
Journal of mathematics and computer science 8 (2014), 282-296

A Method for Reducing Repetitive items on Weighted Data using the WIT-

WFI Algorithm

Akbar Rashidi
1
 , Arash Ghorbannia Delavar

2

Department of Computer,Payame Noor University,

PO BOX 19395-3697, Tehran, IRAN

rashidi.igs@gmail.com 1, a_ghorbannia@pnu.ac.ir2
Article history:

Received August 2013

Accepted September 2013

Available online September 2013

Abstract
Trying and mining frequent item sets plays an important role in the mining of association rules .in a

dataset that stored with items and transactions an items can used for various significance .association rules

is a important and considerable ways in data mining without presidency . one of discussion that today

investigate is mining and finding frequent weighted item set and reduce run time of algorithm and reduce

production frequent item sets is one of problem for research .at this paper we purpose present some

method and ways for reduce run time of algorithm and reduce production frequent item set .all methods

and ways applying on WIT algorithm and WIT-Tree structure .in first section we express and description

classic association rule method (Apriori) and then WIT and then WIT-Diff algorithm and finally explain

my proposed ways and experimental results.

Keywords: Data mining – Frequent items – Weighted item sets – WIT- Tree – Association rules.

1. Introduction

Association Rules Mining (ARM) is an important part in the domain of knowledge discovery in data

(KDD) [1,2]. Association rule mining is used for finding and mining frequent patterns and relationship

between transactions in a database or dataset. Association rules used of presidency learning principle, that

purpose the this principle is obvious and we understand that research what knowledge unlike without

presidency way than result and purpose the mining not clear. Given a set of items I = {i1, i2,. . . , in}, a

transaction is defined as a subset of I. The input to an ARM algorithm is a dataset D comprising a set of

transactions. Given an item set X ⊆ I, the support of X in D, denoted as σ(X), is the number of

transactions in D which contain X [18]. An item set is described as being frequent if its support is larger

mailto:rashidi.igs@gmail.com
mailto:a_ghorbannia@pnu.ac.ir

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

283

than or equal to a user supplied minimum support threshold (min Sup). A ‘‘classical’’ Association Rule

(AR) is an expression of the form {X→Y (sup, conf)}, where X, Y ⊆ I and X∩Y = Ø. The support of this

rule is sup = σ(XY) and the confidence is conf=
σ(XY)

σ(X)
 . Given a specific min Sup and a minimum

confidence threshold (min Conf), we want to mine all association rules whose support and confidence

exceeds min Sup and min Conf respectively [3, 6].

However, Classical association rule have some problem that very great run time and many scan of

database for finding item sets .if we add computation time of items with weight as time of algorithm

raising .purpose the this paper is expansion WIT algorithm for mining frequent items in view run time

and reduce product item set. The rest of this paper is organized as follows. Section 2 presents some

related work about the mining of frequent weighted items and weighted association rules and some terms

and equations. Section 3 we explain WIT-Tree structure and in Section 4 explain WIT algorithm .in

Section 5 explain and descript WIT-DIFF algorithm .in Section 6 explain and descript my proposal

methods. Some experimental results are present in Section 7 .and my conclusion in Section 8.

2. Related works

This section presents some related works. The section begins with a formal definition of weighted

transaction databases. A weighted transaction database (D) is defined as follows: D comprises a set of

transactions T={t1,t2,,,tn}, a set of items I={i1,i2,,,in} and a set of positive weights W={w1,w2,,,wn}

corresponding to each item in I. For example, consider the data presented in Tables 1 and 2. Table 1

presents a data set comprising six transactions T={t1,t2…t6} and five items I = {A,B,C,D,E}. The

weights of these items are presented in Table 2, W= {0.6 , 0.1 , 0.3 , 0.9 , 0.2} [4,5].

Table 1:The transaction database

Table 2: Items weight

The equations that we used in this paper consist:

- Calculation weight of transaction (tw
1
).

1 Transaction weight

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

284

- Calculation weight of items or weighted support (ws).

For acquire weight of a transaction we must sum of all items weight in transaction and then calculate

average of items with divide sum of items in count of items in each transactions. See definition 2.1, we

can compute the transaction weight [7, 8].

