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   Abstract 
 

       In this article, expanding perturbation approach is applied for solving the initial value 
problems with fractional coordinate derivatives.  The fractional derivative is described in the 
Caputo sense. The response expressions are written in terms of the Mittag-Leffler functions. 
Convergence of the approach is proved. Comparisons are made to confirm the reliability and 
effectiveness of the present ideas. 
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1. Introduction 

       During the last years, numerous papers deal with analytical methods for solving differential 
equations of fractional order [1-10 ] appeared in several international journals,  e.g. the  (G’/G)-
method [11], the parameter-expanding method [12], Fan Sub-equation Method [13],the 
Adomian’s decomposition method [14,15], the homotopy perturbation technique [16-19]. The 
homotopy analysis method [20] and the varitional iteration method [21]. In this paper, we 
recommend a robust analytical method based on expanding perturbation approach [22, 23] to 
solve the fractional initial value problems. We will show that the suggested strategy introduce a 
powerful improvement for solving this type of problem. 
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1.1. Fractional calculus 

       Recently, there has been a great deal of interest in fractional calculus (that is, calculus of 
integrals and derivatives of any arbitrary real or complex order). Researchers   have found many 
of the physical phenomena can be modeled accurately using the fractional derivatives.  For 
more information about applications of this interesting theory see [1, 2, 3]. 
       Here under some preliminaries and notations regarding fractional calculus presented. For 
more details see [2]. 
     There are several definitions of a fractional derivative of order 0   [1, 3].  The two most 

commonly used definitions are the Riemann-Liouville and Caputo. Each definition uses 

Riemann-Liouville integration. Riemann-Liouville fractional integration of order    is defined 

as 
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where ( )  is the well-known Gamma  function. The next two equations define Riemann-

Liouville and Caputo fractional derivatives of order     respectively, 
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In this paper we have chosen to use the Caputo definition, which is a modification of the 
Riemann - Liouville definition, because when we interpret the fractional derivative in Eq. (1) as 

a Caputo fractional derivative with suitable conditions on the forcing function 1 2( , ,..., , )nx x x t , 

the Caputo fractional derivative allows traditional initial and boundary conditions to be 
included in the formulation of the problem. The reader is advised to consults the geometric and 
physical interpretation for fractional derivatives and fractional integrals of both the Riemann- 
Liouville and Caputo types in [2]. 
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 1.2. Fractional initial value problems      

       One very important class of differential equations of fractional order is the fractional initial value 

problems written in the following form 

                         ( ) ( )

0( ) ( , ( )), (0) , 0,1,2,..., 1,k kD t f t t k n                                                 (5) 

Where f is an arbitrary function, D   denotes the fractional derivative and ( )

0

k are the 

specified initial conditions.  
 
 Theorem 1.2.1.  The Eq. (5) is equivalent to the nonlinear Volterra integral equation of the 
second kind 
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Proof. See [22; Sayevand and Golbabai, pp. 5]  
 

1.3. Expanding perturbation approach: Some basic notations 

Definition 1.3.1. The function ( , )f x   is an approximation to ( , )u x    uniformly [23, 24] valid 

to order ( )   if 
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 Definition 1.3.2.   Let ( )f x   and ( )g x  be two functions defined on the real numbers. We set  

( ) ( ( )) 0,f O g     if 
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Definition 1.3.3.  We set ( ) ( ( )) 0,f o g      if  
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Now, consider the following function 
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Such that 1( ) ( ( ))n no    . We say that, f has an asymptotic perturbation expansion.  
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Theorem 1.3.1.   Under the assumption of the relations (9), (10), we have 
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Proof. From Eq. (10) we obtain 
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Whence, (12) implies that 
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Continuing, the process, the proof can be completed. 

2. The idea of the suggested scheme 

          In this section, we shall illustrate the applicability of our proposed scheme (EPM) to 
fractional initial value problems. 

Consider the following initial value problem 
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Where B is boundary operator and the derivatives is described in the Caputo sense. Eq. (14) 

can be written in the following form 

                       ( , ( )) ( , ( )) [ ( , ( ))] [ ( , ( ))],f t t g t t L f t t N f t t                                                        (15) 

 

where, L is a linear  part, N  is nonlinear part and g  is a known analytical function. By the 

same manipulation as given in Section (1) and Theorem 1.2.1.  We obtain:   
 

 

               

0

1 0 0 0

1 2 2 0 2

( ( )) 0,

( ( )) ( ) ( ( )) ( ),

( ( )) ( ) ( ( ),..., ( )), 2,3,....

t

t

j t j j j

t

t L t S t g t

t L t S t t j









  

   
   



   

   

                                                      (16) 

 

Where 

                     
0 0

[ ( , ( ))] ( ( )) ,n n n n

n n

N f t t S a t a S 
 

 

                                                                                    (17) 



   Khosro Sayevand / J. Math. Computer Sci.    8 (2014) 359-366 
 

363 
 

and 

                                      0 1( ( ), ( ),..., ( )).l l lS S t t t                                                                                          (18) 

Consequently, we obtain the following relations: 
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3. Application and numerical results 

         To give a clear overview of the suggested scheme, the following examples are presented. 
All the results are calculated by using the symbolic calculus software Mathematica. 

Example 3.1.  Consider the following fractional Riccati equation 

                                             2( ) 1 ( ),0 1,t t t                                                                                          (20) 

subject to the initial condition 

                                            (0) 0.                                                                                                                        (21) 

The   exact solution of Eq. (18) for 1  , is   
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By the same manipulation as given in pervious section we obtain 
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Now, assume that the leading term has the form 
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Where  is a suitable function.  Substituting (24) in to (23)   cause that we have some different 
approximation.  For instance, the following expression can be obtained easily when 1  , 
 

                      3 5 7 9 11( ) 2 3.009 7.243 19.615 55.963 ( ).t t t t t t O t                                                   (25) 
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Figure 3.1.  Shows that the solution obtained by our scheme (EPM)  which are in excellent 
agreements with  exact solution.  
 
 
 
 
 
 
 
 
 
 
 

 

 

                                                           Figure 3.1. 

Mittag-Leffler function  ( )E z    is defined by the following series representation, valid in the 

whole complex plane [25-28] 
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Eq. (25) is a convergence series.  It is easily verified that our obtained solution in Eq. (22) are 

convergence and Mittag-Leffler stable. 

Example 3.2.  Consider the following initial value problem 

                                            3 2.5 2 4

* *( ) ( ) ( ) ,t tD t D t t t                                                                              (27) 

Subject to the initial condition 

                                            2( ) ,t t                                                                                                                       (28) 

Using our approach, we get the 2( )t t  as approximate solution, which is in excellent 
agreement with the analytical solution obtained by Jafari et al.  [27]. 

4. Concluding remarks 

       In this study, the approximate solution of the fractional initial value problems, are obtained 
using expanding perturbation approach.  The fractional derivative are described in the Caputo 
sense.  The solutions are given in the Mittag-Leffler stable series.  The obtained results show 
that our solution is in high agreement with the analytical solution obtained by Adomian 
decomposition method and homotopy perturbation technique. Finally, our out puts, reveal that 
this proposed strategy provides highly accurate solutions. 
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