
Journal of mathematics and computer science        8 (2014), 251-257 

 

Using shifted Legendre polynomials for solving optimal control problem of an 

HIV infection treatment control model 

M. Alizadehjamal1, M. H. Farahi2  , S. A. Mahdipour3  
1Islamic Azad University, Mashhad Baranch, Mashhad, Iran 

2Ferdowsi University, Mashhad, Iran 
3Hakim Sabzevari University, Sabzevar, Iran 

E-mail: M_alizadehjamal@yahoo.com 
Article history: 

Received    July 2013 

Accepted    August 2013 

Available  online  August 2013 

Abstract 
In this paper we introduce a numerical technique based on Legendre polynomials for solving of 

nonlinear optimal control problems, where this approach is used for solving optimal control problem of 

an HIV infection treatment control model. In this paper, first by using healthy cells CD4+T (T), infected 

cells CD4+T (I), viral load (V) and also by using a drug inhibitor of reverse polygraph as a control 

function, a control model is presented for treatment of HIV infection. A cost function to minimize the cost 

of drug during the treatment is defined as well. To find the pair of trajectory and control of such nonlinear 

optimal control problem, we used shifted Legendre polynomials to approximate optimal pair of trajectory 

and control. 
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1. Introduction 

Despite remarkable success in medical science, still solution and definitive treatment for HIV has not 

been found by scientists, and every day is added to statistics victims and patients. The importance of 

these diseases caused, the other researchers including mathematic scientists, to deal with it, come to 

the help of medical science scientists. In this regard, various mathematical models to represent the 

dynamics of immune system cells and the HIV virus, has been presented. Solving optimal control 

problems related to these models, because of the nonlinear dynamic system, the classic method of 

solving the optimal control is not possible. Therefore present a simple and efficient method for solving 

such problems is very important. In recent years approximation functions, such as orthogonal functions 

and polynomials to solve a variety of mathematical and dynamical systems are used. Orthogonal 

functions and polynomial series have received considerable attention in dealing with various problems 



 M. Alizadehjamal, M. H. Farahi, S. A. Mahdipour / J. Math. Computer Sci.     ( ),  

 

252 
 

of dynamical systems. Examples are the use of the Fourier series [1, 2], the Walsh functions [3], the 

Taylor series [4], the Chebyshev polynomials [5] and the block– pulse functions [6]. 

In this paper we described the optimal control model of HIV will be solved by shifted–Legendre 
polynomials 

2. Theory 

2.1. Function approximation  

A function 
2( ) [0, ]ff t L t  can be approximated as: 
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The coefficient of shifted-Legendre polynomial fi can be obtained using: 

0

2 1
( ) ( )

ft

i i

f

i
f f P d

t
  


   

Equation (2) can be written in a matrices form as: 

 ( )TF P t ≈ ( )f t    &   ( )TP t F ≈ ( )f t                                                       (3) 

Where F and P(t) are m×1 matrices which are given by: 
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2. 2. The Operational Matrix of Integration 

Integration of the vector P(t) defined in Eq. (4) can be written as:
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Using Esq. (3, 5): 
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Where the matrix H is obtained as follows [4]: 
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2. 3. The product Operational Matrix 

The product operational matrix F


can be defined as follows [7]: 

                                                                        ( ) ( ) ( )TP t P t F F P t
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For example, for m=3 the square matrix F


can be defined as follows: 
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Where  𝐅𝐓 =  𝐟𝟎   𝐟𝟏   𝐟𝟐 ,  is vector of coefficient of shifted Legendre polynomials. 

2. 4. HIV Basic Model 

The target cells of HIV infection are lymphocyte helper cells, especially CD4+T cells. These cells become 

infected and begin to produce free various. The main fact about HIV infection is reducing the count of 

CD4+T cells, which have an essential role in protecting body against deferent pathogens. So it is 

important to understand the dynamics of CD4+T cell count as a function of time. In HIV infection basic 

model, three groups of molecules are considered; Uninfected CD4+T cells (T), infected CD4+T cells (I) and 

viral load (V). Biological descriptions, translation to reactions and corresponding ODE’s are presented in 

Table 1. 
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Table 1. HIV basic model interactions. 