Tw(tk)=
 ijϵtkWj

 tk
 2.1

tk: Transaction k.

ij: j th items in transaction.

 tk : Size of transaction k, count of items .

wj: Weight of j th item.

For compute weighted support must compute sum of transaction weight (table 3) and divide to sum of

transaction. See definition 2.2, we can compute the transaction weight.

WS X =
 tw(tk)tkϵt(x)

 tw(tk)tkϵT
 2.2

X: The item.

tw tk : Weight of transaction tk .

t X : Transaction consist item (X).

T: total of dataset.

Table 3: Transaction weight for transaction in table 1

Example for calculation transaction weight and weighted Support. For transaction weight used of table 1

, table 2 and definition 2.1, we can compute the transaction weight:

tw=
0.6+0.1+0.9+0.2

4
=0.45

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

285

And Table 3 shows all tw values of transactions in Table 1.

From Tables 1 and 3, and Definition 2.2, we can compute the ws(BD) value as follows: Because BD

appears in transactions {1, 3, 5, 6}, ws(BD) is computed:

WS BD =
0.45+0.45+0.42+0.43

2.25
≈0.78

 From equation 2.1 and 2.2 using in all algorithm and my proposal methods .in all methods a input value

(threshold) used for filter algorithm input, we used this value for comparison and evaluation run time of

algorithm and methods. The mining of FWI requires identification all item sets whose weighted support

satisfies a user specified minimum weighted support threshold (minws
2
).

FWI={X⊆I|WS(X) ≥ minWS} 2.3

3. WIT-Tree structure

The structure that we used to explain my methods is WIT structure .for description this structure we first

explain some terms [9].

X: set of items.

t(X): Set of transaction contain item(X).

ws: Value of weighted support for item(X).

for show a node of my tree used <X,T(x),ws> style. In this style x is my item and T(x) is transactions id

which item X member of them. And ws is value of weighted support. For more description see Figure 1.

In fig 1 level ∅ or root display with two accolade { } .if items member of a transaction consist same

prefix they are called equivalence class items and display them with [] ,for example if item X is prefix

item in some items we illustrate it with [X].in root level my prefix item is ∅ and equivalence class is

2 Minimum weighted support

Figure 1: WIT-Tree structure example

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

286

[∅].in this figure we see for all levels and items we compute transaction weight and weighted support.

For compute number of all items in dataset used of 2
k
-1 equation that variable k is all items in dataset

and too for number of items in each level we used of combination equation k

L
 .variable k is number of

items and variable L is level numeral [2,19].

In this structure for create next level must used of two top level items or parent item. For example level 1

on fig 1 consist {A,B,C,D,E} items and a part of level 2 consist items with equivalence class [A]

,{AB,AC,AD,AE} .this process resume for all items. Inspection of Fig. 1 suggests that all item sets

satisfy the downward closure property. So, we can prune an equivalence class in the WIT-tree if its ws

value does not satisfy the minws. For example, suppose that minwus = 0.4, because ws(ABC) = 0.32 <

minws we can prune the equivalence class with the prefix ABC, i.e., all child nodes of ABC can be

pruned. In nest sections explain WIT and WIT-Diff methods.

4. WIT algorithm

In classic association rule (Apriori) for mining frequent weighted items we must for all items compute

transaction weight and ws and too scan dataset for transaction id and location of each item in dataset. But

in WIT we proceed to reduce repetitive calculation and whereupon reducing run time of my algorithm

and methods. For this purpose we explain some theorems. we propose algorithms for mining FWI from

weighted transaction databases [11,12]. First an algorithm for directly mining FWI from WIT-trees is

presented. It uses a minws threshold and the downward closure property to prune nodes that are not

frequent. Some theorems are then derived and based on these theorems, an improved algorithm is

proposed. Finally, the algorithm is further developed, by adopting a Diffset strategy to allow for fast

computating the weighted support of item sets in a memory efficient way. If we have two item set X ,Y

that transaction id of item set X equal item set Y, otherwise t X =t(y) .in result can deduction for two

item set X and Y , value of Weighted support is equal. Or otherwise WS X =WS(Y).

