝐿𝑟 . 

FWI-Extend-Diff-Percent (𝐿𝑟) 

5. Consider each node 𝑙𝑖  in 𝐿1 DO. 

6. Add (𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠)   to   FWI. 

7. Create a new set 𝐿𝑖  by join 𝑙𝑖  with all 𝑙𝑗  following it in 𝐿1by: 

8. Set  X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 

9. If  𝐿𝑟  is the first Level Then  𝑌 =
𝑡 𝑙𝑖 

𝑡 𝑙𝑗  
 

10. Else  𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗 )
    

11. If    𝑌 = ∅ 𝑡𝑕𝑒𝑛      𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖) 

12. Else  𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝑌) 

13. 𝑖𝑓 𝑤𝑠 𝑋  satisfies minws then 

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖  

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛 

       16.Call recursive the function  FWI-Extend-Diff-Percent  with the parameter is 𝐿𝑖  

 
Figure 8: WIT-Diff-Percent of items algorithm 

We can use data mining tools (such as Clementine software) for acquire count of items and percent of 

items in total of datasets. (See Fig 9 and Fig 10) 

 

Figure 9: Clementine workspace 

 

Figure 10: Out of Clementine workspace 

 



A. Rashidi, A. G. Delavar/ J. Math. Computer Sci.     ( ), -  

 

293 
 

6.4 . WIT-Scope of weight method: 

In fourth method, use of domain for weight of items .as respects we assign for each item a value for 

weight with a random function .we can filter items with their weight and then running algorithm for 

selected items. In all method we purpose reducing the input of algorithm and as a result reduce run time 

and produce item sets. (Fig 11) 

 

Input: Database D and minimum weighted support threshold minws. 

Output: FWI contains all frequent  weighted  Item sets that satisfy minws from D. 

Method: 

WIT-Diff-Scope () 

𝐼𝑛𝑝𝑢𝑡   𝑡𝑤𝑜   𝑆𝑐𝑜𝑝𝑒   𝑓𝑜𝑟   𝑤𝑒𝑖𝑔𝑕𝑡   𝐷𝑜𝑚𝑎𝑖𝑛𝑠 

𝐹𝑟𝑜𝑚     𝑠𝑐𝑜𝑝𝑒1    𝑡𝑜    𝑠𝑐𝑜𝑝𝑒2      𝐷𝑜 

1. 𝐿𝑟=All items that their ws satisfy minws. 

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟  increasing by their ws. 

3. 𝐹𝑊𝐼 = ∅. 

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff-Scope with the parameter is   𝐿𝑟 . 

FWI-Extend-Diff-Scope (𝐿𝑟) 

5. Consider each node 𝑙𝑖  in 𝐿1 DO. 

6. Add (𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠)   to   FWI. 

7. Create a new set 𝐿𝑖  by join 𝑙𝑖  with all 𝑙𝑗  following it in 𝐿1by: 

8. Set  X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 

9. If  𝐿𝑟  is the first Level Then  𝑌 =
𝑡 𝑙𝑖 

𝑡 𝑙𝑗  
 

10. Else  𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗 )
    

11. If    𝑌 = ∅ 𝑡𝑕𝑒𝑛      𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖) 

12. Else  𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹 − 𝑆𝐶𝑂𝑃𝐸(𝑌) 

13. 𝑖𝑓 𝑤𝑠 𝑋  satisfies minws then 

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖  

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛 

       16.Call recursive the function  FWI-Extend-Diff-Scope  with the parameter is 𝐿𝑖  

 
Figure 11: WIT-Diff-Domain of weight algorithm 

7. Experimental results 

All experimental described below were performed on a Intel(R) Core ™ i5 2.2 GHz .4GB RAM 

memory, Windows 7, using visual studio C# 2010 .the experimental datasets used for the 

experimentation were downloaded from   http://finin.cs.helsinki.fi/data [14].we add a value for weight 

each of items with random function (values in the range of (1 to 10) for each datasets). In table 4 see 

more information of experimental datasets. 

In table 4 view databases name and number of items and transactions, and in table 5 view result of run 

time of algorithms and methods. View number of FWI( Frequent weighted items) based MinWs 

threshold. 

  

http://finin.cs.helsinki.fi/data
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Table 4: Information of datasets 

Database (DB) 
 

# Transactions #Items Modified 

Chess 3196 75 Insert duplicate items on each transaction 

Mushroom 8124 120 Insert duplicate items on each transaction 

 

Table 5: Number of FWI from databases 

#FWI MinWs Database 

8063 80 Chess 

16039 70 Chess 
23208 60 Chess 
29431 50 Chess 
436 50 Mushroom 

3038 40 Mushroom 
5347 30 Mushroom 

11634 20 Mushroom 

 

Table 6: Number of FWI with methods 

Domain of Weights Max Percent Odd Even MinWs Database 

(20: 90) → 315 996 70% → 5900 996 150 80 Chess 

(20: 90) → 2955 9376 60% → 12912 9376 450 70 Chess 

(20: 90) → 1043 13815 50% → 18126 13815 3730 60 Chess 

(20: 90) → 13817 16057 40% → 28422 16057 5216 50 Chess 

(20: 90) → 25 18 80% → 31 17 18 50 Mushroom 

(20: 90) → 42 112 70% → 31 54 112 40 Mushroom 

(20: 90) → 91 133 40% → 5331 71 133 30 Mushroom 

(20: 90) → 336 134 30% → 9452 134 689 20 Mushroom 

 

 

 

 

 

 

 

 

 

Figure 12: Run time for the eight methods in Chess dataset 
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8. Conclusion  

This paper has presented some method for mining frequent weighted item sets from weighted item 

transaction databases with reduce run time and reduce produce frequent item sets. And several 

efficient algorithms proposed. We use of WIT-Tree structure and apply my method to WIT-Diff 

algorithm that have less than run time from other algorithm. In this paper, we have concentrated only 

on the on the mining of FWIs using the proposed WIT-Tree data structure. And in my proposed 

methods at the first remove duplicated items in a transaction because, they not efficacy in 

computations and not compute similar transactions weight since used weight transaction of previous 

similar transaction.  
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