Biological description Translation to 
reactions 

Reaction rate     Translation to ODE 

 
CD4+T cells production 0 → T s T = s 
CD4+T cells natural death T → 0 d T = −dT 
CD4+T cells become infected by virus T+V → l+V β T = −βTV    l = β𝑇𝑉 
Infected CD4+T  cells death l → 0 μ l = −μl 
Virus replication in infected CD4+T  l → l+V k V = kl 
Virus natural death V → 0 c V = −cV 
    

 

Now, according to Table 1, the complete ODE model, which is sum of contributions from all reactions, is 

as follows: 

 

 

                                                            (8)     

Where the following estimated parameters are as model (1) [8]:
 
 

7, 0.007, 0.00000042163, 0.0999, 0.2, 90.67s d c k      

  
2. 5. HIV infection treatment control model 

There are three convenient groups of drugs for AIDS retroviral therapy; reverse transcriptase, protease, 

and Integrate enzyme inhibitors. In this section, we study the role of reverse transcriptase inhibitors. 

The main action of this kind of drugs is preventing to produce viral load with infection Lymphocyte cells. 

This action is equivalent to the reaction 𝑰 → 𝑰 + 𝑽  [8]. So we control the third equation to prevent of 

produce viral load with infection lymphocyte cells. This control function is called u(t), where 𝟎 ≤ 𝒖(𝒕) ≤

𝟏. The most drug efficiency is in the case 𝒖(𝒕) ≡ 𝟏 which means viral load is not produce by infection 

cells. At the other side, 𝒖(𝒕) ≡ 𝟎 is the case which the drug does not change the disease progression. By 

above argument, the control system is as: 

                                                                      (1 )
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3. Solving HIV infection treatment control model 

With Using [9], consider the objective functional to be defined as:  
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Where 𝜶 = 𝟏𝟏𝟎. Our goal is maximizing the objective functional J subject to the control system (9); that 

is, maximizing the total count of CD4+T cells and minimizing the costs of treatment by applying some RTI 
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drugs. The solution of this optimal control problem should be calculated by numerical methods. We 

have used a special discretization method, based on shifted Legendre polynomials. For detailed 

explanation of this method, see [7]. So optimal control problem in  𝟎, 𝟏𝟎𝟎𝟎  interval days, given by:  
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                                          (10) 

In this problem using of drug after 129 days of entry the HIV virus into the body has been considered. 

Therefore, the initial value of problem to the solution of AVK discrete optimization technique for model-

based HIV infection has been calculated at 129 days [8]. Constraints optimal control problem are as a 

nonlinear differential equations. These constraints can be convert to nonlinear algebraic equations 

which includes a system of 9 equations and 12 unknown with using shifted Legendre polynomials. Using 

this approximation method, the first nonlinear constraint of problem, can be transformed to non-linear 

algebraic system of three equations as follows: 
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So the second constraint of problem makes nonlinear algebraic equations for the following: 
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The following non-linear algebraic equations are obtained by the third constraint of problem: 
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The objective function of the problem (10) can be written as follows by nonlinear algebraic function 

coefficients in [0, 1000] days with terms of shifted Legendre polynomials:  
2 2 2

0 0 0 1 1 1 2 21000 55000 55000 18315 18370 18315J T u u u u u u u     
                                             (15)
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Now the objective function of equation (14), equations (11), (12) and (13) that are related to constraints 

of problem, the optimal control problem (10) can be wrote by nonlinear program problem. With solving 

of this nonlinear programming problem by Mathematica software, T(t),  I(t),  V(t) and u(t) functions are 

obtained as following form: 

2
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By plotting these functions, the following diagrams are obtained: 
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Figure. 1 Solution of the optimal control problem with control 

According to Figure 1, it is seen that after taking the drug, the number of uninfected cells 4CD T  (T) is 

increasing, however these cells rate of increasing after 200 days because of approaching normal human 

body decreases. The number of infected cells (I) and viral load (V) is reduced and finally, an average dose 

for the drug during treatment recommended. 

4. Conclusions 

According to, the dynamic of most real systems in nature are nonlinear and optimal control problems 

related to them in classical form are often extremely complex and difficult, method used in this paper is 

effective and efficient method, because it makes these problems to nonlinear algebraic problems 

solving. In this paper, the problem of minimizing the cost of treatment with drug in a model controlling 

HIV infection is solved with using Shifted Legendre polynomials and a mean value for drug use during 

treatment is recommended. Figures obtained from the solution of the problem show drug effects during 

treatment as well as. 
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