If t X =t Y Then WS X =WS Y 4.1

If item set X member of collection Y and too number of transaction common together equal, in result

weighted support value of two item set X and Y is unify.

if X⊆Y and t(X) = t(Y) 4.2

then WS X =WS(Y)

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

287

Figure 2: Example of WIT

For more description can see figures 2 and 3.

In Fig 2, first selection all items that satisfy min ws
3
 and then sort them with increasing by their

weighted support and set them in frequent weighted items (FWI) list. In line 4 of WIT algorithm Fig 3

call extend function for produce next item set from combination top level items. Too equation 4.1 and

4.2 used in 9 , 10 , 11 lines. With inspection In fig 2 for item <A, 1345, 0.72> and that combination with

item set <B,123456,1> and item set <AB,1345,?> value of weighted support of item set AB with

definition 4.1 and 4.2 equal with item A weighted support and not require for computing ws for item set

AB .this process continue for next level and item sets to pending remain one item set in level.

Input: Database D and minimum weighted support threshold minws.

Output: FWI contains all frequent weighted Item sets that satisfy minws from D.

Method:

WIT ()

1. 𝐿𝑟=All items that their ws satisfy minws.

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟 increasing by their ws.

3. 𝐹𝑊𝐼 = ∅.

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend with the parameter is 𝐿𝑟 .

FWI-Extend (𝐿𝑟)

5. Consider each node 𝑙𝑖 in 𝐿1 DO.

6. Add(𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠) to FWI.

7. Create a new set 𝐿𝑖 by join 𝑙𝑖 with all 𝑙𝑗 following it in 𝐿1by:

8. Set X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 and 𝑌 = 𝑡(𝑙𝑖) ∩ 𝑡(𝑙𝑗)

9. If 𝑡(𝑙𝑖) = 𝑌 then ws(X)=ws(𝑙𝑗)

10. Else if 𝑡(𝑙𝑗) = 𝑌 then ws(X)=ws(𝑙𝑗)

11. If 𝑌 = ∅ 𝑡𝑕𝑒𝑛 𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖)

12. Else 𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆(𝑌)

13. 𝑖𝑓 𝑤𝑠 𝑋 satisfies minws then

3 Weighted Support

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

288

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛

 16. Call recursive the function FWI-Extend with the parameter is 𝐿𝑖

Figure 3: WIT algorithm

5. WIT-Diff algorithm

Proposed the Diffset
4
 strategy for fast computing the support of item sets and saving memory to store

Tidsets
5
. We recognize that it can be used for fast computing the ws values of item sets (1). Diffset

computes the difference set between two Tidsets in the same equivalence class. In a dense database,

the size of Diffset is smaller than the Tidset. Thus, using Diffset will consume less storage and allow

for the fast computing of weighted support values. In this algorithm difference between PX and PY

illustrated d(PXY) that X and Y are my items and P is prefix that illustrated equivalence class of items

[13,15].(Fig 4)

𝑑 𝑝𝑥𝑦 =
𝑡(𝑝𝑥)

𝑡(𝑝𝑦)
 5.1

If have values of d(PX) and d(PY) and I will compute d(PXY) ,can used bellow equation:

d pxy =
d(py)

d(px)
 5.2

Beneficial of equation 5.1 and 5.2 can reach an equation for calculate weighted support in this method:

WS pxy =ws px -
 tw(t)t∈d(pxy)

 tw(t)t∈T

 5.3

If value of d(PXY)=∅ then value of ws(PXY)=ws(PX) , this denote if d(PXY)=∅ then value of ws is

equal parent ws value.

Input: Database D and minimum weighted support threshold minws.

Output: FWI contains all frequent weighted Itemsets that satisfy minws from D.

Method:

WIT-Diff()

1. 𝐿𝑟=All items that their ws satisfy minws.

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟 increasing by their tid.

3. 𝐹𝑊𝐼 = ∅.

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff with the parameter is 𝐿𝑟 .

FWI-Extend-Diff (𝐿𝑟)

5. Consider each node 𝑙𝑖 in 𝐿1 DO.

6. Add(𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠) to FWI.

7. Create a new set 𝐿𝑖 by join 𝑙𝑖 with all 𝑙𝑗 following it in 𝐿1by:

8. Set X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡

4 Difference set
5 Transaction id number sets

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

289

9. If 𝐿𝑟 is the first Level Then 𝑌 =
𝑡 𝑙𝑖

𝑡 𝑙𝑗

10. Else 𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗)

11. If 𝑌 = ∅ 𝑡𝑕𝑒𝑛 𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖)

12. Else 𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹(𝑌)

13. 𝑖𝑓 𝑤𝑠 𝑋 satisfies minws then

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛

 16.Call recursive the function FWI-Extend-Diff with the parameter is 𝐿𝑖

Figure 4: WIT-Diff algorithm

For description example of this algorithm used of table 1, table 2 and fig 5.for compute difference

between item B and D we must compute d(BD):

d BD =
t(B)

t(D)
 5.4

That t(B)=123456 and t(d)=1356 then difference of two items is 24 , while that result of unlike

combination of item B and item D is null.

Figure 5: WIT-Diff example

Using the example data presented in Tables 1 and 3, and the algorithm in Fig. 5, we illustrate the WIT-

DIFF algorithm with minws = 0.4 as follows. Level 1 of the WIT-tree contains single items, their tids
6
,

and their ws. They are sorted in increasing order by their |tids|. The purpose of this work is to compute

Diffset faster [16,17].

A join D:

d AD =
t A

t D
=

1345

1356
=4⇒ws AD

6
 Transaction identity number

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

290

=ws A -
 tw(t)tϵd(AD)

 tw(t)t∈T

=0.72-
0.3

2.25
=0.59

A join B:

d AB =
t(A)

t(B)
=

1345

123456
=∅

⇒ ws AB =ws A =0.72

6. The proposed methods:

In explained ways and methods we used of datasets that cleaned and removed the duplicate items and

preprocessing with other tools such as Microsoft excel ,Clementine ,Weka or with other tools. We

modified WIT-Diff algorithm at first remove duplicate items in each transactions and reduce transactions

weight computations for similar transactions.

6.1 . WIT-Odd or Even method:

 In this way at first scanning dataset and selection all items that not repetitive and unique then classify all

items in two group, odd items and even items .in continue of process the algorithm done individually for

even items and odd items .and at the end we have two run times, one for even items and other run time for

odd items .and have compounds of only odd and even items .in result we reducing run time and produce

frequent item sets. (Fig 6)

Input: Database D and minimum weighted support threshold minws.

Output: FWI contains all frequent weighted Itemsets that satisfy minws from D and Even and odd

weight.

Method:

WIT-Diff-even and odd()

𝐼𝐹 𝑤𝑖 𝑀𝑂𝐷 2 ≠ 0 𝑡𝑕𝑒𝑛 // odd items.

 Else if 𝑤𝑖 𝑀𝑂𝐷 2 = 0 𝑡𝑕𝑒𝑛 //even items.

1. 𝐿𝑟= All items that their ws satisfy minws.

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟 increasing by their ws.

3. 𝐹𝑊𝐼 = ∅.

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff –even and odd with the parameter is 𝐿𝑟 .

 FWI-Extend-Diff-even and odd(𝐿𝑟)

5. Consider each node 𝑙𝑖 in 𝐿1 DO.

6. Add (𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠) to FWI.

7. Create a new set 𝐿𝑖 by join 𝑙𝑖 with all 𝑙𝑗 following it in 𝐿1by:

8. Set X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡

9. If 𝐿𝑟 is the first Level Then 𝑌 =
𝑡 𝑙𝑖

𝑡 𝑙𝑗

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

291

10. Else 𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗)

11. If 𝑌 = ∅ 𝑡𝑕𝑒𝑛 𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖)

12. Else 𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹 − 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑜𝑑𝑑(𝑌)

13. 𝑖𝑓 𝑤𝑠 𝑋 satisfies minws then

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛

 16.Call recursive the function FWI-Extend-Diff –even and odd with the parameter is 𝐿𝑖

Figure 6: WIT-Diff-even and odd algorithm

6.2. WIT-Max of Even or odd method:

The previous method ,we use of two variables for keeping count of even and odd items then at the end

counting down count of two variables and then each of have maximum count and value ,my algorithm

run with it. In this way purpose is reduce more calculations. (Fig 7)

Input: Database D and minimum weighted support threshold minws.

Output: FWI contains all frequent weighted Item sets that satisfy minws from D With Max.

Method:

WIT-Diff-MAX()

1.𝐹𝑜𝑟 𝐴𝑙𝑙 𝑖𝑡𝑒𝑚𝑠 𝑜𝑓 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷𝑜

2. 𝐼𝐹 𝑖𝑡𝑒𝑚𝑊𝑒𝑖𝑔𝑕𝑡 = 𝑂𝐷𝐷 𝐷𝑂

3. max𝑜𝑑𝑑 + +

4. 𝐸𝑙𝑠𝑒 𝑖𝑓 𝑖𝑡𝑒𝑚𝑤𝑒𝑖𝑔 𝑕𝑡 = 𝐸𝑉𝐸𝑁 𝐷𝑜

5. max𝑒𝑣𝑒𝑛 + +

6. 𝐼𝐹 𝑚𝑎𝑥𝑜𝑑𝑑 > 𝑚𝑎𝑥𝑒𝑣𝑒𝑛 𝑡𝑕𝑒𝑛
7. FWI-Extend-Diff-ODD()

8. 𝐸𝑙𝑠𝑒 𝑖𝑓 𝑚𝑎𝑥𝑒𝑣𝑒𝑛 > 𝑚𝑎𝑥𝑜𝑑𝑑 𝑡𝑕𝑒𝑛
9. FWI-Extend-Diff-EVEN()

Figure 7: WIT-Diff-max of even or odd algorithm

6.3 . WIT-Percent method:

In third method , In first counting each of items in total dataset and then compute percent of each item

in all items. And then run method with specified percent of items. (Fig 8)

Input: Database D and minimum weighted support threshold minws.

Output: FWI contains all frequent weighted Item sets that satisfy minws from D.

Method:

WIT-Diff-Percent ()

Array 1[][]= count of all items.

Array 2[][]=percent of each items in dataset.

Computing Percent of each item in dataset.

Input user threshold for percent of items.

1. 𝐿𝑟=All items that their ws satisfy minws.

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟 increasing by their ws.

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

292

3. 𝐹𝑊𝐼 = ∅.

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff-Percent with the parameter is 𝐿𝑟 .

FWI-Extend-Diff-Percent (𝐿𝑟)

5. Consider each node 𝑙𝑖 in 𝐿1 DO.

6. Add (𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠) to FWI.

7. Create a new set 𝐿𝑖 by join 𝑙𝑖 with all 𝑙𝑗 following it in 𝐿1by:

8. Set X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡

9. If 𝐿𝑟 is the first Level Then 𝑌 =
𝑡 𝑙𝑖

𝑡 𝑙𝑗

10. Else 𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗)

11. If 𝑌 = ∅ 𝑡𝑕𝑒𝑛 𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖)

12. Else 𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡(𝑌)

13. 𝑖𝑓 𝑤𝑠 𝑋 satisfies minws then

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛

 16.Call recursive the function FWI-Extend-Diff-Percent with the parameter is 𝐿𝑖

Figure 8: WIT-Diff-Percent of items algorithm

We can use data mining tools (such as Clementine software) for acquire count of items and percent of

items in total of datasets. (See Fig 9 and Fig 10)

Figure 9: Clementine workspace

Figure 10: Out of Clementine workspace

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

293

6.4 . WIT-Scope of weight method:

In fourth method, use of domain for weight of items .as respects we assign for each item a value for

weight with a random function .we can filter items with their weight and then running algorithm for

selected items. In all method we purpose reducing the input of algorithm and as a result reduce run time

and produce item sets. (Fig 11)

Input: Database D and minimum weighted support threshold minws.

Output: FWI contains all frequent weighted Item sets that satisfy minws from D.

Method:

WIT-Diff-Scope ()

𝐼𝑛𝑝𝑢𝑡 𝑡𝑤𝑜 𝑆𝑐𝑜𝑝𝑒 𝑓𝑜𝑟 𝑤𝑒𝑖𝑔𝑕𝑡 𝐷𝑜𝑚𝑎𝑖𝑛𝑠

𝐹𝑟𝑜𝑚 𝑠𝑐𝑜𝑝𝑒1 𝑡𝑜 𝑠𝑐𝑜𝑝𝑒2 𝐷𝑜

1. 𝐿𝑟=All items that their ws satisfy minws.

2. 𝑠𝑜𝑟𝑡 Nodes in 𝐿𝑟 increasing by their ws.

3. 𝐹𝑊𝐼 = ∅.

4. 𝑐𝑎𝑙𝑙 Function FWI-Extend-Diff-Scope with the parameter is 𝐿𝑟 .

FWI-Extend-Diff-Scope (𝐿𝑟)

5. Consider each node 𝑙𝑖 in 𝐿1 DO.

6. Add (𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡. 𝑙𝑖 . 𝑤𝑠) to FWI.

7. Create a new set 𝐿𝑖 by join 𝑙𝑖 with all 𝑙𝑗 following it in 𝐿1by:

8. Set X=𝑙𝑖 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 ∪ 𝑙𝑗 . 𝑖𝑡𝑒𝑚𝑠𝑒𝑡

9. If 𝐿𝑟 is the first Level Then 𝑌 =
𝑡 𝑙𝑖

𝑡 𝑙𝑗

10. Else 𝑌 =
𝑑(𝑙𝑖)

𝑑(𝑙𝑗)

11. If 𝑌 = ∅ 𝑡𝑕𝑒𝑛 𝑤𝑠 𝑋 = 𝑤𝑠(𝑙𝑖)

12. Else 𝑤𝑠 𝑋 = 𝐶𝑂𝑀𝑃𝑈𝑇𝐸 − 𝑊𝑆 − 𝐷𝐼𝐹𝐹 − 𝑆𝐶𝑂𝑃𝐸(𝑌)

13. 𝑖𝑓 𝑤𝑠 𝑋 satisfies minws then

14. 𝐴𝑑𝑑 new Node < 𝑋, 𝑌, 𝑤𝑠 𝑋 > into 𝐿𝑖

15. 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐿𝑖 ≥ 2 𝑡𝑕𝑒𝑛

 16.Call recursive the function FWI-Extend-Diff-Scope with the parameter is 𝐿𝑖

Figure 11: WIT-Diff-Domain of weight algorithm

7. Experimental results

All experimental described below were performed on a Intel(R) Core ™ i5 2.2 GHz .4GB RAM

memory, Windows 7, using visual studio C# 2010 .the experimental datasets used for the

experimentation were downloaded from http://finin.cs.helsinki.fi/data [14].we add a value for weight

each of items with random function (values in the range of (1 to 10) for each datasets). In table 4 see

more information of experimental datasets.

In table 4 view databases name and number of items and transactions, and in table 5 view result of run

time of algorithms and methods. View number of FWI(Frequent weighted items) based MinWs

threshold.

http://finin.cs.helsinki.fi/data

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

294

Table 4: Information of datasets

Database (DB)

Transactions #Items Modified

Chess 3196 75 Insert duplicate items on each transaction

Mushroom 8124 120 Insert duplicate items on each transaction

Table 5: Number of FWI from databases

#FWI MinWs Database

8063 80 Chess

16039 70 Chess
23208 60 Chess
29431 50 Chess
436 50 Mushroom

3038 40 Mushroom
5347 30 Mushroom

11634 20 Mushroom

Table 6: Number of FWI with methods

Domain of Weights Max Percent Odd Even MinWs Database

(20: 90) → 315 996 70% → 5900 996 150 80 Chess

(20: 90) → 2955 9376 60% → 12912 9376 450 70 Chess

(20: 90) → 1043 13815 50% → 18126 13815 3730 60 Chess

(20: 90) → 13817 16057 40% → 28422 16057 5216 50 Chess

(20: 90) → 25 18 80% → 31 17 18 50 Mushroom

(20: 90) → 42 112 70% → 31 54 112 40 Mushroom

(20: 90) → 91 133 40% → 5331 71 133 30 Mushroom

(20: 90) → 336 134 30% → 9452 134 689 20 Mushroom

Figure 12: Run time for the eight methods in Chess dataset

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

295

8. Conclusion

This paper has presented some method for mining frequent weighted item sets from weighted item

transaction databases with reduce run time and reduce produce frequent item sets. And several

efficient algorithms proposed. We use of WIT-Tree structure and apply my method to WIT-Diff

algorithm that have less than run time from other algorithm. In this paper, we have concentrated only

on the on the mining of FWIs using the proposed WIT-Tree data structure. And in my proposed

methods at the first remove duplicated items in a transaction because, they not efficacy in

computations and not compute similar transactions weight since used weight transaction of previous

similar transaction.

9. References

[1]. A new method for mining Frequent Weighted . Vo, B,Frans Coenen & Bac Le. 2013, VLDB94, pp.

489-499.

[2]. Fast algorithms for mining association rules. Agrawal, R., & Srikant, R. 1994, VLDB’94, pp. 487–

499.

[3]. Mining association rules. Cai, C. H., Fu, A. W., Cheng, C. H., & Kwong, W. W. 1998,

international database engineering and, pp. 68–77.

[4]. An effective mining approach for up-todate. Hong, T. P., Wu, Y. Y., & Wang, S. L. 2009, Expert

Systems with Applications, pp. 9747–9752.

[5]. An efficient and effective association-rule. Hong, T. P., & Wang, C. J. 2010, Expert Systems with,

pp. 618–626.

Figure 13: Run of the eight methods in Mushroom dataset

A. Rashidi, A. G. Delavar/ J. Math. Computer Sci. (), -

296

[6]. A weighted utility framework. Khan, M. S., Muyeba, M., & Coenen, F. 2008, second uksim

european symposium on, pp. 87–92.

[7]. A novel algorithm for mining high utility. Le, B., Nguyen, H., Cao, T. A., & Vo, B. 2009, Asian

conference on intelligent information and database, pp. 13–16.

[8]. An efficient strategy for mining high utility. Le, B., Nguyen, H., & Vo, B. 2011, International Journal

of Intelligent Information and Database Systems, pp. 164–176.

[9]. http://fimi.cs.helsinki.fi/data/. Dataset.

[10]. A dynamic bit-vector approach. Vo, B., Hong, T. P., & Le, B. 2012, Expert Systems with

Applications, pp. 7196–7206.

[11]. Interestingness measures for association rules. Vo, B., & Le, B. 2011, Expert Systems with

Applications, pp. 11630–11640.

[12]. Mining minimal non-redundant association rules. Vo, B., & Le, B. 2011, Journal of Intelligent

Systems Technology and Applications, pp. 92–106.

[13]. Mining association rules with weighted items. Cai, C. H., Fu, A. W., Cheng, C. H. 1998,

international database engineering and, pp. 68–77.

[14]. A new methid for mining frequent weighted itemsets based on wit-trees. Vo, B,Frans Coenen &

Bac Le. 2013.

[15]. Mining non-redundant association rules. Zaki.M.J. 2004.

[16]. Weighted association rule mining using weighted support and significance framework.

Tao.F.Murtagh. 2003.

[17]. Weighted association rule mining via a graph based connectivity model. Russel Pears, Yun Sing

Koh,Gillian Dobbie,Wai Yeap. s.l. : Information Sciences, 2012.

[18]. Surveying Robot Routing Algorithms with Data Mining Approach. Rouhollah Maghsoudi,

Somayye Hoseini. No.2, s.l. : The Journal of Mathematics and Computer Science, 2011, Vol. Vol .2.

[19]. Rule Extraction for Blood Donators with Fuzzy Sequential Pattern Mining. Fatemeh Zabihi,

Mojtaba Ramezan, Mir Mohsen Pedram, Azizollah Memariani. 1, s.l. : The Journal of Mathematics

and Computer Science, 2011, Vol. 2.

